

Soft Single Lepton SUSY Search using α_T at CMS

Z. Hatherell

Imperial College London

Introduction

- Supersymmetry Searches at LHC
- * α_T variable
- Hadronic channel results
- Soft Single Lepton Strategy
 - Low p_T Leptons(10 25 GeV)
 - Use Hadronic Search plus Lepton
- Background Estimation Method
 - HT control regions
- Future Plans with 2011 Data

Supersymmetry Searches

Supersymmetry models predict the existence of a heavy, stable final state super-partner which will not interact with the detector

 $pp \rightarrow$

SUSY production mechanisms at the LHC

$$\widetilde{q}_{R}\widetilde{q}_{L} \rightarrow \begin{cases} q\widetilde{\chi}_{1}^{\circ} \\ q\widetilde{\chi}_{1}^{\pm} \rightarrow \begin{cases} qq\,\overline{q}'\widetilde{\chi}_{1}^{\circ} & (\text{all - hadronic }) \\ q\ell^{\pm}\widetilde{\nu}_{\ell}\widetilde{\chi}_{1}^{\circ} & (1-\text{lepton mode }) \end{cases}$$

• Large missing transverse energy plus final state objects

Searches are *inclusive* - remain model independent

- allows sensitivity to New Physics (SUSY or not SUSY)

Use benchmark points in popular models to assess sensitivity and set limits (notably CMSSM)

QCD Control variable – α_τ

Dominant background from QCD - must be controlled.

Search variable α_T originally proposed for di-jets (hep-ph 0806/1049) Extend the α_T variable for a N-Jet QCD system:

Construct 2 Pseudo-jets to resemble QCD di-jet system

Hadronic α_T Search

Hadronic α_T analysis published : Physics Letters B 698 (2011) (arXiv:1101.1628v1)

HT Trigger (100/120/140/150 HT)

At least 2 jets ($p_T > 50$, $|\eta| < 2.4$)

Veto leptons (p_T > 10 GeV), photons (p_T > 25GeV)

HT > 350~GeV , $\alpha_T > 0.55$

```
Dead ECAL dR > 0.3 && MHT/MET < 1.25
```

Limits set in CMSSM m_0 - $m_{1/2}$ plane

Upper limit on Signal of 13.4

(very little dependence on $tan\beta$)

Significant extension to excluded region over previous experiments!

Imperial College London

IOP NPPD Glasgow – Monday 4th April 2011

Combined Background Estimation Hadronic Channel

Use lower HT regions to predict total background in signal regions

Adding a Soft Lepton

Requiring 1 lepton provides a cleaner signature;

- QCD background is significantly suppressed
- EWK backgrounds dominate

***** BUT: SUSY leptons appear at the end of long decay chains

- Mass differences between SUSY particles can be small
- **\Leftrightarrow** SUSY lepton p_T can be significantly lower than in EWK/tt decays
- * Use exclusive low- p_T lepton selection -> EWK depleted search

<u>SO QCD Dominant – as in hadronic – motivates using α_T approach</u>

Replace N-Jet system with 1-lepton + (N-1)Jet system

1-lepton & N-Jet = 2 kinematically similar to 0-lepton in N-Jet = 3

Use leptonic versions of kinematic quantities -(HT, α_T , etc) where lepton included as a jet.

Event Selection

Selection is taken from Hadronic search with the reversal of the lepton veto.

- Trigger Lowest unprescaled of HT_100/120/140/150U#
- First Jet |η| < 2.4</p>
- ✤1 isolated lepton 10 < p_T < 25 GeV</p>
- Veto on photons $p_T > 25 \text{ GeV}$
- ✤ HT > 350 GeV
- Dead ECAL dR > 0.3
- ✤ MHT/MET < 1.25</p>
- **❖** α_T > 0.55

Added single soft lepton requirement.

Use standard lepton ID variables - from CMS Vector Boson Task Force.

