Testbeam Performance of the T2K ND280 Downstream ECal

Leigh Whitehead

University of Warwick

IoP NPPD Conference Glasgow 04/04/11

ND280 and the ECals

The ECals were all built in the UK.

Why do we need ECals?

Electromagnetic calorimeters measure energy.

Why do we need an energy measurement from the ECals?

- Charged particles:
 - Provides a complimentary measurement to the TPC momentum.
 - E / p can also be used as a PID tool.
- Photons:
 - The only energy measurement available.

In addition:

- Track vs Shower PID.
- Tag or stop incoming external particles.

The Downstream ECal (DsECal)

- The most downstream detector in ND280.
- 34 layers of plastic scintillator bars.
 - 50 bars per layer.
 - 17 layers with bars along Y.
 - 17 layers with bars along X.
 - Separated by lead sheets.
- Bars threaded with wavelength shifting optical fibres.
- Read out at both end with silicon photodiodes called MPPCs.
- Placed in the CERN T9 Beamline during May and June 2009.

The T9 Beamline

Right: Photo of the DsECal.

Below: Schematic diagram of the

beamline.

Data Taken

The beam particle content:

- Negative:
 - Electrons
 - Pions

- Positive:
 - Positrons
 - Pions
 - Protons

Data taken at a variety of settings:

- 400 MeV to 4 GeV
- 0, 15, 30, 60 and 75°

Selecting Electrons

The Cherenkovs and TOF were used to select a sample of electrons. The Cherenkovs were set to trigger only on electrons.

Require:

- Signal in Cherenkov 1.
- Signal in Cherenkov 2.
- TOF signal within EM peak.

Also require:

- Single reconstructed object.
- Object arrives at the expected time.

Electron Sample

Use the ECal PID to be sure that electron sample is pure.

ECal uses a neural network based on five parameters to separate tracks and showers.

TrShval is the output variable from the ECal PID:

- 0 = shower-like
- 1 = track-like

Energy Reconstruction

Likelihood fit based on three parameters.

- Total charge in the cluster.
- RMS of the charge distribution.
- Skew of the charge distribution.

Tuned with photon MC from 75MeV – 25GeV.

Energy Reconstruction

600 MeV Electron Sample at 30° angle of incidence.

Energy vs Momentum

- Fit the energy spectrum for 10 runs at different beam momenta.
- Plot the mean of the Gaussian fit against momentum.

Energy Resolution vs Energy

Summary

- Data was successfully taken over a wide range of energies.
- The EM Energy response was found scale linearly with the particle energy, as expected.
 - Work ongoing to understand the difference in gradient.
- The resolution of the ECal was found to be around 10% in the main region of interest.
- Data will be re-processed shortly with improved software which will hopefully show improvements.
 - Improvements to both calibration and reconstruction.

Backup Slides

Energy Reconstruction

Electrons and Positrons

Electrons and positrons at a 30° angle of incidence.

ND280 v_e Spectrum

• Spectrum of the electron neutrino component of the beam at the near detector.

ECal PID

- Tuned the PID using the development release v9r1.
 - DsECal and Barrel ECals.
 - Electrons, Photons, Muons and Pions.
 - 0, 20, 40, 60 and 80 degrees
- Five variables go into making the Track-Shower output:
 - AMR Ratio of major to minor axes from PCA Analysis
 - Max Ratio Ratio of highest to lowest layer charge.
 - EM Likelihood Likelihood from the energy fitter
 - ShowerAngle Opening angle of the shower
 - ShowerWidth Maximum width of the shower

