



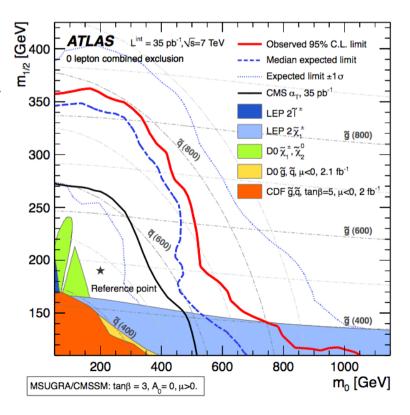
# QCD background to SUSY searches with no leptons at ATLAS

Simon Owen 04-04-2011

#### Introduction

- SUSY searches with no leptons at ATLAS require reconstructed jets and significant **missing** transverse energy  $(E_T^{miss})$ .
- QCD multijet production can generate sufficient  $E_T^{\text{miss}}$  through **detector effects** (fake  $E_T^{\text{miss}}$ ) or from **heavy flavour jets** which contain neutrinos (true  $E_T^{\text{miss}}$ ).
- Cannot solely rely on Monte Carlo simulation (MC) due to insufficient statistics and large systematic uncertainties.
- Data-driven estimation vital!

## SUSY Searches with no Leptons at ATLAS in 2010


• With 35<sup>-1</sup> pb of analysed data, ATLAS set world's best limits in searches for squarks and gluinos.

• Four signal regions;  $m_{\rm eff}$  and  $m_{\rm T2}$  used as

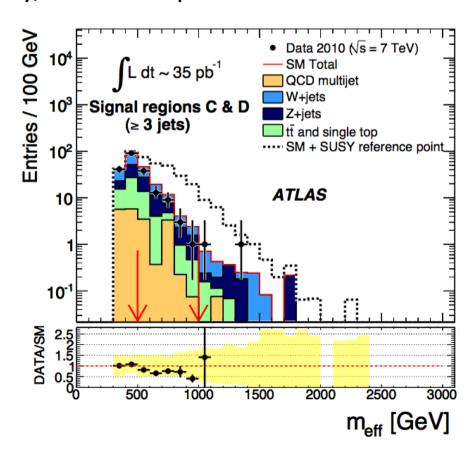
discovery variables.

