Nucleon Structure Studies Through Elastic Electron Scattering: Electromagnetic Form Factors

- Introduction
- Experimental Status of EMFF
- Analysis and Interpretation
- Outlook
- Summary

Kees de Jager NPPD Glasgow April 4 - 7, 2011



Thomas Jefferson National Accelerator Facility



NPPD, April 6, 2011, 1

### Nucleon Electro-Magnetic Form Factors

- Fundamental properties of the nucleon
  - → Give information on the electric charge and magnetic moment distributions of the nucleon
  - → Provide excellent testing ground for QCD and QCD-inspired models
  - → Are not yet calculable from first principles
  - Cleanly probed through elastic electron-nucleon scattering
    - Wavelength of probe can be tuned by selecting momentum transfer Q:
      - < 0.1 GeV<sup>2</sup> integral quantities (charge radius,...)
      - $0.1-10 \text{ GeV}^2$  internal structure of nucleon
      - > 20 GeV<sup>2</sup> pQCD scaling
  - Caveat: If Q is several times the particle that the virtual photon is interacting with (~Compton wavelength), dynamical (relativistic) effects make a physical interpretation more difficult

# **Historical** Overview

- 1910s Rutherford discovers positively charged core of atoms
- 1932 James Chadwick discovers the neutron
- 1933 Stern observes anomalous magnetic moment of proton deflection of a beam of hydrogen molecules in an inhomogeneous magnetic field
- 1955 Hofstadter *et al.* at Stanford discovers protons have size through electron scattering, quotes an RMS charge radius of  $0.74\pm0.24$  fm
- 1968 nucleon constituents were established from scaling in deep inelastic scattering



### Formalism

Dirac (non-spin-flip)  $F_1$  and Pauli (spin-flip)  $F_2$  Form Factors

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})} \left[ (F_1^2 + \kappa^2 \tau F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2(\frac{\theta}{2}) \right]$$



with E (E') incoming (outgoing) energy,  $\int$  scattering angle,  $\int$  anomalous magnetic moment and  $| = Q^2/4M^2$ 

Alternatively, Sachs Form Factors  $G_E$  and  $G_M$  can be used

$$F_1 = G_E + \tau G_M$$
  $F_2 = \frac{G_M - G_E}{\kappa (1 + \tau)}$   $\tau = \frac{Q^2}{4M^2}$ 

$$\frac{d\sigma}{d\Omega}(E,\theta) = \sigma_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\frac{\theta}{2})\right] \qquad \sigma_M = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})}$$

Separate the two Sachs FFs by measuring the cross section at one  $Q^2$ -value for various  $\theta$ -values (Rosenbluth separation).

In the Breit (centre-of-mass) frame the Sachs FF can be written as the Fourier transforms of the charge and magnetization radial density distributions

#### World Data Set on $G_E^p$ by mid 1990s



# Alternative: Spin Transfer Reaction ${}^{1}H(\_,e_{r})$



$$P_{n} = 0$$

$$\pm hP_{t} = \pm h 2 \sqrt{\tau(1+\tau)} G_{E}^{p} G_{M}^{p} \tan\left(\frac{\theta_{e}}{2}\right) / I_{0}$$

$$\pm hP_{l} = \pm h \left(E_{e} + E_{e'}\right) \left(G_{M}^{p}\right)^{2} \sqrt{\tau(1+\tau)} \tan^{2}\left(\frac{\theta_{e}}{2}\right) / M / I_{0}$$

$$I_{0} = \left\{G_{E}^{p}\left(Q^{2}\right)\right\}^{2} + \tau \left\{G_{M}^{p}\left(Q^{2}\right)\right\}^{2} \left[1 + 2(1+\tau)\tan^{2}\left(\frac{\theta_{e}}{2}\right)\right]$$

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

Akhiezer et al., Sov. Phys. JETP 6, 588 (1958)



No error contributions from • analyzing power

beam polarimetry

#### World Data Set on G<sub>E</sub><sup>p</sup> ten years later



- Detailed reanalysis of SLAC data resulted in acceptable scatter of data
- JLab Rosenbluth data (open red symbols) in agreement with SLAC data
- No reason to doubt quality of either Rosenbluth or polarization transfer data
- Investigate possible theoretical sources for discrepancy