Background Estimation Muon Channel – MC at 300pb⁻¹

Cutflow produced at 300pb⁻¹ for MC Samples (samples shown in backup) - Possible signal yield for 4 possible LM benchmark points also shown

Cuts	QCD Multijet	W + jets	Z + jets	tt + jets	All SM	LMO	LM1	LM01	LMTau
HT> 250	1067.5	555.1	43.8	317.2	1983.6	173.1	38.4	258.9	239.1
HT> 350	241.8	161.0	12.6	123.6	539.1	128.8	34.2	171.6	164.6
α_T>0.55	0	5.62	0	5.49	11.11	19.58	11.22	34.3	30.9

NB: 300pb⁻¹ is a conservative estimate of data available for summer conferences

- Benchmark Points exist to evaluate performance
 - CMS LM0-9 'Low Mass' points close to exclusion levels
- Created 2 points with a low- p_T lepton spectrum (valid MSSM):
 - 'LM01' (uses LM1 gaugino sector and LM0 ~q/~g mass spectrum)
 - 'LMTau' (enhances production of stau)

Imperial College

Leptonic α_T analysis is **designed** and thus **favoured** to perform optimally in such scenarios.

Background Estimation Muon Channel – MC at 300pb⁻¹

Cutflow produced at 300pb⁻¹ for MC Samples (samples shown in backup) - Possible signal yield for 4 possible LM benchmark points also shown

Cuts	QCD Multijet	W + jets	Z + jets	tt + jets	All SM	LMO	LM1	LM01	LMTau
HT> 250	1067.5	555.1	43.8	317.2	1983.6	173.1	38.4	258.9	239.1
HT> 350	241.8	161.0	12.6	123.6	539.1	128.8	34.2	171.6	164.6
α_T>0.55	0	5.62	0	5.49	11.11	19.58	11.22	34.3	30.9

- Lepton requirement reduces statistic in denominator of $\mathsf{R}\alpha_{\mathsf{T}}$

H_ Lentonic [GeV]

- -Therefore use hadronic selection in denominator (lepton veto)
- Use method in MC as a closure test:

Monte Carlo 300 pb⁻¹

Predicted RAT	Actual N (aT<0.55)	Predicted N (aT>0.55)	Actual N (aT>0.55)
2.52E-06	6.10E+06	15.73 +/- 1.47	11.11 +/- 2.34

Background Estimation Electron Channel – MC at 300pb⁻¹

Cutflow produced at 300pb⁻¹ for MC Samples (samples shown in backup) - Possible signal yield for 4 possible LM benchmark points also shown

Cuts	QCD Multijet	W + jets	Z + jets	tt + jets	All SM	LMO	LM1	LM01	LMTau
HT> 250	701.5	312.7	25.3	183.5	1223.0	93.5	20.7	121.6	140.6
HT> 350	211.5	93.6	11.0	70.8	386.8	69.3	18.5	88.3	97.1
α_T>0.55	0	6.55	0	2.43	8.99	10.35	6.27	14.71	19.69

- Lepton requirement reduces statistic in denominator of $\mathsf{R}\alpha_{T}$

- Therefore use hadronic selection in denominator (lepton veto)

- Use method in MC as a closure test:

Monte Carlo 300 pb⁻¹

Predicted RAT	Actual N (aT<0.55)	Predicted N (aT>0.55)	Actual N (aT>0.55)
1.26E-06	6.10E+06	7.86 +/- 1.03	8.99 +/- 2.49

Investigating 2010 Data – but not enough statistics with 35pb⁻¹

IOP NPPD Glasgow – Monday 4th April 2011

Plans for 2011 Datasets

- * Use 1-lepton α_T analysis on 2011 CMS Data
- Use α_T trigger for Signal Selection
 also still need HT triggers for denominator
- Investigate other background estimation methods
- Publish results for Summer Conferences
 - 0.5 1.0 fb⁻¹ data at 7TeV

Backup Slides

Hadronic Analysis

α_T distributions – dijet and >2jets

Hadronic Analysis

HT Distributions

Dphi/Meff of 13

passed events

Imperial College

IOP NPPD Glasgow – Monday 4th April 2011

New LM Benchmark Points

Mass Hierarchies in the new benchmark points.

