Lattice QCD 2011

Christine Davies University of Glasgow HPQCD collaboration

IOP NPPD meeting April 2011

QCD is a key part of the Standard Model but quark confinement complicates things.

Cross-sections calculated at high energy using QCD pert. th. NLO gives ~5% errors. Also have pdf and hadronisation uncertainties

But properties of hadrons calculable from QCD if fully nonperturbative calc. is done can test QCD and determine parameters very accurately (1%).

Compare to exptl rate gives $V_{qq'}$ accurately

Applications of Lattice QCD/Lattice field theory

Particle physics QCD parameters

Hadron spectrum

Hadron structure

Nuclear physics

CKM elements

Theories beyond the Standard Model

Glueballs and exotica QCD at high temperatures and densities

> Nuclear masses and properties

Quantum gravity

Astrophysics

Annual proceedings of lattice conference: http://pos.sissa.it/

Lattice QCD = fully nonperturbative QCD calculation

RECIPE

- Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of u, d and s sea quarks)
 - Calculate averaged "hadron correlators" from valence q props.
 - Fit as a function of time to obtain masses and simple matrix elements
 - Determine a and fix m_q to get results in physical units.
 - extrapolate to $a = 0, m_{u,d} = phys$ for real world

Example parameters for calculations now being done. Lots of different formalisms for handling quarks.

The gold-plated meson spectrum - HPQCD

Wednesday, 6 April 2011

Excited nucleon spectrum - preliminary calculations inc. the effect of sea quarks, not yet at physical masses.

(J. Foley, talk Mon., Bulava et al, HadSpec, 1004.5072)

Determining quark masses

Lattice QCD has direct access to parameters in Lagrangian for accurate tuning

- issue is converting to contnm schemes such as \overline{MS}

quark mass ratios very accurate: e.g. m_c/m_{s} , m_b/m_c , $m_s/m_{u,d}$

C. McNeile, CTHD et al, HPQCD, 0910.3102, 1004.4285

Can now rule out some quark mass matrix models ...

Quark masses

C. McNeile, 1004.4985

2010: Strong convergence of lattice results for strange quark mass

Determining α_s

Lattice QCD now has several determines of α_s to 1%. Dominate world average : 0.1184(7)

Key points:

- high statistical precision
- high order (NNLO) pert. th. exists and can estimate higher orders
- nonpert. systs. not a significant issue
- approaches very different good test

see 2011 Munich alphas workshop

Y decays τ decays DIS $[F_2]$ DIS $[e,p \rightarrow jets]$ e⁺e⁻[jets shps] electroweak e⁺e⁻[jets shps] HPQCD: wloops HPQCD: heavy q corrs JLQCD: light q. vac. poln World average: Bethke 0908.1135

CTHD et al, HPQCD 0807.1687; 1004.4285; JLQCD, 1002.0371. Determining the Cabibbo-Kobayashi-Maskawa matrix

In progress: improving lattice QCD calculation of $f_+(q^2)$

J. Koponen, HPQCD, Monday afternoon talk

Comparison to expt will provide more detailed test of QCD. Note how form factor same for different processes all involving $c \rightarrow s$ decay.

B results less accurate : use of nonrelativistic effective theories gives $\sim 5\%$ normln uncty. Future: use relativistic formalism even for b quarks - needs very fine lattices ...

Neutral K and B mixing and oscillations

Result from "box diagram". Calculate in lattice QCD

2010 lattice QCD : New B_K results leads to 3% error.

Average: 0.737(20)

 $\propto f_B^2 B_B$

Other results

New £13M HPC facility for UKQCD consortium + Virgo, Cosmos, Miracle .. funded by STFC + LFCF DiRAC = Distributed Research using Advanced Computing

2-rack BG/P system at Swansea - BG/Q at _____ Edinburgh later this year.

International collaborn growing feature of lattice QCD ...

clusters in Cambridge, Liverpool, Plymouth, Southampton

- Darwin cluster, Cambridge

Conclusion

• very accurate results are available now from lattice QCD for QCD parameters and for simple hadron masses and decay matrix elements important for flavour physics.

Future

• sets of '2nd generation' gluon configs will have $m_{u,d}$ at physical value (so no extrapoln) or

a down to 0.03fm (so b quarks are 'light') *or much* higher statistics (for harder hadrons) also can include charm in the sea now.

- Pushing errors down to 1% level for B physics still a lot of work but for ratios will be possible.
- Harder calculations (flavor singlet, excited states, nuclear physics) will improve

A Very Good Error Budget Look at error budgets to se how things will improve (in fortission)...

stats

tuning

chiral

continuum

$$\Delta_q = 2m_{Dq} - m_{\eta c}$$

	f_K/f_{π}	f_K	f_{π}	f_{D_s}/f_D	f_{D_s}	f_D	Δ_s/Δ_d
r_1 uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^2 extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
Finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u/d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
Stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
<i>m_s</i> evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_d , QED, etc.	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total %	0.6	1.3	1.7	0.9	1.3	1.8	1.2

Lattice QCD is definitely useful!