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Nucleon Electro-Magnetic Form Factors

• Fundamental properties of the nucleon
➙ Give information on the electric charge and magnetic moment 

distributions of the nucleon
➙ Provide excellent testing ground for QCD and QCD-inspired models
➙ Are not yet calculable from first principles
➙ Cleanly probed through elastic electron-nucleon scattering

➙ Wavelength of probe can be tuned by selecting momentum
transfer Q:

< 0.1 GeV2 integral quantities (charge radius,…)

0.1-10 GeV2    internal structure of nucleon

> 20 GeV2 pQCD scaling

Caveat: If Q is several times the particle that the virtual photon is 
interacting with (~Compton wavelength), dynamical (relativistic) 
effects make a physical interpretation more difficult
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Historical Overview

. 1910s - Rutherford discovers 
positively charged core of atoms. 1932 – James Chadwick discovers 
the neutron. 1933 - Stern observes anomalous 
magnetic moment of proton 
deflection of a beam of hydrogen 
molecules in an inhomogeneous 
magnetic field. 1955 - Hofstadter et al. at 
Stanford discovers protons have 
size through electron scattering, 
quotes an RMS charge radius of 
0.74±0.24 fm. 1968 – nucleon constituents were 
established from scaling in deep 
inelastic scattering
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Formalism



d

d
(E , ) 


2
E ' cos

2
(


2
)

4 E
3
sin

4
(


2
)

[( F
1

2
 

2
F

2

2
)  2 (F

1
 F

2
)

2
tan

2
(


2
)]

Dirac (non-spin-flip) F1 and Pauli (spin-flip) F2 Form Factors

with E (E’) incoming (outgoing) energy,  scattering angle,
 anomalous magnetic moment and  = Q2/4M2

Separate the two Sachs FFs by measuring the cross section at one Q2-value for 
various θ-values (Rosenbluth separation).
In the Breit (centre-of-mass) frame the Sachs FF can be written as the Fourier 
transforms of the charge and magnetization radial density distributions
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Alternatively, Sachs Form Factors GE and GM can be used


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World Data Set on GE
p by mid 1990s
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Alternative: Spin Transfer Reaction 1H(e,e’p)
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 No error contributions from
• analyzing power
• beam polarimetryAkhiezer et al., Sov. Phys. JETP 6, 588 (1958)
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World Data Set on GE
p ten years later

• Detailed reanalysis of SLAC data resulted in acceptable scatter of data
• JLab Rosenbluth data (open red symbols) in agreement with SLAC data
• No reason to doubt quality of either Rosenbluth or polarization transfer data
• Investigate possible theoretical sources for discrepancy

➙Large new data set based on 
polarization transfer show linear 
decrease of GE

p/GM
p with Q2 

➙In contrast with Rosenbluth data

A. Puckett et al., 
arXiv: 1102.5737
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Speculation : missing radiative corrections 

Speculation : The large discrepancy in the ratio  GE
p/GM

p observed 
between Rosenbluth and polarization transfer techniques are 
expected to be explained by two-photon-exchange (2γ) effects

missing correction : linear in ,but with no strong Q2-dependence

GE term is proportionally smaller at large Q2 

if both FF scale in same way

effect more visible at large Q2

Q2 = 6 GeV2

John Arrington
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Calculations of TPE effects

dζ = dζ0 (1 + δ)

f(Q2, ε) is the standard Mo & Tsai correction (soft photon 
exchange), which has some -dependence and is IR 
divergent

IR divergent terms are canceled by soft-photon emission terms

Two methods of calculating δ2γ:
Hadronic
Use nucleon-pole diagrams 
with on-shell form factors in 
photon-nucleon vertices
Blunden, Melnitchouk,Tjon (BMT), 
PRC 72, 034612 (2005)

Partonic
Factorize TPE amplitude into 
hard process of e-q scattering 
and a soft process described 
by GPDs
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Effect on L-T Extractions

LT + BMT*

PT

Arrington, Melnitchouk, Tjon

PRC 76, 035205 (2007)

full reanalysis of data, incorporating 
BMT calculations, but adding  
extra (small) phenomenological 
correction above Q2 = 1 GeV2

~1% at 2 GeV2, 2% at 5 GeV2

• Apply 100% of the extra 
correction as an uncertainty 
(affects GM

p uncertainty)