arXiv:1102.5290v1

|                                                                          | Α                                                                                                                                                                                                   | В                                                                                                                                                                                                                                                                       | C                                                                                                                                                                                                                                                                                             | D                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of required jets                                                  | ≥ 2                                                                                                                                                                                                 | ≥ 2                                                                                                                                                                                                                                                                     | ≥ 3                                                                                                                                                                                                                                                                                           | ≥ 3                                                                                                                                                                                                                                                                                                                                                                                |
| Leading jet p <sub>T</sub> [GeV]                                         | > 120                                                                                                                                                                                               | > 120                                                                                                                                                                                                                                                                   | > 120                                                                                                                                                                                                                                                                                         | > 120                                                                                                                                                                                                                                                                                                                                                                              |
| Other jet(s) $p_T$ [GeV]                                                 | > 40                                                                                                                                                                                                | > 40                                                                                                                                                                                                                                                                    | > 40                                                                                                                                                                                                                                                                                          | > 40                                                                                                                                                                                                                                                                                                                                                                               |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]                                   | > 100                                                                                                                                                                                               | > 100                                                                                                                                                                                                                                                                   | > 100                                                                                                                                                                                                                                                                                         | > 100                                                                                                                                                                                                                                                                                                                                                                              |
| $\Delta \phi(\text{jet}, \vec{P}_{\text{T}}^{\text{miss}})_{\text{min}}$ | > 0.4                                                                                                                                                                                               | > 0.4                                                                                                                                                                                                                                                                   | > 0.4                                                                                                                                                                                                                                                                                         | > 0.4                                                                                                                                                                                                                                                                                                                                                                              |
| $E_{ m T}^{ m miss}/m_{ m eff}$                                          | > 0.3                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                       | > 0.25                                                                                                                                                                                                                                                                                        | > 0.25                                                                                                                                                                                                                                                                                                                                                                             |
| $m_{\rm eff}$ [GeV]                                                      | > 500                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                       | > 500                                                                                                                                                                                                                                                                                         | > 1000                                                                                                                                                                                                                                                                                                                                                                             |
| m <sub>T2</sub> [GeV]                                                    | -                                                                                                                                                                                                   | > 300                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                          | Leading jet $p_T$ [GeV] Other jet(s) $p_T$ [GeV] $E_T^{\text{miss}}$ [GeV] $\Delta \phi$ (jet, $\vec{P}_T^{\text{miss}}$ ) <sub>min</sub> $E_T^{\text{miss}}/m_{\text{eff}}$ $m_{\text{eff}}$ [GeV] | Number of required jets $\geq 2$ Leading jet $p_T$ [GeV] > 120 Other jet(s) $p_T$ [GeV] > 40 $E_T^{\text{miss}}$ [GeV] > 100 $\Delta \phi$ (jet, $\vec{P}_T^{\text{miss}}$ ) <sub>min</sub> > 0.4 $E_T^{\text{miss}}/m_{\text{eff}}$ > 0.3 $m_{\text{eff}}$ [GeV] > 500 | Number of required jets $\geq 2$ $\geq 2$ Leading jet $p_T$ [GeV] $> 120$ $> 120$ Other jet(s) $p_T$ [GeV] $> 40$ $> 40$ $E_T^{miss}$ [GeV] $> 100$ $> 100$ $\Delta \phi$ (jet, $\vec{P}_T^{miss}$ ) <sub>min</sub> $> 0.4$ $> 0.4$ $E_T^{miss}/m_{eff}$ $> 0.3$ $ m_{eff}$ [GeV] $> 500$ $-$ | Number of required jets $\geq 2 \geq 2 \geq 3$<br>Leading jet $p_T$ [GeV] $> 120 > 120 > 120$<br>Other jet(s) $p_T$ [GeV] $> 40 > 40 > 40$<br>$E_T^{\text{miss}}$ [GeV] $> 100 > 100 > 100$<br>$\Delta \phi$ (jet, $\vec{P}_T^{\text{miss}}$ ) <sub>min</sub> $> 0.4 > 0.4 > 0.4$<br>$E_T^{\text{miss}}/m_{\text{eff}}$ $> 0.3 - > 0.25$<br>$m_{\text{eff}}$ [GeV] $> 500 - > 500$ |

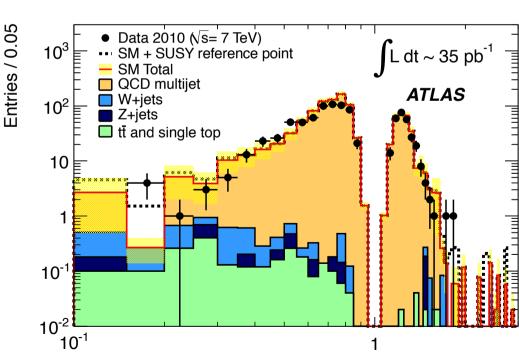


#### ATLAS QCD Strategy in 2010 Analysis


 Apply harsh cuts to reduce QCD background to a very small level.

> Even with a large uncertainty, overall impact of

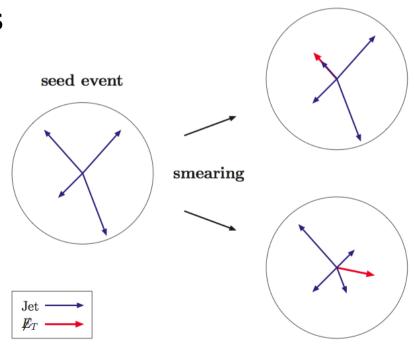
background is small.


• Validate MC performance in control regions.

- Correct QCD MC
   normalisation by
   comparing with data in
   control regions.
- Cross-check estimate with fully data-driven method.

