

DRIFT

Spin-dependent limits from DRIFT - a directionally sensitive dark matter detector

Mark Pipe

The 'WIMP wind'

- Galaxy is within an isothermal halo of essentially static WIMPs
- Motion of Earth through WIMPs creates apparent 'WIMP wind'
- Mean velocity ~220kms⁻¹ from the constellation Cygnus - orbit of Milky Way about Galactic Centre
- ~I5kms⁻¹ annual modulation due to Earth's orbit of the Sun
- ~90° diurnal modulation due to Earth's rotation on its axis

Directional dependence

- Distinct signature in incident WIMP direction
- Nuclear recoils caused by WIMP collisions will be biased in the direction of the WIMP wind
- Extremely strong signal from motion of Earth through WIMP halo. <u>Cannot be mimicked by terrestrial source.</u>

Green, Morgan. ApJ 27 (2007) 142–149

DRIFT-IId

- Two back-to-back low pressure gas TPCs
- Im² central cathode
- Im² MWPC readout planes
- 0.5m drift region
- Housed in stainless steel vacuum vessel maintaining low pressure target gas (e.g. 40 Torr CS₂)
- Fiducial volume = $0.8m^3 = 134g CS_2$

Negative ion drift

- WIMP interaction causes ionisation track of few mm
- Electronegative gas creates track of negative ions
- Negative ions drift
- Massive ions suffer only thermal diffusion
- Preserves directional information

Boulby Mine, NE England, UK

- I I 00m underground \approx 2800 m.w.e.
- Cosmic rays reduced by factor of I million

CS₂-CF₄ mixtures in DRIFT

- CS₂ required for low diffusion but not sensitive to SD interactions
- CF₄ added as ¹⁹F is ideal target for SD measurements
- Single wire proportional counter measurements of gas gain, W-value and mobility in CS₂-CF₄ mixtures

Mobility - <u>Negative ion drift</u> preserved up to 75% CF₄

Gas Mixture CS ₂ – CF ₄ (Torr)	Reduced mobility, μ (cm ² atm/Vs)		
40-00	0.54±0.02		
30-10	0.60±0.02		
20-20	0.69±0.02		
10-30	0.81±0.03		

[K. Pushkin, NIM A 606 (2009) 569]

Gas gain - Increases with CF4 concentration

Gas mixing system

- System installed underground
- Operating with 30 Torr -10 Torr CS₂-CF₄ gas mixture
- ~ year of stable running

- Anode Fe Peaks

DRIFT-II's dominating background -Radon Progeny Recoils (RPRs)

RPR reduction

I) Reduce radon in the detector:

Sample (Emanating into vacuum)	Fill gas	Emanation time (days)	Humidity (%)	Raw result (Bq/m ³)	Adjusted result (Rn atoms.s ⁻¹)
RG58 coax cables (72m)	Dry N2	12.5	24	9.4 +/- 0.7	0.36 +/- 0.03
Electronics boxes	Dry N2	12	37	1.5 +/- 0.3	0.05 +/- 0.02
Ribbon cables	Dry N2	6.5	23	10.1 +/- 0.7	0.50 +/- 0.04
Electronics & PCBs	Dry N2	10	37	0.3 +/- 0.2	< 0.02 *
Single core & thin coax cables	Dry N2	7	19	1.3 +/- 0.3	0.04 +/- 0.02
Field cage parts	Dry N2	7	33.3	0.6 +/- 0.2	< 0.03 *
				Total	0.95 +/- 0.5

2) Clean the plated out ²¹⁰Pb from the cathode

Together, these reduced RPRs by 96% relative to D-IIa rate

[D. Snowden-Ifft, Oxy, J. Turk, UNM, PhD thesis 2008)

(S. Paling, Sheffield)

Backgrounds

- X-axis equivalent F recoil energy (keV)
- Y-axis IWS-RMST (Induced Waveform Subtracted Root Mean Square Time) measure of diffusion of the track in the drift field dimension
- Three main background populations:
 - Low RMST sparks consistent with shaping time of amplifiers
 - Mid RMST events in the MWPC (RPRs?)
 - High RMST RPRs coming from the central cathode

Backgrounds

- X-axis equivalent F recoil energy (keV)
- Y-axis IWS-RMST (Induced Waveform Subtracted Root Mean Square Time) measure of diffusion of the track in the drift field dimension
- Three main background populations:
 - Low RMST sparks consistent with shaping time of amplifiers
 - Mid RMST events in the MWPC (RPRs?)
 - High RMST RPRs coming from the central cathode

RPR reduction

- Neutrons occur throughout the detector volume
- RPRs come from the central cathode and suffer maximum diffusion on average have higher IWS-RMST

SD 'Limit' from 47.2 days (not blind)

- 30 Torr -10 Torr CS2-CF4, 47.2 days background data
- I.5kg-days (¹⁹F) with <u>no compromise on directional</u> sensitivity.
- Signal region chosen by eye for zero events (not a blind analysis)
- MC simulation calibrated by neutron data
- Further 65 days data on disk for a full blind analysis

Further RPR reduction

A cathode highly transparent to α's from RPRs will provide a tag to veto these events

0.9µm thin film cathode installed on DRIFTII at the Boulby Mine

Tagged RPRs

- Alpha on one side, WIMP-like event on the other
- With the thin film data we expect less WIMP-like background, more tagged RPRs

drift2d-20100320-02-0005-wimp - Event 2874

$20\mu m$ wire central cathode

Background events 174 events/day

<u>Tagged RPRs</u> 50 events/day

0.3 tagged RPRs per background event47.2 days data used to set limit

0.9µm thin film central cathode

Background events 14.7 events/day

Tagged RPRs 70 events/day

4.7 tagged RPRs per background eventI I.6 days - 64.5 days on disk ready for full blind analysis

Conclusions

- DRIFT-IId at the Boulby Underground Laboratory (UK) now running with CS₂-CF₄ gas mixture for SD sensitivity
- Unblind analysis of 47.2 days produced SD limit of ~1.2pb (100 GeVWIMP). No compromise on directionality
- Thin film cathode installed and analysis shows large reductions (factor >15) in RPR background from thin film cathode
- 65 days of data with thin film cathode is on disk full blind analysis coming soon