#### Speculation : missing radiative corrections

Speculation : The large discrepancy in the ratio  $G_{E^{p}}/G_{M^{p}}$  observed between Rosenbluth and polarization transfer techniques are expected to be explained by two-photon-exchange (2 $\gamma$ ) effects

missing correction : linear in  $\Sigma$ , but with no strong Q<sup>2</sup>-dependence



NPPD, April 6, 2011, 8

#### Calculations of TPE effects



 $d\sigma = d\sigma_0 (1 + \delta)$ 

$$\delta = 2f(Q^2, \varepsilon) + \frac{2\Re \{\mathfrak{M}_0^\dagger \mathfrak{M}_1\}}{|\mathfrak{M}_0|^2} \longrightarrow \delta_{2\gamma} = \frac{2\Re \{M_\gamma^\dagger M_{2\gamma}\}}{|M_\gamma|^2}$$

 $f(Q^2, \epsilon)$  is the standard Mo & Tsai correction (soft photon exchange), which has some  $\Sigma$ -dependence and is IR divergent

IR divergent terms are canceled by soft-photon emission terms

Two methods of calculating  $\delta_{2\gamma}$ : Hadronic Use nucleon-pole diagrams with on-shell form factors in photon-nucleon vertices Blunden, Melnitchouk, Tjon (BMT), PRC 72, 034612 (2005)

Partonic Factorize TPE amplitude into hard process of e-q scattering and a soft process described by GPDs

#### Effect on L-T Extractions

Arrington, Melnitchouk, Tjon PRC 76, 035205 (2007)

full reanalysis of data, incorporating BMT calculations, but adding extra (small) phenomenological correction above Q<sup>2</sup> = 1 GeV<sup>2</sup>

$$\delta_{27}^{*} = 0.01[s-1]\frac{\ln Q^2}{\ln 2.2}$$

~1% at 2 GeV<sup>2</sup>, 2% at 5 GeV<sup>2</sup>

- Apply 100% of the extra correction as an uncertainty (affects  $G_M^p$  uncertainty)
- Corrections hardly visible in e<sup>+</sup>/e<sup>-</sup> ratio



# TPE - 2© effects in ep scattering

The ratio of e<sup>-</sup>p and e<sup>+</sup>p elastic scattering cross sections measures the real part of the 2γ amplitude. The 2γ/1γ interference term δ<sub>2γ</sub> has opposite sign for e<sup>+</sup> and e<sup>-</sup> and is expected to vary from 1 to 10%



- New e<sup>+</sup>/e<sup>-</sup> data expected soon: BINP (data), DESY (2012), CLAS (data)
- The CLAS experiment has just been completed. It created an intense photon beam and then converted it to a simultaneous mixed identical e<sup>+</sup> and e<sup>-</sup> beam directed onto a IH2 target. The scattered leptons and protons are detected in the CLAS detector.
- Other processes sensitive to TPE:
  - → Non-linearity of  $\Sigma$  dependence
  - → Target Single-Spin Asymmetries



Schematic e<sup>+</sup>/e<sup>-</sup> beamline



#### Proton cross-section data from MAMI

- Bernauer et al. (PRL 105, 242001 (2010)) collected a large data set (1400 data at six beam energies, each with a free normalization) using all three A1 spectrometers
- The ≤1% accuracy allowed an L/T separation in a Q<sup>2</sup>-range of 0.02 to 0.5 GeV<sup>2</sup>, error bands shown are of fits to complete data set, not representative of individual errors
- Results for  $G_{\rm E}^{\rm p}/G_{\rm M}^{\rm p}$  in reasonable agreement with JLab data, but  $G_{\rm M}^{\rm p}$  data 2-3% larger than world data set

<r<sup>2</sup>><sub>E</sub><sup>1/2</sup> = 0.879(8)±5±4±2±4 fm <r<sup>2</sup>><sub>M</sub><sup>1/2</sup> = 0.777(18)±13±9±5±2 fm stat;syst;model

