Topportunities: Rare top decays and interpretations

LianTao Wang University of Chicago

Based on H. Bahl, S. Koren, and LTW. 2307.11154

ECFA HTE Workshop. Sept 25, 2023

The focus of our paper

* HL-LHC.

* I will briefly comment on e+e-

Motivation

Still about 10 times amount of data to come.

Most immediate question: How to fully realize the potential of the LHC?

Rare processes

Unlikely, but seeing one can teach us a lot.

Particle factories

Particle factories

Top also a main output for e+e-

Statistics = sensitivity to rare phenomena

Top also a main output for e+e-

Statistics = sensitivity to rare phenomena

An EFT for top decays

		BSM dim 5	
		\mathcal{O}_{SqDq}^5	$S(ar{Q}_{Li} D \!\!\!/ Q_{Lj})$
SM dim 6		\mathcal{O}_{SOuth}^{5}	$S(\bar{Q}_{Li}u_{Ri}\widetilde{\Phi})$
\mathcal{O}_{quqd}^{6}	$\begin{pmatrix} Q_{Li}u_{Rj} \end{pmatrix} \begin{pmatrix} Q_{Lk}d_{Rl} \end{pmatrix}$	JQUY	BSM dim 6
\mathcal{O}_{qule}^{6}	$(Q_{Li}u_{Rj}) (L_{Lk}e_{Rl}) \ (\Phi^{\dagger}\Phi)(\bar{Q}_{Li}u_{Ri}\tilde{\Phi})$	\mathcal{O}^6_{qdlN}	$\left(ar{Q}_{Li}d_{Rj} ight)\left(ar{L}_{Lk}N ight)$
$\mathcal{O}^6_{\Phi D \Phi q q}$	$(\Phi^\dagger i {\stackrel{ m eld}{D}}_\mu \Phi) (ar Q_{Li} \gamma^\mu Q_{Lj})$	\mathcal{O}_{qulN}^6	$\left(ar{Q}_{Li}u_{Rj} ight)\left(ar{N}L_{Lk} ight)$
$\mathcal{O}^6_{qu\Phi G}$	$(ar{Q}_{Li}\sigma^{\mu u} au^A u_{Rj})\widetilde{\Phi}G^A_{\mu u}$	\mathcal{O}^{6}_{dueN}	$(e_{Rj}^{\circ}u_{Rj})(d_{Rk}N)$ $(\bar{O}_{L}(\alpha, Q_{L}))(\bar{N}\alpha^{\mu}N)$
$\mathcal{O}^6_{qu\Phi W}$	$(\bar{Q}_{Li}\sigma^{\mu u}\tau^{I}u_{Rj})\widetilde{\Phi}W^{I}_{\mu u}$	\mathcal{O}_{qqNN}^{6}	$ \begin{array}{c} (\mathcal{Q}_{Li} / \mu \mathcal{Q}_{Lj}) & (I I I I) \\ S^2 (\bar{Q}_{Li} D \hspace{5mm} D \hspace{5mm} Q_{Lj}) \end{array} $
$\mathcal{O}^6_{qu\Phi B}$	$(Q_{Li}\sigma^{\mu u}u_{Rj})\Phi B_{\mu u}$	$\mathcal{O}^6_{SSau\Phi}$	$S^2(ar{Q}_{Li}u_{Rj}\widetilde{\Phi})$
Φ : Higgs doublet		$\mathcal{O}^6_{qu\Phi Z'}$	$(ar{Q}_{Li}\sigma^{\mu u}u_{Rj})\widetilde{\Phi}F'_{\mu u}$
Q_I : 3rd gen doublet			· · · ·

