

Determining the $(D^0,D^0) \rightarrow K_{S,L}K^+K^$ strong phase difference and the impact on the CKM angle γ

Chris Thomas

University of Oxford & STFC Rutherford Appleton Laboratory
On behalf of the CLEO-c and LHCb collaborations

Outline

- Determining γ using $B^{\pm} \rightarrow (D^0, \overline{D}^0)K^{\pm}$
- The CLEO-c detector
- Measuring the strong phase difference between D^0 and $\overline{D}{}^0$ decays to $K_{S,L}K^+K^-$
- Impact on future γ measurements

Determining γ using $B^{\pm} \rightarrow (D^0, \overline{D}^0)K^{\pm}$

Unitarity triangle

• The *b-d* unitarity triangle of the CKM matrix

$$\alpha = (89.0^{+4.4}_{-4.2})^{\circ}$$
$$\beta = (21.15^{+0.90}_{-0.88})^{\circ}$$

$$\gamma = (71^{+21}_{-25})^{\circ}$$

CKMfitter: http://ckmfitter.in2p3.fr

Results shown are direct angle measurements

Determining γ from B[±] \rightarrow (D⁰, \overline{D})K[±]

$$\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Amplitude ratio between $b \to \overline{u}cs$ and $b \to u\overline{c}s$ transitions:

$$r_B e^{i(\delta_B - \gamma)} \equiv \frac{\mathcal{A}(B^- \to \overline{D}^0 K^-)}{\mathcal{A}(B^- \to D^0 K^-)}$$

CKM and colour suppression: $r_R \sim 0.1$

Determining γ from B[±] \rightarrow (D⁰, \overline{D})K[±]

D⁰ final states

4 April 2011

Importance of charm physics

4 April 2011

Dalitz analysis of $B^{\pm} \rightarrow (K_S hh)_D K^{\pm}$

$B^{\pm} \rightarrow (K_S hh)_D K^{\pm}$

- Three body final state analyse K_Shh Dalitz plot
- CP violation is manifested as an asymmetry in event distributions across the plot

Modelling B decays

• Define the Dalitz plot coordinates (x, y):

$$x \equiv m_{K_S^0 h^+}^2$$
 $y \equiv m_{K_S^0 h^-}^2$

• Define the $D^0 \rightarrow K_S hh$ decay amplitude:

$$f_{D^0}(x,y) \equiv A_{xy}e^{i\delta_{xy}} = \mathcal{A}(D^0 \to K_S^0 h^+ h^-)(x,y)$$

• Then the B⁻ decay amplitude is:

$$\mathcal{A}(\mathrm{B^-} \to (\mathrm{K_S^0h^+h^-})_\mathrm{D}\mathrm{K^-}) \propto f_{D^0}(x,y) + r_B e^{i(\delta_B - \gamma)} f_{D^0}(y,x)$$

Modelling B decays

• The corresponding decay rate is:

$$\Gamma(B^- \to (K_S^0 h^+ h^-)_D K^-) \propto A_{xy}^2 + r_B^2 A_{yx}^2 + 2r_B A_{xy} A_{yx} [\cos(\delta_B - \gamma) \cdot \cos(\Delta \delta_D) - \sin(\delta_B - \gamma) \cdot \sin(\Delta \delta_D)]$$

Strong phase difference

- To measure this rate, can:
 - Determine all parameters from B[±] decays
 - Fit a model to a flavour-tagged D⁰ decay sample (unbinned)
 - Determine D⁰ decay parameters in bins across Dalitz plane
- An example of how charm physics input is important

Binning the Dalitz plot

Phys. Rev. D 68, 054018 (2003)

• Instead of using a model of the D⁰ decays, divide the Dalitz plot into bins and measure yields in each bin

- Number of events in i^{th} bin, N_i , depends on weighted average cosine (c_i) and sine (s_i) of strong phase difference $\Delta \delta_D$
- Example: rectangular partitioning of K_SKK Dalitz plot
- No model error but increased statistical error
- Measure at CLEO-c using quantum correlated events