• Corrections hardly 
visible in e+/e- ratio
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TPE – 2 effects in ep scattering

. The ratio of  e-p and e+p elastic 
scattering cross sections measures 
the real part of the 2γ amplitude.  
The 2γ/1γ interference term δ2γ has 
opposite sign for e+ and e- and is 
expected to vary from 1 to 10%

. New e+/e- data expected soon: BINP 
(data), DESY (2012), CLAS (data). The CLAS experiment has just been 
completed. It created an intense 
photon beam and then converted it to 
a simultaneous mixed identical e+ and 
e- beam directed onto a lH2 target. 
The scattered leptons and protons are 
detected in the CLAS detector.. Other processes sensitive to TPE:
➙ Non-linearity of - dependence

➙ Target Single-Spin Asymmetries

Projected 
uncertainties of TPE 
experiment

Schematic e+/e- beamline

 e
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 1  
2 



NPPD,  April 6,  2011, 12

Proton cross-section data from MAMI

• Bernauer et al. (PRL 105, 242001 
(2010)) collected a large data set 
(1400 data at six beam energies, 
each with a free normalization) using 
all three A1 spectrometers

• The ≤1% accuracy allowed an L/T 
separation in a Q2-range of 0.02 to 
0.5 GeV2, error bands shown are of 
fits to complete data set, not 
representative of individual errors

<r2>E
1/2 = 0.879(8)±5±4±2±4 fm

<r2>M
1/2 = 0.777(18)±13±9±5±2 fm

stat;syst;model

CODATA (dominated by 
electronic Lamb Shift) 
<r2>E

1/2 = 0.879±7 fm

• Results for GE
p/GM

p in reasonable 
agreement with JLab data, but GM

p

data 2-3% larger than world data set
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Polarization Transfer at low Q2-values

Detailed understanding of Hall A HRS spectrometer optics and availability of 
BigBite spectrometer has made possible polarization transfer measurements 
with a ~1% accuracy in a Q2-range from 0.3 – 0.7 GeV2

Results agree with Bernauer et al. but the magnetic radius is significant larger

Further data at Q2-values 
down to 0.01 GeV2 are 
scheduled for late 2011 
with a DNP target

These new data analyzed 
together with the new data 
set from MAMI will allow to 
set sensitive limits onTPE
effects at low Q2

X. Zhan et al.,
arXiv: 1102.0318

<r2>E
1/2 = 0.875(10)±8±6fm

<r2>M
1/2 = 0.867(20)±9±18 fm
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The proton charge radius

➙ What is reason for this 5ζ discrepancy?

➙ Electron scattering and electronic Lamb 
shift agree

➙ Unknown interaction between μ and p?

➙ Muonic hydrogen much smaller than 
atomic hydrogen, more sensitive to off-
shell effects?

➙ Leading theoretical uncertainty in HFS 
of hydrogen ground state dominated by 
low-Q2 behaviour in Zemach radius:

CODATA (electronic Lamb shift)

<r2>E
1/2 = 0.8768(69) fm

PSI (muonic Lamb shift) Nature 466, 213 (2010)

<r2>E
1/2 = 0.84184(67) fm

De Rujula, PLB 693, 555 (2010); PLB 697 
26 (2010)
Bernauer et al. PLB 696, 343 (2011)
Cloet & Miller, PRC 83, 012201 (2011)
Jentschura, EPJD 61, 7 (2011)
Barger et al., arXiv: 1011.3519
Tucker-Smith and Yavin, arXiv: 1011.4922 
Miller et al., arXiv: 1101.407
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GE
n from polarized 3He target: 3He(e,e′n)

• New data more than double the Q2-range of the world data set

• Roberts’ dressed quark-diquark model using the Dyson-Schwinger and Faddeev
equations in good agreement, better than Miller’s CQM prediction

• Belitsky/Ji logarithmic scaling does not hold for the neutron in the Q2-region 
where it was validated by the proton data

• New data will add significant constraints to GPD modeling

e’

n

Target 
polarization 

~50%

Beam 
polarization

84%

S. Riordan et al., PRL 105, 262302 (2010) 
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(Logarithmic) Scaling

➙ Basic pQCD scaling predicts F1 1/Q4 ; F2 1/Q6 → F2/F1 1/Q2

➙ Data clearly do not follow this trend (yet?)

