IOP Institute of Physics

Nuclear and Particle Physics Divisional Conference (NPPD)

4-7 April 2011, University of Glasgow, UK

THE LOW-ENERGY MAGNETIC AND ELECTRIC DIPOLE EXCITATIONS IN

180-186**W**

F. ERTUĞRAL

¹Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, United Kingdom ²Department of Physics, University of Sakarya, Sakarya, Turkey

INTRODUCTION

Magnetic (scissors) and electric dipole mode:

- great interest of modern nuclear structure physics.
- Found for isotopes from light nuclei (such as ⁴⁶Ti) up to actinides and also gama soft and transitional nuclei
- Gives information:
 - nuclear structure
 - nucleon-nucleon forces

2 characters in accordance with parities of dipole excitations:

1 = electric dipole mode

1+ = magnetic (scissors) mode

- Quadratic dependence
- Strong fragmentation
- Concentrated around 3 MeV

Goldstone (spirious state with zero energy) mode

- Hartree-Fock approximation: violates symmetries → rotational or transitional invariance broken
- RPA used to calculate scissors mode in heavy deformed nuclei

THEORY

The corresponding single-quasiparticle hamiltonian

$$[H_{sqp}, J_{\mu}] \neq 0$$

restored -> separable isoscalar and isovector effective interaction

 V_0 and $V_1 \rightarrow$ the isoscalar and isovector depth of the potential wells

$$\gamma_0 = \gamma - \gamma_1$$
 $\gamma = \gamma_n + \gamma_p$ $\gamma_1 = \gamma_1^n - \gamma_1^p$

$$\gamma_1^{(-1)} = \gamma_1^{(+1)} \equiv \gamma_1 \qquad \gamma^{(-1)} = \gamma^{(+1)} \equiv \gamma$$
 (6)

the translation invariance can be obtained by the substitution

$$J_{\mu} \rightarrow P_{\mu}$$

The model Hamiltonian of the system

$$V_{\sigma\tau} = \frac{1}{2} \chi_{\sigma\tau} \sum_{i \neq j} \vec{\sigma}_i \vec{\sigma}_j \vec{\tau}_i \vec{\tau}_j$$

1⁺ states are considered as one-phonon excitations

$$\sum_{\mu\tau} [\psi_{\mu}^{i^{2}}(\tau) - \varphi_{\mu}^{i^{2}}(\tau)] = 1$$

To obtain the excitations energies solve the equation of motion

The reduced M1 transition probability

Excitation energies

$$\overline{\omega} = \frac{\sum_{i} \omega_{i} B(M1, \omega_{i})}{\sum_{i} B(M1, \omega_{i})}$$

Ground-state transition width Γ_0 (meV).

$$\Gamma_0^{red} = \frac{\Gamma_0}{\omega_i^3} (meV / MeV^3)$$

Results and Discussion

Table 1. The calculated values of the pairing correlation parameters (in MeV) and δ_2 values for the ¹⁸⁰⁻¹⁸⁶W isotopes.

Ν	Δ_{n}	λ_{n}	Δ_{p}	λ_{p}	δ_2
106	1.20	-7.46	1.00	-5.80	0.210
108	0.90	-7.11	0.85	-6.47	0.207
110	0.97	-6.80	1.20	-6.98	0.201
112	1.00	-6.54	0.90	-7.62	0.190

 $\chi_{\sigma\tau}$ =40/A MeV which has been obtained from magnetic moments calculations.

 $\chi_1 = 300 \ A^{-5/3} \ fm^{-2} \ which$ is related to isovector symmetry potential.

Rotational invariant $H = H_{sqp} + h_0 + h_1 + V_{\sigma r}$			Rotational non-invariant $H=H_{sqp}+V_{\sigma\tau}$				
æ _n (MeV)	$\begin{array}{c} \mathbb{B}(\mathbb{M}1) \\ (\mu_N^2) \end{array}$	Structure Nn₂ ΛΣ	Amplitudes $\psi^i_{ss'}$	a_n (MeV)	$\mathrm{B}(\mathrm{M1})\\ (\mu_N^2)$	Structure Nn₂ΛΣ	Amplitudes $\psi^i_{ss'}$
		nn521↑-510↑	0.167				
		nn 512†-521†	0.158				
		nn 512↑-512↓	-0.208				
3.596	0.576	nn 5141-5231	0.171	3.520	0.329	nn 5031-505↓	-0.979
		nn 6331-6421	-0.289				
		nn 503↑-505↓	0.569				
		pp 4021-4111	0.278				
		pp 4021-4111	-0.261				
		pp 4021-402↓	-0.456				

Nuclei	≅ _{th.} (MeV)	$ar{ar{w}}_{\!$	Energy Range
¹⁸⁰ W	3.17	-	2.4-3.7
¹⁸² W	2.99	3.1	2.4-3.7
184W	3.14	3.3	2.4-3.7
W ⁶⁸¹	2.99	3.2	2.4-3.5

Table 3. The calculated ground-state M1, E1 and total Γ_o^{red} dipole transition widths (in meV/MeV³) are compared with each other and the experimental data [9,10] in $^{180\cdot186}$ W.

Nuclei	Energy interval (MeV)	Γ_o^{red}	K				
		(meV/MeV ³)	0	1	Unknown	$\Gamma_o^{red}(tot.)$	
180W		M1	0.42	9.37	-	9.79	
		E1	0.65	3.13	-	3.78	
	2.0-4.0	$\Gamma_o^{red}(tot.)$	1.07	12.5	-	13.6	
		Ехр.	-	-	-	-	
182W		M1	0.46	10.1	-	10.6	
		E1	0.40	1.2	-	1.6	
	2.0-3.7	$\Gamma_o^{red}(tot.)$	0.86	11.3	-	12.2	
		Ехр.	0.94±0.18	6.34±0.28	2.05±0.1	9.33±0.56	
¹⁹⁴ W	2.0-3.7	M1	0.24	5.30	-	5.54	
		E1	0.34	2.62	-	2.96	
		$\Gamma_o^{red}(tot.)$	0.58	7.92	-	8.50	
		Ехр.	2.05±0.59	4.73±1.28	0.89±0.28	7.67±2.15	
186W	2.5-3.5	M1	0.16	6.46		6.62	
		E1	0.26	1.84		2.10	
		$\Gamma_o^{red}(tot.)$	0.42	8.30		8.72	
		Ехр.	2.05±0.6	4.66±2.32	0.77±0.29	7.48±3.21	

Fig. Compared calculated summed B(M1) strength (■) with experimental data (Φ) results for \$^{154-160}\$Gd and \$^{180-186}\$W.

CONCLUSION

- A separation of the spirious state from the 1+ states changes
 - The distribution of the B(M1) strength
 - Increases the fragmentation

- The calculations provided detailed information
 - the excitation energies
 - transitional probabilities
 - structure of low-lying dipole excitations

 The relative contribution of ∆K = 0 below 4 MeV is quite small.

• A few prominent $K^{\pi}=1^{-}$ states in the low-energy.

Collaborators

E. Guliyev and A.A.Kuliev

and

I am very much indepted to R. D. Page, R-D Herzberg, D. J. Joss, D. O'Donnell, B. Saygi and M. Drummond for their helpful discussions, and I would like to thank the colleagues at the Oliver Lodge Laboratory, Liverpool University, for the kind hospitality experienced during the stay from which the present work originated.