CLEO-c analysis of $D^0 \rightarrow K_S hh$

Phys. Rev. D 82, 112006 (2010)

Brief overview of CLEO-c

 Symmetric general-purpose detector located at Cornell Electron Storage Ring (CESR)

- e⁺e⁻ collider
- 93% coverage
- Excellent tracking and PID

Brief overview of CLEO-c

- Threshold decay at $\psi(3770)$:
 - Very clean environment
 - High reconstruction efficiency
 - $^{\square}$ Can reconstruct 'missing' particles (K_L, ν)

- $\psi(3770)$ decays to quantum-correlated $D\overline{D}$ pair
- Determine quantum numbers (i.e. CP) of one D: have complete knowledge of quantum numbers of the other
- $CP(\psi(3770)) = -1$ $D^{0}(CP+) \longleftarrow \psi(3770) \longrightarrow \overline{D}^{0}(CP-)$
- CP tagging

CLEO-c K_Shh event selections

• Selected K_Shh tagged with:

NSNN	$N_{S}\Pi\Pi$			
96	789			

- ⁻ CP eigenstates (e.g. KK, $\pi\pi$, K_S π ⁰)
- Flavour states (e.g. Kπ, Kππ, Keν) 864 7634
- Mixed-CP eigenstates (K_Shh)

200 473

- BR($K_S\pi\pi$)/BR(K_SKK) ~6.3
- In addition to K_Shh, also select K_Lhh
 - Excellent detector & clean environment enables this
 - $^{\square}$ CP(K_Lhh) \sim -CP(K_Shh)
 - More than doubles the dataset

Quantum correlations at CLEO-c

- Quantum correlations result in visible differences between different Dalitz plots
- Very striking difference seen in CP-tagged K_SKK

K_SKK vs CP+ K_LKK vs CP-

Phys. Rev. D 82, 112006 (2010)

K_SKK vs CP-K_LKK vs CP+

4 April 2011

Binning the Dalitz plane

- The Dalitz plane can be binned in any way desired
- Binning in regions of similar strong phase difference (predicted by the model) provides improved statistical precision Eur. Phys. J. C 47, 347 (2006)
- Studied several binnings for both $K_S \pi \pi$ and $K_S K K$

Binning the K_SKK Dalitz plane

- K_SKK binnings considered: 2, 3 and 4 bins
 - Relatively small number of events limits number of bins
 - Studying several binnings provides future flexibility

K_SKK (c_i, s_i) results

- Good agreement between fit values and model
- Main systematic uncertainty from background estimation

Consequences for γ measurement

• Toy MC experiments: generate 5M B \rightarrow DK events and determine impact of (c_i, s_i) on γ precision for different

binnings

• Error on γ due to CLEO-c statistical uncertainty:

□ K₅KK: **3.2–3.9°**

□ K₅ππ: **1.7–3.9°**

- Compare to 3–9° model uncertainty from B-factories
- BES-III will be able to reduce this even further

LHCb selection of $B \rightarrow D(K_Shh)h$

- LHCb has observed $B \rightarrow D(K_S hh)\pi$ in 34pb⁻¹
- This is a control mode for B→DK

• Excellent prospects for $B \rightarrow D(K_S hh)K$ measurements

Conclusions

- B \rightarrow DK is a very promising way to determine γ
- Input from charm physics is very important in order to precisely determine D⁰ decay parameters
- Recent model-independent CLEO-c analysis of $D^0 \rightarrow K_S hh$ strong phase difference, including first measurement for $K_S KK$ final state
- Projected consequences for γ measurement: 1.7-3.9° for $K_S\pi\pi$, 3.2-3.9° for K_SKK
- LHCb has selected $B \rightarrow D(K_S hh)h$ events: very promising