CODATA (dominated by electronic Lamb Shift)  $(r^{2})_{E}^{1/2} = 0.879\pm7$  fm



#### Polarization Transfer at low Q<sup>2</sup>-values

Detailed understanding of Hall A HRS spectrometer optics and availability of BigBite spectrometer has made possible polarization transfer measurements with a ~1% accuracy in a Q<sup>2</sup>-range from 0.3 - 0.7 GeV<sup>2</sup> Results agree with Bernauer et al. but the magnetic radius is significant larger

 $\langle r^2 \rangle_{E}^{1/2} = 0.875(10)\pm8\pm6$ fm  $\langle r^2 \rangle_{M}^{1/2} = 0.867(20)\pm9\pm18$  fm

X. Zhan et al., arXiv: 1102.0318

These new data analyzed together with the new data set from MAMI will allow to set sensitive limits onTPE effects at low Q<sup>2</sup>

Further data at Q<sup>2</sup>-values down to 0.01 GeV<sup>2</sup> are scheduled for late 2011 with a DNP target



### The proton charge radius

CODATA (electronic Lamb shift)  $(r^{2})_{E}^{1/2} = 0.8768(69) \text{ fm}$ PSI (muonic Lamb shift) Nature 466, 213 (2010)  $(r^{2})_{F}^{1/2} = 0.84184(67) \text{ fm}$ 

- What is reason for this 5σ discrepancy?
- Electron scattering and electronic Lamb shift agree
- Unknown interaction between  $\mu$  and p?
- Muonic hydrogen much smaller than atomic hydrogen, more sensitive to offshell effects?
- Leading theoretical uncertainty in HFS of hydrogen ground state dominated by low-Q<sup>2</sup> behaviour in Zemach radius:

$$r_{z} = -\frac{4}{\pi} \int \frac{dQ}{Q^{2}} \left[ G_{E} \left( Q^{2} \right) \frac{G_{M} \left( Q^{2} \right)}{1 + \kappa_{p}} - 1 \right]$$



De Rujula, PLB 693, 555 (2010); PLB 697 26 (2010) Bernauer et al. PLB 696, 343 (2011) Cloet & Miller, PRC 83, 012201 (2011) Jentschura, EPJD 61, 7 (2011) Barger et al., arXiv: 1011.3519 Tucker-Smith and Yavin, arXiv: 1011.4922 Miller et al., arXiv: 1101.407

# $G_{E^n}$ from polarized <sup>3</sup>He target: <sup>3</sup>He(e,e'n)



- New data more than double the Q<sup>2</sup>-range of the world data set
- Roberts' dressed quark-diquark model using the Dyson-Schwinger and Faddeev equations in good agreement, better than Miller's CQM prediction
- Belitsky/Ji logarithmic scaling does not hold for the neutron in the Q<sup>2</sup>-region where it was validated by the proton data
- New data will add significant constraints to GPD modeling

# (Logarithmic) Scaling

- → Basic pQCD scaling predicts  $F_1 \square/Q^4$ ;  $F_2 \square/Q^6 \rightarrow F_2/F_1 \square/Q^2$
- Data clearly do not follow this trend (yet?)
- → The introduction of a quark orbital angular momentum component results in
  E F<sub>2</sub>/F<sub>1</sub> 1/Q
- -> Belitsky et al. have included logarithmic corrections in pQCD limit
- Proton data appear to follow this scaling behaviour, but new neutron data do not



NPPD, April 6, 2011, 16

#### Comparison with Theory



#### Status of Lattice QCD





Significant progress in LQCD, but still limited to  $m_{\pi} \ge 300$  MeV and neglect of disconnected diagrams, resulting in large underestimates of e.g. isovector charge radius

Bratt et al., arXiv: 1001.3620

### Nucleon densities and relativity

intrinsic FF

rest frame density

non-relativistic limit:  $ilde{
ho}(k) = G(Q^2)$ 

importance of relativity (with increasing  $Q^2$ ):

 $\rho(r) = \frac{2}{\pi} \int_0^\infty dk \, k^2 \, j_0(k \, r) \, \tilde{\rho}(k) \quad \text{rest frame}$ 

