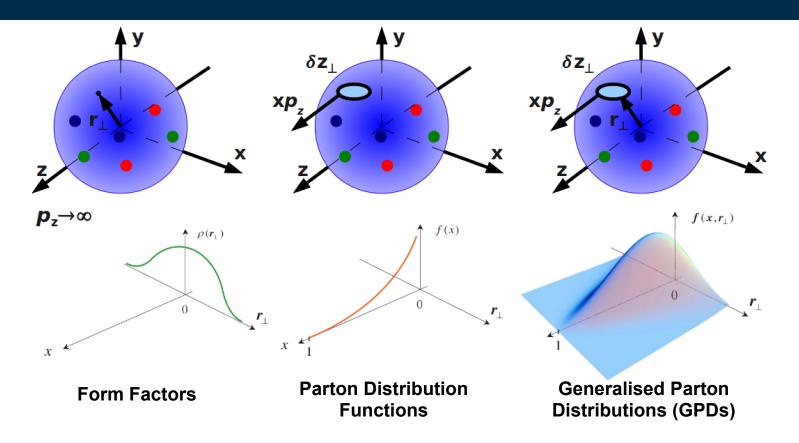


An Overview of Recent DVCS Results at hermes

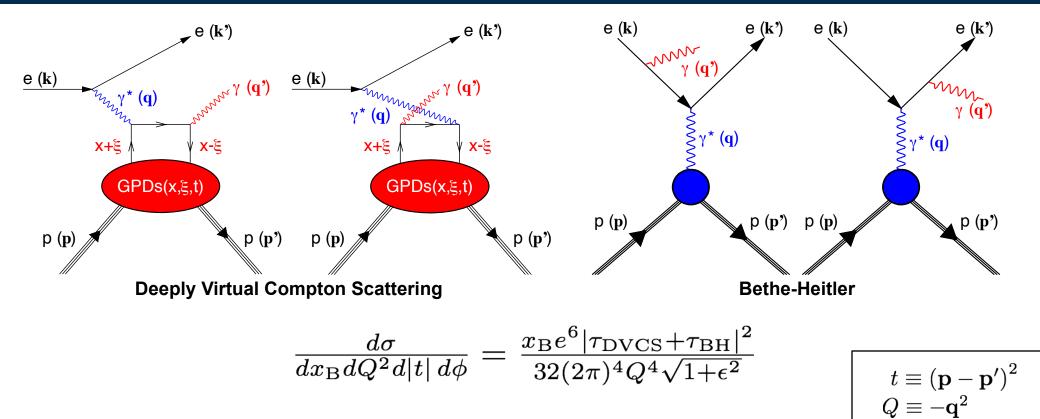

David F. Mahon (University of Glasgow) on behalf of the HERMES Collaboration

Institute of Physics Nuclear and Particle Physics Divisional (NPPD) Conference 2011, Glasgow

Nuclear Physics Parallel Session 3.1 Wednesday 6th April

Generalised Parton Distributions

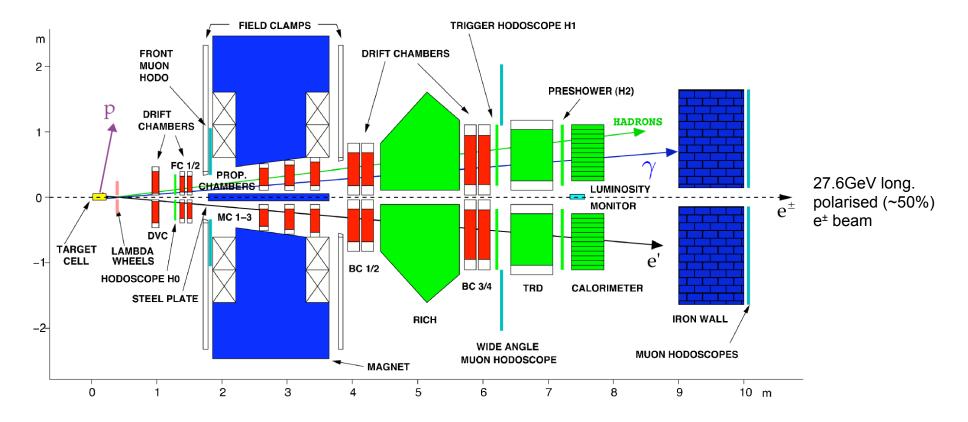
There are four spin-½ GPDs at leading-twist: $H(x, \xi, t), E(x, \xi, t), \widetilde{H}(x, \xi, t)$ and $\widetilde{E}(x, \xi, t)$. Results of Deeply Virtual Compton Scattering at HERMES can provide information on three of them.