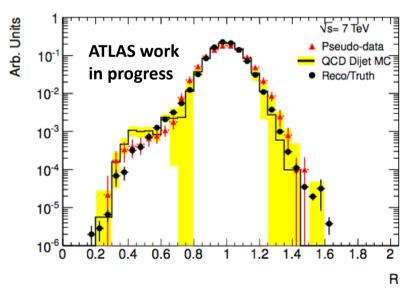


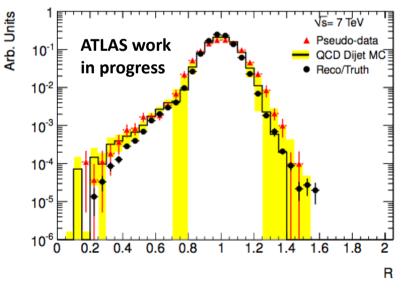
## Validating MC Performance in non-Gaussian Jet Response Tail


- Jet response:  $R = p_T^{\text{reco}} / p_T^{\text{true}}$
- Apply topological cuts to select 'Mercedes' events where one jet in unambiguously associated with  $E_{\mathsf{T}}^{\mathsf{miss}}$ .
- For this jet, estimate  $p_T^{\text{true}} \approx p_T^{\text{reco}} + E_T^{\text{miss}}$ .
- Plot estimated R  $(R_2)$  in data and MC for events with leading jet  $p_T$  > 200 GeV.



**Jets** 


### Jet Smearing Method

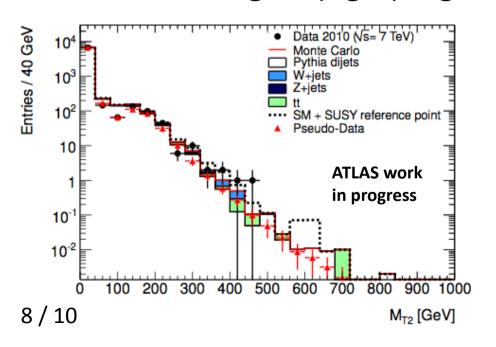

- Fully data-driven technique to estimate QCD background:
  - Measure jet response in data.
  - Smear **low-E\_T^{miss} seed events** on jet-by-jet basis with measured response to produce '**pseudo-data**' (with potentially high- $E_T^{miss}$ ).
  - Use pseudo-data as QCD estimate in SUSY signal regions.

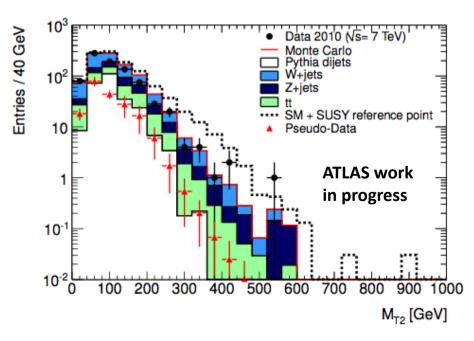


### Measuring Jet Response

- Non-Gaussian response measured as shown on slide 5.
- Gaussian response parameterised by applying Gaussian smearing to seed events and ensuring agreement between pseudo-data and data in low- $E_{\rm T}^{\rm miss}$  region.
- Normalisation between Gaussian and non-Gaussian components determined from dijet balance distribution.







 $(a)p_{\rm T} = 140 {\rm GeV}$ 

(b) $p_{\rm T} = 210 {\rm GeV}$ 

## Jet Smearing Final Estimation – Some Examples

- Jets in seed events are smeared using the response functions to produce estimated distributions.
  - e.g.  $m_{T2}$  distribution in QCD normalistion (left) and SUSY signal (right) regions.





#### Summary

- In 2010, harsh cuts ensured QCD background to SUSY searches with no leptons was small.
- Significant work was done to ensure the systematic uncertainty was under control; MC, partially data-driven and fully data-driven methods were used.
- The 2010 results have demonstrated the validity and performance of the fully data-driven technique so expect more jet smearing in 2011...

#### **Future Work**

- In 2011, data-driven QCD background estimation will likely be the baseline method.
- Statistics for this method will increase by orders of magnitude, MC statistics will not!
- Use dedicated topological triggers to ensure increased statistics for non-Gaussian tail measurement.
- Currently looking at improvements to jet response measurement.
- More work needed in understanding the sources of large  $E_T^{miss}$  in QCD multijet events.