➙The introduction of a quark orbital angular momentum component results in

 F2/F1 1/Q

➙Belitsky et al. have included logarithmic corrections in pQCD limit

➙Proton data appear to follow this scaling behaviour, but new neutron data 
do not
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Comparison with Theory
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Status of Lattice QCD

Significant progress in LQCD, but 
still limited to mπ ≥ 300 MeV and 
neglect of disconnected diagrams, 
resulting in large underestimates of 
e.g. isovector charge radius

Bratt et al., arXiv: 1001.3620 

DataLQCD
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Nucleon Nucleon densitiesdensities and and relativity relativity 

importance of relativity (with increasing Q2) :
Lorentz contraction of spatial distributions in Breit frame

rest frame density intrinsic FF

non-relativistic limit: 

limit : k = 2 M (Compton wavelength)
Thus, Fourier transform remains 

valid for δr > rmin ≈ 0.3 fm

rest frame

Q2-evolution of quark 
mass
(nucl-th/9812063)

At Q ≈ 0.6 GeV (r ≈ 0.3 fm) mu/d ≈ 0.3 GeV
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Pion Cloud

• Crawford et al. performed a global fit to all four EMFF within the framework of 
Lomon’s VMD parametrization, including an estimate of the unmeasured high-Q2

region. They observe a structure in the proton and neutron densities at 1-2 fm 
(which they assign to a pion cloud) in a straight-forward transformation to 
coordinate space (shown below)

• As shown in the previous slide relativistic effects obscure any radial fine 
structure at a scale smaller than ~0.3 fm-1, implying that no quantitative 
information can be extracted in the rest frame

C. Crawford et al., arXiv:1003.0903

proton + 
ε(n + π+)

neutron + 
ε(n + π-)
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F1,2 form-factor decomposition
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• Assuming that the s-quark 
contribution is negligible 
(based on the PVe results)

G. Cates et al., arXiv: 1101.1808

➙ Shown are the results for (u,d) in the proton

➙ The ratio F2/F1 appears to become constant 
for both constituents from ~ 1.5 GeV2, in 
contrast even to the expectation for that 
ratio for each nucleon to scale with 1/Q2, at 
least in the pQCD limit (this scaling has not –
yet – been observed)

➙ Constituent Quark Model is unable to 
describe this behaviour
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Impact parameter b is defined relative 
to the transverse center of the quark’s 
longitudinal momentum  fractions

Mapping of nucleon constituents (in the proton)

➙ The individual behaviour of the FFs
for each constituent differs strikingly

➙ The flavor-separated F1 and F2 ratios 
were then used to extract the 
transverse densities for the u- and d-
quark (in the proton)

in proton

➙Why is the d-quark so much wider?
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Projected EMFF data with SBS @ 12 GeV
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Impact of EMFF on GPDs

2. Describes correlations of quarks/gluons

4. Allows access to quark angular momentum (in model-dependent way)

1. Allows for a unified description of
form factors and parton distributions

gives transverse spatial distribution of quark (parton) with momentum fraction x
and related to EMFFs through first moments

Fourier transform in momentum transfer

x < 0.1 x ~ 0.3 x ~ 0.8

3. Allows for Transverse Imaging
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Summary and Outlook

• Very active experimental program on nucleon electro-magnetic form 
factors thanks to development of polarized beam (> 100 µA, > 85 %), 
polarized targets and polarimeters with large analyzing powers at MAMI 
and JLab

➙GE
p discrepancy between Rosenbluth and polarization transfer not an 

experimental problem, but probably caused by TPE effects 

➙Broad ongoing program to obtain quantitative information on TPE

➙Strong discrepancy with muonic result on proton charge radius

➙GE
n precise data up to Q2 = 3.5 GeV2 provides strong indication that 

OAM has different effect on neutron than on proton

➙New GE
n data set has allowed a flavor separation of F1 and F2

➙The SuperBigBite project, to be implemented once the JLab 12 GeV
upgrade has been completed, will extend the present knowledge of the 
nucleon EMFF GE

p, GE
n and GM

p to double or triple the Q2-range covered 
by existing data

➙It is imperative that this experimental program is accompanied by a 
similar progress in our theoretical understanding of the nucleon



NPPD,  April 6,  2011, 27

THANK YOU !

acknowledging detailed discussions with Gordon 
Cates, Seamus Riordan and Bogdan Wojtsekhowski