Ji Relation:
Phys. Rev. Lett. **78** (1997) 610
$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} x \left[H^{q}(x, \xi, t) + E^{q}(x, \xi, t) \right] dx$$

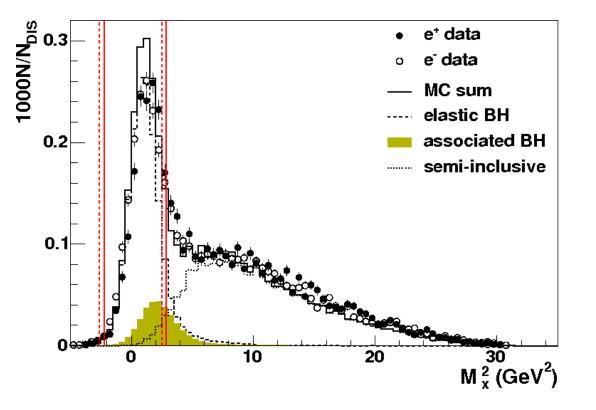
The ep \rightarrow ep γ Interaction

 $\xi \simeq rac{x_{
m B}}{2-x_{
m B}}$

 $x_{\rm B} \equiv \frac{Q^2}{2({f p}\cdot{f q})}$



- Bethe-Heitler (BH) is the dominant contribution at HERMES kinematics.
- From the interference term, information relating to Compton Form Factors (CFFs) can be accessed via cross-section asymmetries.
- These CFFs each relate to a corresponding GPD via a convolution with the hard-scattering kernel.



- Data taken from 1996-2005 with a variety of (un)polarised gas targets (H, D, He, N, Ne, Ar, Kr and Xe).
- Recoil Detector installation completed in mid-2006. Data (unpolarised H and D) were taken until the HERMES shutdown in mid-2007.

A Quick Guide to... ...HERMES DVCS Event Selection

- One electron and one 'neutral cluster' detected in the calorimeter.
- Fiducial volume and kinematic requirements are imposed:

 $0.03 \le x_B \le 0.35$; $1 \text{GeV} \le Q^2 \le 10 \text{GeV}$ -t < 0.7GeV; W > 3 GeV

• The reconstructed 'missing-mass' M_X from the $ep \rightarrow e\gamma X$ interaction is required to be close to that of the proton mass (red window).

- The analysed data sample is subject to various forms of background
 - Associated BH: Involves the scattering off, or production of, an excited state of the proton
 - Semi-inclusive neutral meson production, e.g., the detected γ is from a 2 γ decay of a π^0
 - Exclusive π^0 : Thought to be negligible at HERMES kinematics.

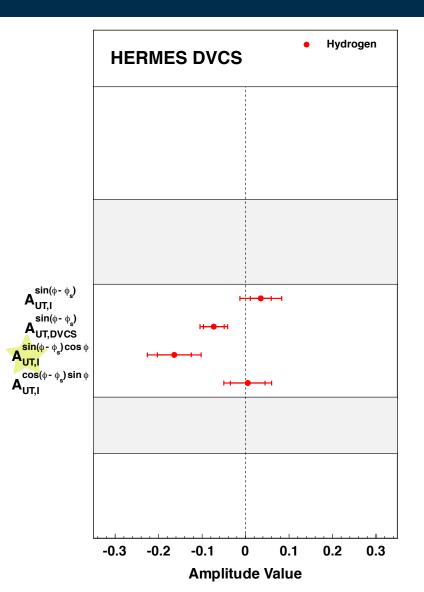
A Quick Guide to... ...HERMES DVCS Asymmetry Extraction

 $\vec{k'}$

part of CFF H.

