Introduction The model Properties

Black holes with SU(N) gauge fields and superconducting horizons

Ben Shepherd

Department of Applied Mathematics University of Sheffield

April 2, 2011

Outline

2 Planar black holes with $\mathfrak{su}(N)$ gauge fields in AdS

Properties of the black hole solutions

Superconductivity

Properties

Superconductors are materials that have a phase transition at a critical temperature T_C , such that for $T < T_C$:

- An electron condensate can be formed
- The state with the electron condensate has lower free energy than the normal state
- This state has zero DC resistivity

Most metals superconduct at $T_C \sim 5K$ and are described by BCS theory. The layered cuprates have $T_C \sim 100K$, but no theory to describe them, since:

- The pairing mechanism is not well understood
- Pairs are thought to be strongly coupled

Superconductivity

Properties

Superconductors are materials that have a phase transition at a critical temperature T_C , such that for $T < T_C$:

- An electron condensate can be formed
- The state with the electron condensate has lower free energy than the normal state
- This state has zero DC resistivity

Most metals superconduct at $T_C \sim 5K$ and are described by BCS theory. The layered cuprates have $T_C \sim 100K$, but no theory to describe them, since:

- The pairing mechanism is not well understood
- Pairs are thought to be strongly coupled

The AdS/CFT correspondence

The AdS/CFT correspondence relates gravitational theories in d + 1 dimensional AdS space, to d dimensional conformal field theories on the boundary.

- Original correspondence relates type IIB string theory on $AdS_5 \times S^5$ to 4 dimensional CFTs.
- We will use the classical limit on the gravity side
- Since the layered cuprates are effectively 2 + 1 dimensional we will use a gravitational theory in AdS_4

We will use the AdS/CFT correspondence to construct gravitational analogues to superconductors

Introduction The model Properties

The model

• Planar black hole line element in AdS is

$$ds^2 = -\sigma^2 \mu \, dt^2 + r^2 dx^2 + r^2 dy^2 + \mu^{-1} dr^2,$$

where
$$\mu = -\frac{2m(r)}{r} - \frac{\Lambda r^2}{3}$$
.

• The gauge potential

$$A = \frac{1}{g} \sum_{k=1}^{N-1} \left(h_k(r) H_k dt + \frac{i}{2} \omega_k(r) F_k dx + \frac{i}{2} \omega_k(r) G_k dy \right).$$

• The Einstein-Yang-Mills (EYM) equations are

$$G_{\mu
u} = 8\pi T_{\mu
u}$$
 $D_{\mu}F^{\mu
u} = 0$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g\left[A_{\mu}, A_{\nu}\right]$$

Solutions

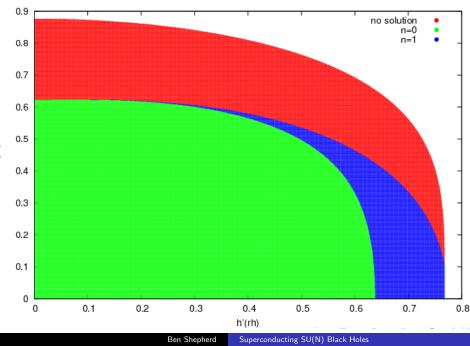
Solutions to the field equations

- The EYM equations give us expressions for ω_k'' , h_k'' , m' and σ' , plus some boundary conditions at r_h
- We require $h_k(r_h) = 0$ and $\omega_k \to 0$ as $r \to \infty$ for all k
- We are looking for solutions where ω_k have no nodes
- Solutions are then uniquely determined by Λ and $\omega_k(r_h)$

Known solutions

The $\mathfrak{su}(2)$ case, with a slightly different gauge potential, has been considered by S. Gubser et al.

• □ ▶ • • □ ▶ • □ ▶



w(rh)

Thermodynamics

• The Hawking temperature is defined by

$$T_H = \frac{\mu'(r_h)\sigma(r_h)}{4\pi}$$

• The free energy is

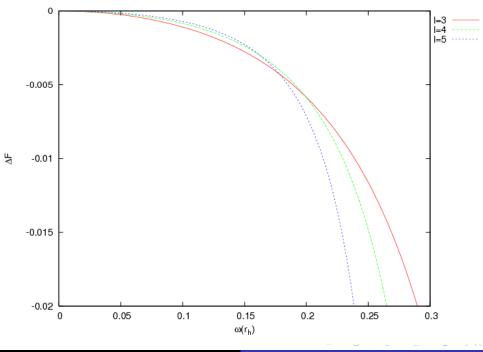
$$F = M - T_H S$$

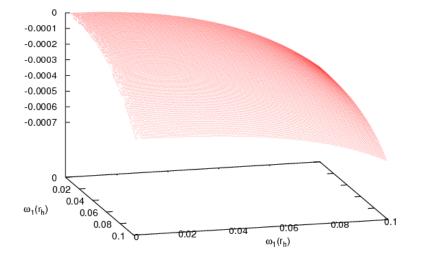
• We also define

$$\Delta F = F - F_{RN}$$

 $\bullet\,$ The superconducting state will become thermodynamically favoured when $\Delta F < 0$