Lorentz contraction of spatial distributions in Breit frame

$$\tilde{\rho}_{E,M}(k) = G_{E,M}(Q^2)(1+\tau)^2 \qquad 10^{\circ}$$

$$\Rightarrow \text{ limit : } k = 2 \text{ M (Compton wavelength)}$$

$$\text{Thus, Fourier transform remains}$$

$$\text{valid for } \delta r > r_{\min} \approx 0.3 \text{ fm}$$

At Q  $\approx$  0.6 GeV (r  $\approx$  0.3 fm) m<sub>u/d</sub>  $\approx$  0.3 GeV



Q<sup>2</sup>-evolution of quark

(nucl-th/9812063)

mass

### Pion Cloud

- Crawford et al. performed a global fit to all four EMFF within the framework of Lomon's VMD parametrization, including an estimate of the unmeasured high-Q<sup>2</sup> region. They observe a structure in the proton and neutron densities at 1-2 fm (which they assign to a pion cloud) in a straight-forward transformation to coordinate space (shown below)
- As shown in the previous slide relativistic effects obscure any radial fine structure at a scale smaller than ~0.3 fm-1, implying that no quantitative information can be extracted in the rest frame



#### C. Crawford et al., arXiv:1003.0903

# $F_{1,2}$ form-factor decomposition

 $F_{1,2}^{p} = \frac{2}{3}F_{1,2}^{u} - \frac{1}{3}F_{1,2}^{d}; \qquad F_{1,2}^{n} = \frac{2}{3}F_{1,2}^{d} - \frac{1}{3}F_{1,2}^{u}$ assuming isospin symmetry:  $F_{1,2}^{u,p} = F_{1,2}^{d,n}$  and  $F_{1,2}^{d,p} = F_{1,2}^{u,n}$ 

G. Cates et al., arXiv: 1101.1808

- → Shown are the results for (u,d) in the proton
- → The ratio F<sub>2</sub>/F<sub>1</sub> appears to become constant for both constituents from ~ 1.5 GeV<sup>2</sup>, in contrast even to the expectation for that ratio for each nucleon to scale with 1/Q<sup>2</sup>, at least in the pQCD limit (this scaling has not yet - been observed)
- Constituent Quark Model is unable to describe this behaviour

 Assuming that the s-quark contribution is negligible (based on the PVe results)



NPPD, April 6, 2011, 21

### Mapping of nucleon constituents (in the proton)



#### Projected EMFF data with SBS @ 12 GeV



# Impact of EMFF on GPDs



gives transverse spatial distribution of quark (parton) with momentum fraction x and related to EMFFs through first moments

$$\sum_{q} e_{q} \int_{-1}^{1} dx H^{q}(x,\xi=0,Q^{2}) = F_{1}(Q^{2}); \quad \sum_{q} \kappa_{q} \int_{-1}^{1} dx E^{q}(x,\xi=0,Q^{2}) = F_{2}(Q^{2})$$

4. Allows access to quark angular momentum (in model-dependent way)

### Summary and Outlook

- Very active experimental program on nucleon electro-magnetic form factors thanks to development of polarized beam (> 100  $\mu$ A, > 85 %), polarized targets and polarimeters with large analyzing powers at MAMI and JLab
  - $\rightarrow G_{E^{P}}$  discrepancy between Rosenbluth and polarization transfer not an experimental problem, but probably caused by TPE effects
  - Broad ongoing program to obtain quantitative information on TPE
  - Strong discrepancy with muonic result on proton charge radius
  - → $G_{E^n}$  precise data up to  $Q^2 = 3.5$  GeV<sup>2</sup> provides strong indication that OAM has different effect on neutron than on proton
  - → New  $G_{E^n}$  data set has allowed a flavor separation of  $F_1$  and  $F_2$
  - → The SuperBigBite project, to be implemented once the JLab 12 GeV upgrade has been completed, will extend the present knowledge of the nucleon EMFF  $G_{E^{p}}$ ,  $G_{E^{n}}$  and  $G_{M^{p}}$  to double or triple the Q<sup>2</sup>-range covered by existing data
  - It is imperative that this experimental program is accompanied by a similar progress in our theoretical understanding of the nucleon

# THANK YOU!

acknowledging detailed discussions with Gordon Cates, Seamus Riordan and Bogdan Wojtsekhowski