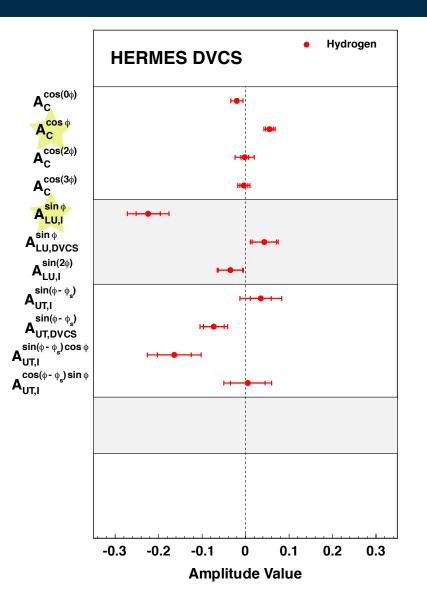
- HERMES has published DVCS asymmetries dependent on beam charge, beam helicity, and target polarisation on a variety of target gases.
- Maximum Likelihood extraction of correlated asymmetries provides a bin-free fit in ϕ .
- The extracted amplitudes relate to Fourier coefficients* from the expansion of the $ep \rightarrow ep\gamma$ cross section.
- These in turn relate to various CFFs and hence, GPDs at differing levels (and forms) of suppression

e.g.

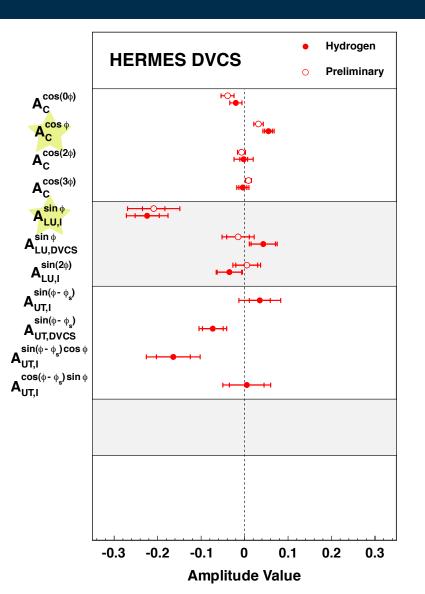

$$\mathcal{A}_{UL}(\phi) \equiv \frac{[\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\rightarrow \Rightarrow}(\phi)] - [\sigma^{\leftarrow \leftarrow}(\phi) + \sigma^{\rightarrow \leftarrow}(\phi)]}{[\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\rightarrow \Rightarrow}(\phi)] + [\sigma^{\leftarrow \leftarrow}(\phi) + \sigma^{\rightarrow \leftarrow}(\phi)]}$$
Beam Target
Unpol. Long.
pol.

$$= \dots + \begin{bmatrix} K_{\text{DVCS}} s_{1,\text{LP}}^{\text{DVCS}} - \frac{e_{\ell}K_{\text{I}}}{\mathcal{P}(\phi)} s_{1,\text{LP}}^{\text{I}} \end{bmatrix} \sin \phi + \dots$$
This Fourier coefficient relates to
a bi-linear combination of CFFs but
This Fourier coefficient relates to
a bi-linear combination of CFFs but
This Pourier coefficient relates to
a bi-linear combination of CFFs but
This Pourier coefficient relates to the 3m part of the second s

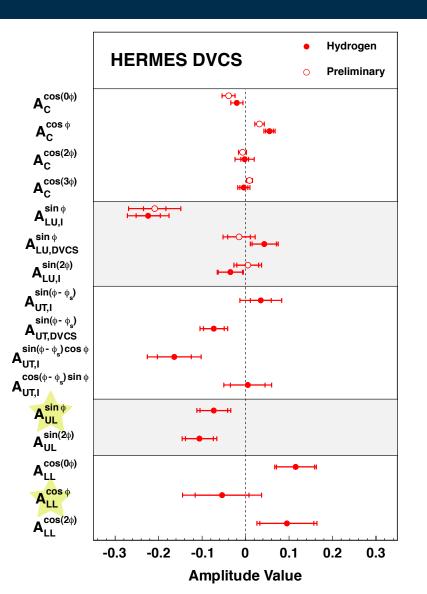
is kinematically suppressed.

