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Introduction to measurement.
New veto results from 2010 data.

Comparison to latest theoretical
predictions.
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The central jet triggers provide efficient recovery of events with
average Pt down to 50GeV within |n|=3.2.

Events with Nyertex > | can be removed to avoid pileup problems.
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The measurement

Ay

Observable of primary interest is
the gap fraction.

D empty intervals

fr =

> all events

Where the transverse momentum

b An interval between
| two boundary jets is
defined in the

Y rapidity-phi plane.

of the jet, if any, present in the
interval determines if the event is
considered empty.

It’s sensitive to some interesting
physics and allows the study of jet
vetoes with early data.
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Interval choices

Selection A Selection B

< > < >

Ay Ay

Where we considered the The most forward and

boundary jets to be those backward jets (with Pt >
with the highest transverse 20GeV) can also be taken to
momentum. be the boundary jets.
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Physics motivation

Why measure events with jet vetoes!
e QCD process with high cross section.
* In different limits the jet veto requirement probes
different physics.

Wide-aﬁgle soft Mueller-Navelet Mueller-Tang
radiation jets jets

BFKL terms are expected to be 0> n
important for evaluation of the gap  ~~ Oé?Ym In (Q_) for m < n
Cross section
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120<p <150 GeV  __Total syst. Rel. JES.

Selection A ----Abs JES. - --Unfolding.
Q, =20 GeV

O
N

Uncertainties

The main sources of
uncertainty for this
measurement arise
from the jet energy
scale and the
unfolding procedure.

Fractional uncertainty

ATLAS Preliminary
| | | | | | | | | | | | | |
1 2

>
<

Event selection and
observable choice Ratios!
conspire to minimize effect of jet energy scale.

Other possible sources such as pile-up, trigger and jet cleaning were
all found to have negligible impact on the measurement.
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Gap fractions

Gap fraction

Comparison to a
number of standard
monte carlo generators.

Selection A
Q, =20 GeV

90 <§T <120 GeV

Alpgen+Herwig/Jimmy

and Herwig++ add too
much extra energy into
the interval.

ATLAS Preliminary
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The disagreement
grows with the size of
the interval.

Large |Ay| data provides model constraints

Graham Jones IOP 201 | 4 April



There is similar levels of disagreement seen when considering the
gap fraction as a function of average Pr.

Pythia 6 AMBT | does not describe selection B results as well as
selection A.
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o 5<Ay<B6, —— Data (+syst)
HEJ (parton level)

4<Ay<5, POWHEG + PYTHIA : Wlth the fU” 20 I O data.

POWHEG + HERWIG

v 3<ay<s, _ collected by ATLAS can slice

s 2<Ay<3, Selection A

0, =20 GeV data into different |Ay| ranges.

Gap Fraction

Compare data to NLO dijet
process in Powheg showered
in both Herwig and Pythia.

Additionally compare to HE]},
an all order resummation of
perturbative terms for well
separated multi jet events.

| ATLAS Preliminary
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The Powheg predictions show a reasonable consistency with data.
Powheg+Herwig has a tendency to lie underneath data.

HE] in selection A does not fit data very well at high average Pr.
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240 < ET <270 GeV —— Data (+syst) n
210 <P_ <240 GeV HEJ (parton level)  —

8025, <2106e (12 POWHEG + PYTHIA _ Alternatively you can consider

150 <5T <180 GeV POWHEG + HERWIG 4

1202B. < 15000V (11 ] the gap fraction as a function of

Selection A
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This time HE| has much better agreement with data (in the low
average Pt slice) in selection A.

Powheg now in general undercuts the data.
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Summary

® A measurement of jet vetoes has been
made across a wide region of phase space.

® Experimental uncertainties already smaller
than the spread of predictions.

® Analysis will be extended into the large
|Ay| region and low Qo scale.
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