

Measurement of Inclusive Two-Particle Angular Correlations in ATLAS

Cristina Oropeza Barrera

Experimental Particle Physics, School of Physics & Astronomy University of Glasgow

Outline

- Introduction
- Motivation
- Analysis Overview
- Correction Procedure
- Results
- Summary

Introduction

Inner Detector - $|\eta|$ < 2.5

Sub-systems:

Silicon Pixel Detector, SemiConductor Tracker (SCT) and Transition Radiation Tracker (TRT).

Purpose: primary and secondary vertex identification, accurate measurement of the momentum of particles and robust pattern recognition.

Minimum Bias Trigger Scintillator (MBTS) - 2.1 $< |\eta| <$ 3.8

Plastic scintillators inside the calorimeter end-caps, 3.6 m from the interaction point on each side of the detector. This is the only trigger requirement in these measurements.

Motivation

- Models to describe dynamics of multiparticle production are incomplete: limited explanation of emission of soft radiation.
- Study of correlations between final state particles allows us to investigate the underlying mechanisms of particle production at LHC energies.
- Identify important dynamical information that can be incorporated in models to gain a better and more global picture (tuning).

Analysis Overview

The <u>inclusive</u> two-particle angular correlation function is given by:

$$R(\Delta \eta, \Delta \phi) = \frac{\langle (N_{ch} - 1) F(N_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch}}{B(\Delta \eta, \Delta \phi)} - \langle N_{ch} - 1 \rangle_{ch}$$

where $\langle ... \rangle$ ch indicates an average over contributions from all particle multiplicities.

Correlations between emissions in a single event. Normalised by the total number of events.

Distribution of uncorrelated pairs. Particles in independent events. Normalised by its integral.

N_{ch} is the average track multiplicity.

Analysis Overview

To explore in more detail the structure of the correlation function, we will also look at its projections in both $\Delta \eta$ and $\Delta \varphi$.

These projections are obtained by first integrating the foreground and the background two-dimensional distributions separately and then taking the ratio of the two and normalising by the average track multiplicity:

$$R(\Delta \eta) = \frac{\int \langle (N_{ch} - 1) F(N_{ch}, \Delta \eta, \Delta \phi) \rangle_{ch} d\Delta \phi}{\int B(\Delta \eta, \Delta \phi) d\Delta \phi} - \langle N_{ch} - 1 \rangle_{ch}$$

$$R(\Delta\phi) = \frac{\int \langle (N_{ch} - 1) F(N_{ch}, \Delta\eta, \Delta\phi) \rangle_{ch} d\Delta\eta}{\int B(\Delta\eta, \Delta\phi) d\Delta\eta} - \langle N_{ch} - 1 \rangle_{ch}$$

Data Samples and Event Selection

Events where the ID was fully operational, and the solenoid magnetic field was on, were required:

- to have been triggered by the single-arm, level 1 Minimum Bias Trigger Scintillators,
- to contain at least one primary vertex,
- to not have a second vertex associated to more than four tracks (to remove events with more than one interaction per bunch crossing),
- to contain at least two tracks in the phase-space:
 - p_T > 100 MeV
 - $|\eta| < 2.5$

√s	Events	Tracks
900 GeV	357,523	4,532,663
7 TeV	10,066,072	209,809,430

Correction Procedure

To account for inefficiencies in the vertex and trigger selection, the foreground and multiplicity distributions were weighted event-by-event with:

$$w_{ev}(n_{sel}^{BS}) = \frac{1}{\varepsilon_{trig}(n_{sel}^{BS})} \frac{1}{\varepsilon_{vtx}(n_{sel}^{BS})}$$

The effect of tracking inefficiencies is corrected for using a data-driven method.

Correction Procedure

Each iteration corresponds to an additional application of the detector effect on the data. The -1 iteration corresponds to the observable when no detector effects are present.

The value of (each bin of) the observable can be plotted as a function of the iteration number (0, 1, ..., N) and a function can be fitted to the resulting distribution. By extrapolating this fit to -1, an estimate of the true value can be made.

Correction Procedure

Results

Corrected inclusive two-particle correlation functions in $\Delta \eta$ and $\Delta \varphi$.

Results - $\Delta \eta$ projections (7 TeV)

 $0 < \Delta \phi < \pi/2$ (near-side)

 $\pi/2 < \Delta \phi < \pi$ (away-side)

Results - $\Delta \phi$ projections (7 TeV)

 $0 < \Delta \eta < 2$ (short-range)

 $2 < \Delta \eta < 5$ (long-range)

Summary

- The two-particle angular correlation function in $\Delta \eta$ and $\Delta \varphi$ has been measured for p_T inclusive minimum bias events in pp collisions at 900 GeV and 7 TeV.
- A complex structure was observed at both energies. It was explored in more detail by projecting the two-dimensional distribution into both $\Delta \eta$ and $\Delta \varphi$.
- The results have been compared to different Monte Carlo tunes: MC09, Phojet, DW, Perugia₀ and Pythia 8 (further information on these tunes in Extra Slides). For 900 GeV, only the MC09 tune was available for analysis (see Extra Slides).
- None of the models reproduce the strength of the correlations seen in data. The Pythia 8 tune at 7 TeV is the closest in all distributions.

Extra Slides

Uncorrected distributions

Monte Carlo Models

- Pythia 6.4.21 tunes:
 - MC09: produced by the ATLAS Collaboration to describe a range of minimum bias and underlying event data from the Tevatron; uses MRST LO* PDF.
 - DW: older tune to CDF underlying event and Drell-Yan data; uses the older virtuality-ordered shower and non-interleaved MPI model.
 - Perugia₀: tuned to Tevatron; uses CTEQ 5L PDF and the new p_T ordered shower and the MPI is interleaved with the initial state radiation.
- Phojet 1.12.1.35: separate hard and soft diffractive contributions; not yet tuned to recent experimental data.
- Pythia 8.130: adds to the MPI model of Pythia 6 by also interleaving the final state radiation; includes an updated model for diffraction that allows harder colour singlet exchange; uses CTEQ 5L PDF.

17

Statistical and Systematic Uncertainties

I. Uncertainties on the Efficiencies

- Tracking: material description in MC (p_T and η dependent from 2% to 15% in the lowest p_T bin), track selection (1% to all bins), turn-on of p_T curve (5% in the first bin), badly measured high-pT tracks (above 10 GeV).
- Vertex and Trigger: approximately 1% in the first multiplicity bin, decreasing rapidly.

II. Extrapolation to N=-1

The statistical error in the corrected value will be the result of propagating the statistical uncertainties in the parameters of the fit.

III. Non-closure in Monte Carlo Absolute difference between truth and corrected MC as a function of R_{corr}.

An absolute uncertainty of 0.05 is assigned to all bins of R in data.

Total Uncertainties for 2D Distributions

ATLAS work in progress

Total Uncertainties for 2D Distributions

Results - 2D distributions Monte Carlo MC09

Same complex structure is seen in Monte Carlo, MC09 Tune, however the strength of the correlation seen in data is not reproduced.

Results - $\Delta \eta$ projections (900 GeV)

Results - $\Delta \phi$ projections (900 GeV)

 $0 < \Delta \eta < 2$ (short-range)

 $2 < \Delta \eta < 5$ (long-range)