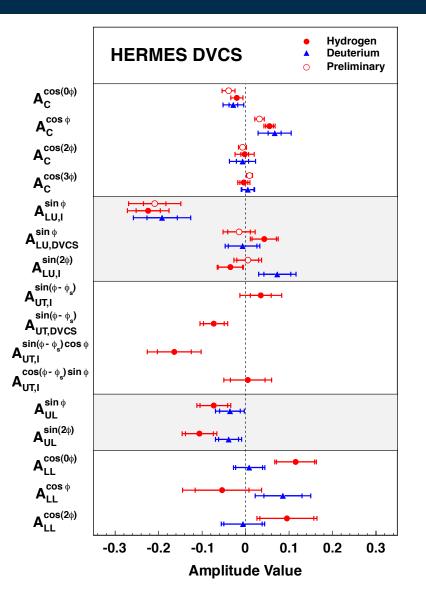

k

 Results from transversely-polarised hydrogen *i.e.* JHEP 06 (2008) 066, offer the only unsuppressed access to GPD E(ξ, x, t).

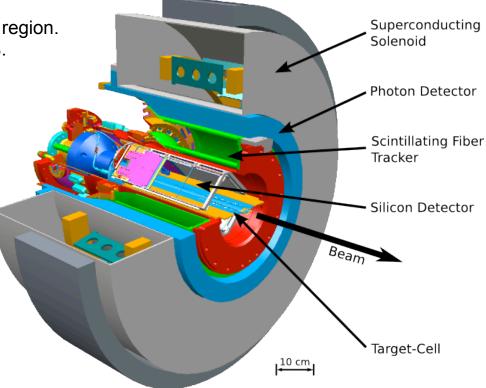


- The beam-charge A_C and beam-helicity A_{LU} asymmetries from pre-Recoil data *i.e. JHEP* 11 (2009) 083.
- The cosφ and sinφ amplitudes from the interference term can be used to constrain GPD H(ξ, x, t) as they relate to the Re and 3m parts of CFF H respectively.

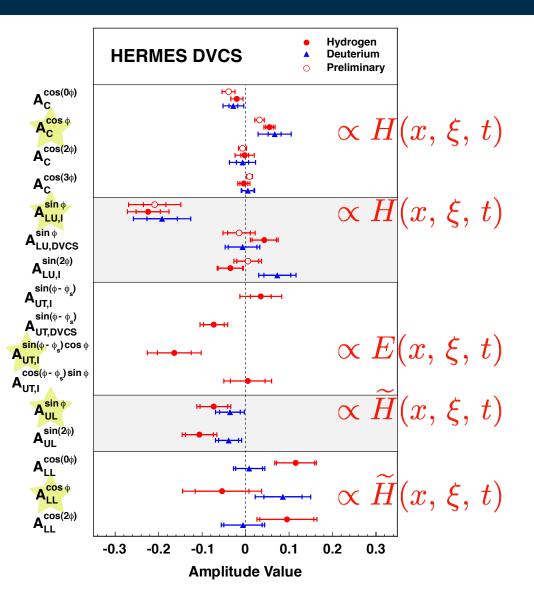

 Results from transversely-polarised hydrogen *i.e.* JHEP 06 (2008) 066, offer the only unsuppressed access to GPD E(ξ, x, t).


- The beam-charge A_C and beam-helicity A_{LU} asymmetries from pre-Recoil data *i.e. JHEP* 11 (2009) 083.
- The cosφ and sinφ amplitudes from the interference term can be used to constrain GPD H(ξ, x, t) as they relate to the Re and Sm parts of CFF H respectively.
- New preliminary results from Recoil data (not using Recoil information) are compatible.
- Results from transversely-polarised hydrogen *i.e.* JHEP 06 (2008) 066, offer the only unsuppressed access to GPD E(ξ, x, t).

