

Multianode Photomultiplier Tube Studies for Imaging Applications

1 ma

m

Managan .

Rachel Montgomery University of Glasgow r.montgomery@physics.gla.ac.uk

Multianode Photomultiplier Tubes (MAPMTs):

- Design, crosstalk, applications
- Hamamatsu H8500 and H9500 MAPMTs

Experimental Setup:

- Laser scan method

Scan Results:

- H8500 single photon scans
- H8500 and H9500 multiphoton scans

- Overview of findings

Multianode Photomultiplier Tubes (MAPMTs)

Applications

- Particle identification detectors, e.g. RICH counters
- Medical imaging devices, e.g. SPECT, PET

Hamamatsu H8500 and H9500 MAPMTs

ΜΑΡΜΤ	Active Area (mm)	Number Of Pixels	Pixel Size (mm)	Packing Fraction (%)
H8500	49 x 49	64 (8 x 8 matrix)	5.8 x 5.8	89
H9500	49 x 49	256 (16 x 16 matrix)	2.8 x 2.8	89

Metal channel dynodes

H8500

H9500

Experimental Setup and Method

H8500 Single Photon Scans, 1mm laser beam diameter

- Detection efficiencies for CLAS12 RICH prototype
- Pixel pitch scans showed homogenous efficiency across detector

H8500 Single Photon Scans, 1mm laser beam diameter

H8500 Efficiency Map - QDC Channel 10 at 30 deg

H8500 Multiphoton Scans – Pixel Response

0.1mm beam, ~ 260 photoelectrons
0.04mm step scan of 1 pixel

 Horizontal segmentation of dynode chains corresponding to expected number

H8500 Multiphoton Scans – Crosstalk

Relative pixel positions and QDC channel mapping

28	29	44
26	27	42
24	25	40
22	23	38
20	21	36

H9500 Multiphoton Scans - Pixel Response

- 0.1mm beam, ~ 530 photons
- 0.04mm step scan of 1 pixel

 Horizontal segmentation of dynode chains corresponding to expected number, less than for H8500

H9500 Multiphoton Scans - Pixel Response

- 0.1mm beam, ~ 530 photons
- 0.04mm step scan of 1 pixel

 Horizontal segmentation of dynode chains corresponding to expected number, less than for H8500

H9500 Multiphoton Scans – Crosstalk

Relative pixel positions and QDC channel mapping

18	17	15	
20	19	13	14
22	21	11	12
24	23	9	10
26	25	7	8

H9500 Multiphoton Scans – Crosstalk

Relative pixel positions and QDC channel mapping

22	21	11	12
24	23	9	10
26	25	7	8
28	27	5	6
30	29	3	4
	31	1	2

Position sensitive MAPMTs:

- Enhancing performance of imaging detectors

Single photon scans of H8500 MAPMT:

- Homogenous detection efficiencies across MAPMT
- Independent of photon angles

Multiphoton scans of H8500 and H9500 MAPMTs:

- Response and crosstalk pattern dependence upon dynode arrangement and metal mesh construction

Further studies:

- H7546 MAPMT (different dynode arrangement)

QUESTIONS?

MAPMT Applications

- Particle identification detectors e.g. Cherenkov counters:
 - HERA-B Hamamatsu R5900-00-M16
 - COMPASS Hamamatsu R7600-03-M16

HERA-B RICH:

http://dx.doi.org/1 0.1016/j.nima.20 10.11.127

 Medical imaging e.g. PET, SPECT, small animal gamma cameras

H9500 with CsI(TI) array:

http://dx.doi.org/1 0.1016/j.nima.20 08.05.052

Hamamatsu H7546 MAPMT

 Enhanced photocathode – superior single photon detection efficiency

H7546 data sheet, http://www.hamamatsu.com

Measuring Laser Beam Diameters with a CCD

- CCD beam image just before saturation
- FWHM of intensity profile [CCD pixels]
- 1 CCD pixel diameter = 6.45µm
- Obtain laser diameter [m]

General Analysis Method

Detection efficiency

- Signal fraction above noise threshold cut

• Gain

- Peak to pedestal separation

- For every laser position:
 - extract, analyse signals for **all** channels readout
 - calculate detection efficiency, gain
 - plot results against laser position during scan

H8500 MAPMT Homogeneity

H8500 Global Efficiency Map: -1000V, NDF 4.5