Backups

Binning the $K_S\pi\pi$ Dalitz plane

- Also updated $K_S\pi\pi$ analysis (previously studied in 2008) by considering several different binnings
- Compare and contrast models from BaBar and Belle
- Also optimised binning by considering senstivity given finite B-statistics Eur. Phys. J. C 55, 51-56 (2008)
- Optimised binning for LHCb background expectation

$K_S\pi\pi$ results

Results for different binnings

BaBar model, optimised for B-stats

BaBar model, equal $\Delta \delta_D$

BaBar model, optimised for backgound

Belle model, equal $\Delta \delta_D$

CLEO-c event selections

• K_SKK vs flavour tags $(K\pi, K3\pi, K\pi\pi^0, Kev)$

Data
Signal region
Sidebands

• m_{BC} = beam constrained mass = $sqrt(E^2 - p_D^2)$

CLEO-c event selections

K_LKK vs CP tags

Data Background

• m²_{miss} = squared missing mass

CLEO-c K_Shh event yields

Mode	ST yield	DT yields							
	J. J	$K_{S}^{0}\pi^{+}\pi^{-}$		-	$K_L^0K^+K^-$				
Flavor tags									
$K^-\pi^+$	144563 ± 403	1444	2857	168	302				
$K^-\pi^+\pi^0$	258938 ± 581	2759	5133	330	585				
$K^-\pi^+\pi^+\pi^-$	220831 ± 541	2240	4100	248	287				
$K^-e^+\nu$		1191		100					
$\overline{\mathit{CP}}$ -even tags									
K^+K^-	13349 ± 128	124	357	12	32				
$\pi^+\pi^-$	6177 ± 114	61	184	13					
$K_S^0\pi^0\pi^0$	6838 ± 134	56		14					
$K_L^0\pi^0$		237		17					
$K_L^0 \eta(\gamma\gamma)$				4					
$K_L^0 \eta(\pi^+\pi^-\pi^0)$				1					
$K_L^0\omega$				4					
$K_L^0 \eta'$				1					
CP-odd tags									
$K_S^0\pi^0$	19753 ± 153	189	288	18	43				
$K_S^0 \eta(\gamma \gamma)$	2886 ± 71	39	43	4	6				
$K_S^0 \eta(\pi^+\pi^-\pi^0)$				2	1				
$K_S^0\omega$	8830 ± 110	83		14	10				
$K_S^0 \eta'$				3	4				
$K_L^0\pi^0\pi^0$				5					
$K_S^0 \pi^+ \pi^-$		473	1201	56	126				
$K_L^0\pi^+\pi^-$				140					
$K_S^0K^+K^-$				4	9				

Dalitz plot yields

• Number of events in $i^{\rm th}$ bin, N_i , depends on weighted average cosine and sine of strong phase difference as well as amplitude² in that bin

$$N_{i}(\mathbf{B}^{\pm} \to (\mathbf{K}_{S}^{0}\mathbf{h}^{+}\mathbf{h}^{-})_{D}\mathbf{K}^{\pm}) \propto T_{i} + r_{B}^{2}T_{-i} + 2r_{B}\sqrt{T_{i}T_{-i}}\left[\cos(\delta_{B}\pm\gamma)c_{i} + \sin(\delta_{B}\pm\gamma)s_{i}\right]$$

$$T_{i} \equiv \int_{i} |f_{D^{0}}(x,y)|^{2} dx dy$$

$$c_{i} \equiv \frac{1}{\sqrt{T_{i}T_{-i}}} \int_{i} |f_{D^{0}}(x,y)| |f_{D^{0}}(y,x)| \cos(\Delta\delta_{D}(x,y)) dx dy$$

$$s_{i} \equiv \frac{1}{\sqrt{T_{i}T_{-i}}} \int_{i} |f_{D^{0}}(x,y)| |f_{D^{0}}(y,x)| \sin(\Delta\delta_{D}(x,y)) dx dy$$

Determining (c_i, s_i)

• c_i is determined using CP-tagged K_Shh

• c_i and s_i are determined using K_S hh tagged with K_S h'h'

4 April 2011

Quantum correlations at CLEO-c

 Quantum correlations result in visible differences between different Dalitz plots