- The beam-charge A_C and beam-helicity A_{LU} asymmetries from pre-Recoil data *i.e. JHEP* 11 (2009) 083.
- The cosφ and sinφ amplitudes from the interference term can be used to constrain GPD H(ξ, x, t) as they relate to the Re and 3m parts of CFF H respectively.
- New preliminary results from Recoil data (not using Recoil information) are compatible.
- Results from transversely-polarised hydrogen *i.e.* JHEP 06 (2008) 066, offer the only unsuppressed access to GPD E(ξ, x, t).
- The single-spin A_{UL} and double-spin A_{LL} asymmetries from longitudinally-polarised hydrogen *i.e. JHEP* 06 (2010) 019, provide information on GPD H̃(ξ, x, t) as they relate to the Re and Sm parts of CFF H̃ via the cosφ and sinφ amplitudes respectively.
- The $sin(2\phi)$ amplitude is *unexpectedly* non-zero.



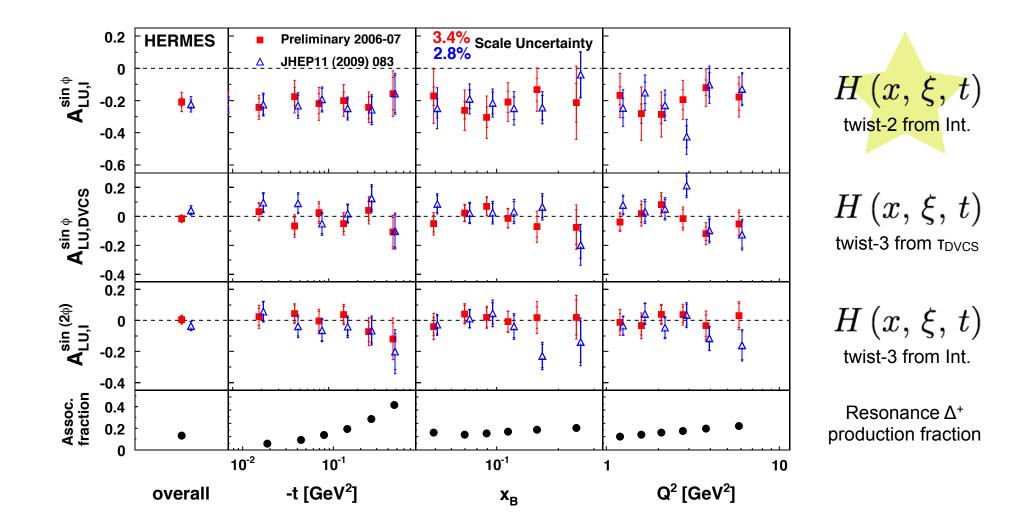
- The beam-charge A_C and beam-helicity A_{LU} asymmetries from pre-Recoil data *i.e. JHEP* **11** (2009) 083.
- The cosφ and sinφ amplitudes from the interference term can be used to constrain GPD H(ξ, x, t) as they relate to the Re and 3m parts of CFF H respectively.
- New preliminary results from Recoil data (not using Recoil information) are compatible.
- Deuterium results are compatible *i.e. Nucl. Phys.* **B829** (2010) 1.
- Results from transversely-polarised hydrogen *i.e.* JHEP 06 (2008) 066, offer the only unsuppressed access to GPD E(ξ, x, t).
- The single-spin A_{UL} and double-spin A_{LL} asymmetries from longitudinally-polarised hydrogen *i.e. JHEP* 06 (2010) 019, provide information on GPD $\tilde{H}(\xi, x, t)$ as they relate to the \Re e and \Im m parts of CFF \tilde{H} via the cos φ and sin φ amplitudes respectively.
- Deuterium results are compatible *i.e. Nucl. Phys.* **B842** (2011) 265


