

A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

Phys. Rev. D 83, 042001 (2011)

Introduction

- This talk: first search for GWs associated with pulsar timing glitch:
 - Pulsar glitches & gravitational radiation
 - LIGO August 2006 Vela glitch search

Full details:

Phys. Rev. D 83, 042001 (2011)

Pulsar Glitches

- Occassional (for e.g., Vela I every ~2 years) sudden step increases observed in spin-frequency
- Sudden leap (drop) in spin freq (period) is followed by exponential recovery to ~preglitch spin on timescales of days-weeks
- Fitting for the recovery time-scale T allows estimation of glitch epoch.

Pulsar Glitches & Gravitational Waves

- Mechanism is unclear but may be:
 - star-quake (crustal rearrangement)
 - internal superfluid vortex un-pinning
- Glitches & GWs:
 - superfluid vortex avalanche (short ~ l ms white noise burst)
 - global oscillations (f-modes: I-3 kHz, 50-500ms ring-downs)
 - longer emission from r-modes, internal fluid motion (hours days)

Energy Scales

$$\Delta E_{
m quake} pprox 10^{42}\,{
m erg}\,\left(rac{I_*}{10^{38}\,{
m kg m}^2}
ight) \left(rac{\Omega}{20\pi\,{
m rad s}^{-1}}
ight)^2 \left(rac{\Delta\Omega/\Omega}{10^{-6}}
ight)$$

$$\Delta E_{\rm vortex} \approx 10^{38}\,{\rm erg}\,\left(\frac{I_c}{10^{37}\,{\rm kg\,m^2}}\right) \left(\frac{\Omega}{20\pi\,{\rm rad\,s^{-1}}}\right)^2 \left(\frac{\Delta\Omega/\Omega}{10^{-6}}\right) \left(\frac{\Omega_{\rm lag}/\Omega}{5\times 10^{-4}}\right)$$

Oscillation Model

- Assume glitch somehow excites f-mode oscillations (i.e., frequencies I-3 kHz)
- Decompose fluid oscillations into spherical harmonics of degree I, order m.
- We're interested in the quadrupole mode (I=2) with superposition of m=-2,-1,0,+1,+2 modes
 - m=0: rotational symmetry natural connection with build-up of superfluid lag or decreasing centrifugal force
 - |m|=1: glitch begins at one point in star and moves out (vortex avalanche)
 - |m|=2: glitch inherits symmetry of magnetic dipole field
- Which, if any, dominates dictated by UNKNOWN behaviour in stellar interior

GW model

- Simplifying assumptions:
 - only a single m dominates, spin unimportant
- Plus, cross waveform polarisations:

$$h_{+}^{2m}(t) = \begin{cases} h_{2m} \mathcal{A}_{+}^{2m} \sin[2\pi\nu_{0}(t - t_{0}) + \delta_{0}]e^{-(t - t_{0})/\tau_{0}} & \text{for } t \geq t_{0}, \\ 0 & \text{otherwise.} \end{cases}$$

$$h_{\times}^{2m}(t) = \begin{cases} h_{2m} \mathcal{A}_{\times}^{2m} \cos[2\pi\nu_0(t - t_0) + \delta_0] e^{-(t - t_0)/\tau_0} & \text{for } t \ge t_0, \\ 0 & \text{otherwise.} \end{cases}$$

- Inclination affects relative amplitudes through A+, Ax:
- If we have inclination (and polarisation) info, we have a good handle on the intrinsic GW amplitudes

Spherical Harmonic Indices	\mathcal{A}_{+}^{2m}	$\mathcal{A}_{ imes}^{2m}$
l = 2, m = 0	$\sin^2\iota$	0
$l = 2, \ m = \pm 1$	$\sin 2\iota$	$2\sin\iota$
$l=2,\ m=\pm 2$	$1 + \cos^2 \iota$	$2\cos\iota$

(Note that the data analysis pipeline works with power spectral densities so is insensitive to the sign of m)

August 2006 Vela Glitch: GW analysis

- Search method deploys Bayesian odds ratio as detection statistic:

$$\mathcal{O}_{(+,-)} = rac{\Pr(M_{+}|D)}{\Pr(M_{-}|D)}$$

$$= rac{\Pr(M_{+}|D)}{\Pr(M_{+})} rac{\Pr(D|M_{+})}{\Pr(D|M_{-})}$$

- choose between two models: detection (i.e., ring-down signal) or null-detection (Gaussian noise OR ring-down signals independent across detectors):

$$\mathcal{O}_{(+,-)} = \frac{\Pr(D|M_+)}{\Pr(D|T) + \Pr(D|N)}$$

- automatically rejects many instrumental transients, BUT incapable of distinguishing correlated instrumental transients
- compare on-source value to background distribution from off-source
- if on-source value > loudest off-source value, have detection candidate, meriting follow-up.
- otherwise, form marginal posteriors on GW amplitude & energy to form Bayesian upper limits

A Glitch In PSR B0833 (Vela)

- 12th August 2006: large glitch observed in PSR B0833 (Vela Pulsar) by S. Buchner, C. Flanagan of Hartesbeesthock Radio Astronomy Observatory (HartRAO)
- HartRAO (originally Deep Space Station 51) 26m radio telescope located ~50 km west of Johannesburg. Perform daily monitoring of Vela for glitches
- August glitch was during the fifth LSC science run (S5)
- all 3 LIGO detectors operating at design sensitivity
 - only the 2 Hanford detectors have contiguous science quality data during the entire glitch epoch (L1 data suffers degradation in quality)

Vela Orientation

EM observations: orientation

- Inclination and polarisation angle of Vela is well constrained from Chandra X-ray observations
- Distance to Vela (used to estimate energy upper limits from measured GW amplitude upper limits) is well constrained by HST (293 pc)

Gravitational wave search result...

10

August 2006 Vela Glitch: Results

- Use **161** off-source segments of 120 s to estimate background distribution of detection statistic (odds ratio)
- Estimate probability of obtaining an odds ratio greater than or equal to the value found in the on-source segment
- -Probability of obtaining on-source data for no GW present = 0.92

Conclusion: no evidence for ring-down gravitational wave signal associated with Vela August 2006 Glitch

August 2006 Vela Glitch Search: Amplitude Posteriors

90% confidence upper limits

August 2006 Vela Glitch Search: Energy Posteriors

90% confidence upper limits

Summary

- Pulsar glitches may lead to f-mode excitation with frequencies I-3 kHz, durations 50-500 ms
- A search for f-mode ring-down signals associated with the August 2006 Vela glitch resulted in no detection candidates but upper limits:
 - peak strain 90% confidence limits = 6.3 x 10⁻²¹ 1.4 x 10⁻²⁰
 - total GW energy 90% confidence limits = 5.0 x 10⁴⁴ 6.3 x 10⁴⁴ erg
- Average sky-location, isotropic emission @ 10 kpc, we find:
 - LIGO S5 Vela glitch energy upper limit = 1.3 x 10⁴⁸ erg
- Advanced LIGO x I 0 improvement in strain sensitivity = x I 00 improvement in energy
 - \bullet will begin to probe interesting (~10⁴² erg) energy limits for pulsar glitches
 - orientation / inclination information crucial to upper limit interpretation

A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

Phys. Rev. D 83, 042001 (2011)