• Decays to $K_S\pi\pi$ proceed via different intermediate resonances of specific CP depending on oppositeside final state (tag)

D⁰→K_SKK systematic errors

Uncertainty	c_1	c_2	c_3	s_1	s_2	s_3
(Pseudo-)flavor statistics	0.005	0.007	0.055	0.015	0.013	0.039
Momentum resolution	0.002	0.004	0.012	0.018	0.025	0.032
Mode-to-mode normalization	0.004	0.008	0.017	0.001	0.010	0.004
Multiple-candidate selection	0.004	0.003	0.015	0.004	0.008	0.002
DCS correction	0.001	0.001	0.003	0.002	0.005	0.002
$K_{S,L}^0 \pi^+ \pi^- (c_i^{(\prime)}, s_i^{(\prime)})$	0.006	0.011	0.036	0.132	0.063	0.135
Fitter assumptions	0.008	0.001	0.013	0.013	0.003	0.043
MC statistics for determining U	0.005	0.007	0.057	0.024	0.051	0.048
Parameterization of non- K_L^0 final state background	0.001	0.001	0.006	0.000	0.008	0.003
Parameterization of K_L^0 final state background	0.034	0.020	0.061	0.038	0.015	0.071
Background Dalitz space distribution	0.006	0.015	0.062	0.005	0.029	0.022
Assumed background \mathcal{B}	0.004	0.014	0.032	0.001	0.007	0.009
Total systematic	0.038	0.034	0.131	0.142	0.094	0.175
Statistical plus $K_L^0 K^+ K^-$ model	0.063	0.092	0.329	0.222	0.234	0.432
$K_L^0 K^+ K^-$ model alone	0.000	0.000	0.136	0.007	0.000	0.039
Total	0.073	0.098	0.354	0.264	0.252	0.466

Modelling B decays

- B-factories use unbinned model approach
- Use high-statistics sample of $D^{*\pm} \rightarrow D^0 \pi^{\pm}$
 - Pion acts as a tag to determine D⁰ flavour

B-factory γ measurements

• BaBar (468M B \bar{B} , both $K_S\pi\pi$ and K_SKK)

$$\gamma = 68^{\circ} \pm 14^{\circ}(\text{stat}) \pm 4^{\circ}(\text{syst}) \pm 3^{\circ}(\text{model})$$

Phys. Rev. Lett. 105, 121801 (2010)

• Belle (657M B \bar{B} , K_S $\pi\pi$)

$$\gamma = 78.4^{\circ +10.8^{\circ}}_{-11.6^{\circ}}(\text{stat}) \pm 3.6^{\circ}(\text{syst}) \pm 8.9^{\circ}(\text{model})$$

Phys. Rev. D **81**, 112002 (2010)

• The model error will be a limiting factor in future γ determination

CKM matrix

Quantifies weak mixing between quark generations

$$V_{
m CKM} \equiv egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Unitary: $V_{\mathrm{CKM}}^{\dagger}V_{\mathrm{CKM}}=\mathbb{I}$
- Six relations such as the following:

$$\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0$$

Each represents a triangle in the complex plane

Trees vs loops

• Tension between the values of γ obtained from treelevel and loop-level measurements will be a strong indication of new physics

• In this talk concentrate on tree-level determinations, in particular time-independent measurements in the $B^{\pm} \rightarrow D^{0}K^{\pm}$ system

Dalitz plots

- Representation of the structure of a decay in terms of (invariant mass)² of pairs of the final state particles
- Reveals interference and intermediate resonances

DCS contribution to K_Lhh

- K_{S,L}hh contain both CF and DCS decay amplitudes
- Amplitudes are related:
- $A(K_Lhh) = A(K_Shh) sqrt(2)\cdot A(K^0hh)$
- Correction term ~ $tan^2 \theta_c$ ~ 1/20
- Estimated using decay model
 - different resonances behave differently under CP transformation
- Small systematic error to account for this