Future HERMES DVCS Results

- In mid-2006, the Recoil Detector was installed in the target region.
- Semi-inclusive neutral meson background reduced to < 1%.
- Δ^+ resonance production reduced to ~1%.
- An upcoming publication will present the combination of the pre- and post-Recoil unpolarised hydrogen data sets "...the most statistically-precise DVCS measurement in the HERMES kinematic range".
- Another publication, presenting world-first A_{LT} results, is expected in the near future.
- Analysis of the 2006/07 unpolarised hydrogen data set with Recoil information is going for release at HERMES **today**!
- Proposed are two new single-charge beam-helicity asymmetry amplitudes.

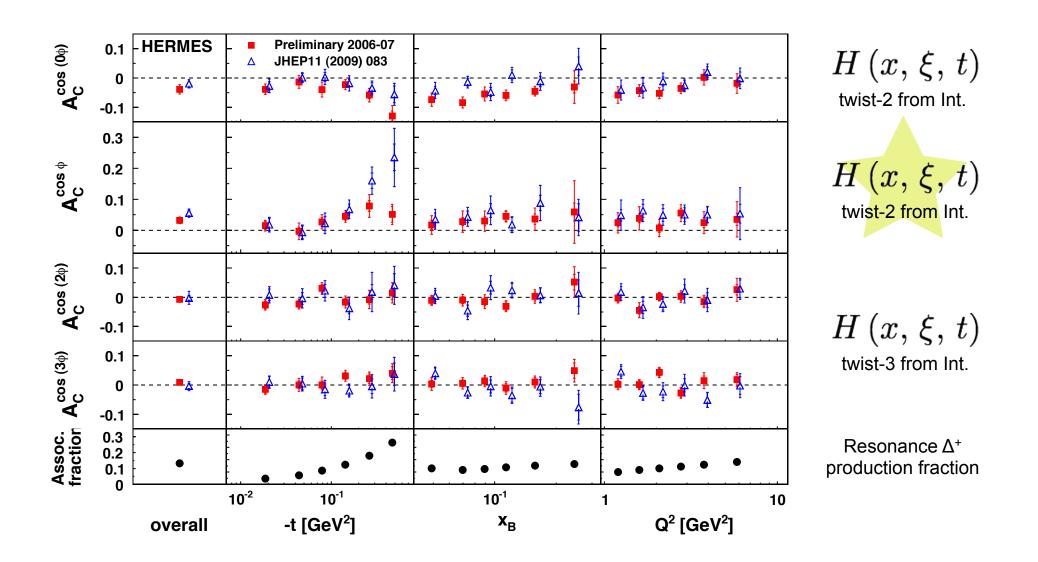
Summary & Conclusions

- Information on Generalised Parton Distributions can be accessed via the Deeply Virtual Compton Scattering interaction.
- Recent DVCS results from the HERMES experiment have been presented with their links to three of the four spin-1/2 GPDs.
- Recent from a deuterium target relate to combinations of 9 different spin-1 GPDs.
- These results are used in several global GPD fits being performed *e.g.* Kumerički/Müller, *Nucl. Phys.* B841 (2010) 1, and Guidal *et al.*, arxiv:1101.2482 (2011)