→ < ∃→

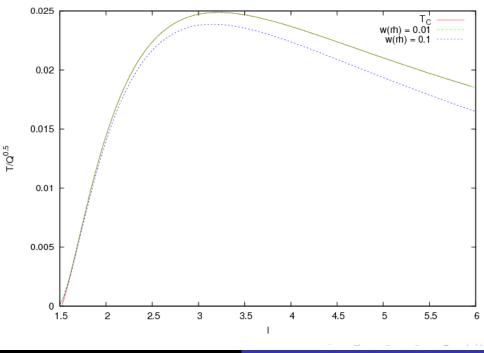


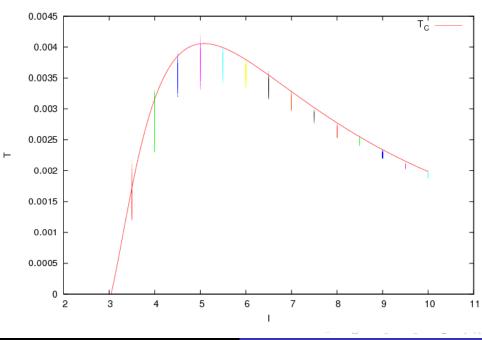


I=5

Perturbations of the Reissner Nordström solutions

- T_C is the temperature at which the condensate begins to form
- At T_C there are only a few pairs of superconducting electrons
- We therefore consider a small condensate perturbation to the Reissner-Nordström $\delta \omega_k$ and corresponding δh_k
- The solution is then uniquely determined by $\Lambda.$





Introduction The model Properties

Conductivity

 We apply a perturbation to the gauge field with time dependence e^{-iξt}, of the form

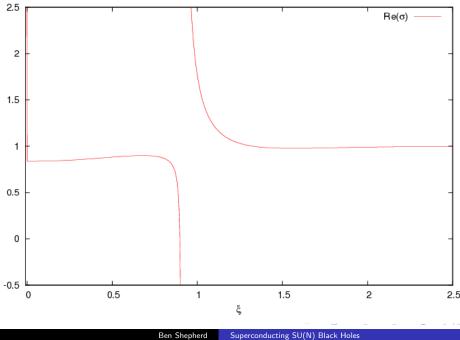
$$\delta A = \frac{1}{g} e^{-i\xi t} \sum_{k=1}^{N-1} \left(\frac{i}{2} \left(\delta u_k F_k + \delta v_k G_k \right) dt + \delta h_{1,k} H_k dx + \delta h_{2,k} H_k dy \right)$$

• In the $\mathfrak{su}(2)$ case there is a set of gauge transformations that preserve the structure of δA , so we define gauge invariant quantities

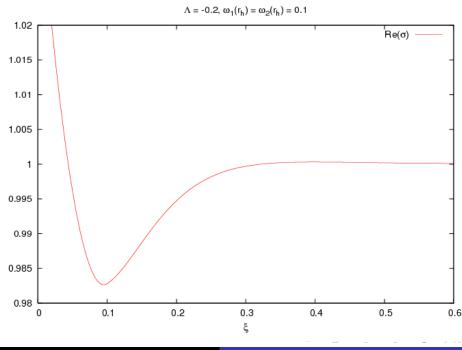
$$\delta \hat{h}_1 = \delta h_1 + \frac{\omega \left(i\xi \delta v + h\delta u\right)}{h^2 - \xi^2} \qquad \delta \hat{h}_2 = \delta h_2 + \frac{\omega \left(i\xi \delta u - h\delta v\right)}{h^2 - \xi^2}$$

• The conductivity is determined from the behaviour of these perturbations at large *r*.

 $\Lambda = -0.65, \ \omega(r_h) = 0.3$



Superconducting SU(N) Black Holes



Conclusions

Black hole solutions with non-zero $\mathfrak{su}(N)$ gauge fields ω_k :

- Exist at low temperatures
- Are thermodynamically favourable over Reissner-Nordström solutions below T_C
- Have infinite DC conductivity below T_C
- Exhibit a gap in the conductivity at non-zero frequency