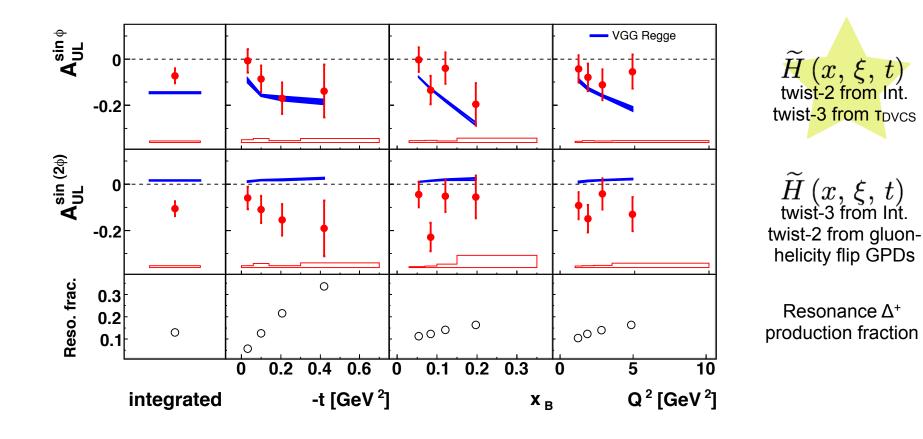


BACKUP SLIDES

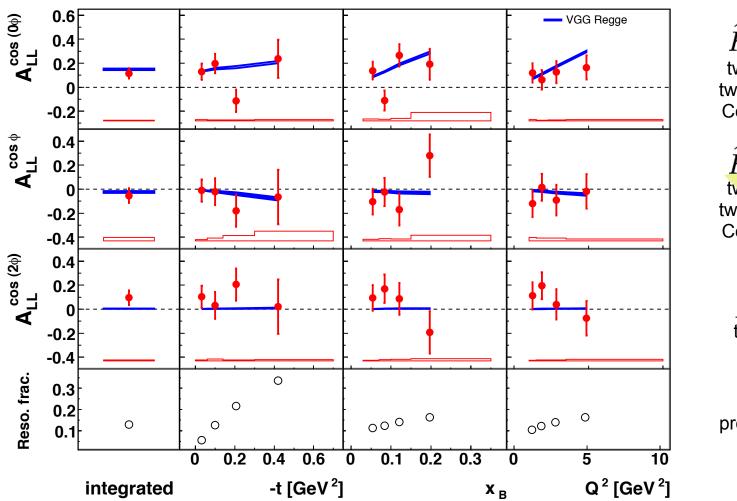
10000 1000



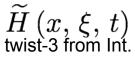
$\mathcal{A}_{\rm LU}^{\rm I|\rm DVCS} \equiv \frac{[\sigma^{\to +}(\phi) \pm \sigma^{\leftarrow -}(\phi)] - [\sigma^{\leftarrow +}(\phi) \pm \sigma^{\to -}(\phi)]}{[\sigma^{\to +}(\phi) + \sigma^{\leftarrow -}(\phi)] + [\sigma^{\leftarrow +}(\phi) + \sigma^{\to -}(\phi)]}$



 $\mathcal{A}_{C} \equiv \frac{[\sigma^{\to +}(\phi) + \sigma^{\leftarrow +}(\phi)] - [\sigma^{\to -}(\phi) + \sigma^{\leftarrow -}(\phi)]}{[\sigma^{\to +}(\phi) + \sigma^{\leftarrow +}(\phi)] - [\sigma^{\to -}(\phi) + \sigma^{\leftarrow -}(\phi)]}$



Longitudinal Target-Spin Asymmetry $\mathcal{A}_{\rm UL}(\phi) \equiv \frac{[\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\rightarrow \Rightarrow}(\phi)] - [\sigma^{\leftarrow \leftarrow}(\phi) + \sigma^{\rightarrow \leftarrow}(\phi)]}{[\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\rightarrow \Rightarrow}(\phi)] + [\sigma^{\leftarrow \leftarrow}(\phi) + \sigma^{\rightarrow \leftarrow}(\phi)]}$



Double-Spin Asymmetry $\mathcal{A}_{LL}(\phi) \equiv \frac{[\sigma^{\to \Rightarrow}(\phi) + \sigma^{\leftarrow \Leftarrow}(\phi)] - [\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\to \Leftarrow}(\phi)]}{[\sigma^{\to \Rightarrow}(\phi) + \sigma^{\leftarrow \Leftarrow}(\phi)] + [\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\to \Leftarrow}(\phi)]}$

 $\widetilde{H}(x, \xi, t)$ twist-2 from Int. twist-2 from TDVCS Contrib. from TBH $\widetilde{H}(x, \xi, t)$ twist-2 from Int.

twist-2 from Int. twist-3 from т_{DVCS} Contrib. from твн

Resonance Δ^+ production fraction