S : scalarLight BSM singletsN : Dirac fermionZ', F' : U(1)' gauge boson

An EFT for top decays

			BSM dim 5	
CM dim 6		\mathcal{O}_{SqDq}^5	$S(ar{Q}_{Li} D \!\!\!/ Q_{Lj})$	
$\begin{array}{c c} & \text{SM alm 0} \\ \hline & & & \hline & & & \hline & & & & \hline & & & & \hline & & & & & \hline & & & & & \hline & & & & & & \hline & & & & & & & \hline & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & & \hline & & & & & & & & & & & \hline & & & & & & & & & & & & \\ \hline & & & &$		$\mathcal{O}^5_{SQu\Phi}$	$S(ar{Q}_{Li}u_{Rj}\widetilde{\Phi})$	
O_{quqd}°	$(Q_{Li}u_{Rj}) (Q_{Lk}a_{Rl})$ $(\bar{Q}_{Li}u_{Rj}) (\bar{I}_{Lk}a_{Rl})$	BSM dim 6		
O_{qule}°	$(Q_{Li}u_{Rj}) (L_{Lk}e_{Rl})$ $(\Phi^{\dagger}\Phi) (\bar{O} - \omega - \tilde{\Phi})$	\mathcal{O}_{qdlN}^{6}	$\left(ar{Q}_{Li}d_{Rj} ight)\left(ar{L}_{Lk}N ight)$	
$O_{\Phi\Phi qu\Phi}^{\circ}$	$(\Psi^{\dagger}\Psi)(Q_{Li}u_{Rj}\Psi)$ $(\Phi^{\dagger}: \overleftrightarrow{D}, \Phi)(\widetilde{O}, \omega = 0)$	\mathcal{O}_{qulN}^6	$\left(ar{Q}_{Li} u_{Rj} ight) \left(ar{N} L_{Lk} ight)$	
$O_{\Phi D\Phi qq}^{\circ}$	$(\Psi^{\dagger} i D_{\mu} \Psi) (Q_{Li} \gamma^{\mu} Q_{Lj})$ $(\bar{O} = \mu - A_{\mu}) \widetilde{\Phi} O A$	\mathcal{O}_{dueN}^6	$\left(ar{e}_{Rj}^{c}u_{Rj} ight)\left(ar{d}_{Rk}N ight)$	
$O_{qu\Phi G}^{\circ}$	$(Q_{Li}\sigma^{\mu\nu}\tau^{\mu}u_{Rj})\Psi G^{\mu\nu}_{\mu\nu}$	\mathcal{O}^6_{qqNN}	$\left(ar{Q}_{Li}\gamma_{\mu}Q_{Lj} ight)\left(ar{N}\gamma^{\mu}N ight)$	
$O_{qu\Phi W}^{\circ}$	$(Q_{Li}\sigma^{\mu\nu}\tau^{\mu}u_{Rj})\Psi W^{\mu\nu}_{\mu\nu}$	\mathcal{O}^6_{SSqDq}	$S^2(ar{Q}_{Li} D \!\!\!/ Q_{Lj})$	
$O_{qu\Phi B}^{\circ}$	$(Q_{Li}\sigma^{\mu u}u_{Rj})\Psi B_{\mu u}$	$\mathcal{O}^6_{SSqu\Phi}$	$S^2(ar{Q}_{Li}u_{Rj}\widetilde{\Phi})$	
Φ : Higgs doublet		$\mathcal{O}^6_{qu\Phi Z'}$	$(ar{Q}_{Li}\sigma^{\mu u}u_{Rj})\widetilde{\Phi}F'_{\mu u}$	

These are generated by some unspecified heavy new physics with M_{NP} . Stoped at dim-6 operators, with $M_{NP} = 1$ TeV, lead to interesting rates at HL-LHC For dim-7 operators, M_{NP} would be too light, covered by direct searches.

Set $M_{NP} = 1$ TeV

SM final state

SM final state

BSM decays.

BSM final state

Signal depends on how the BSM states decays

BSM final state

Signal depends on how the BSM states decays

Possibility 1: NP stable

For example:

If the top decay is through operators:

 $\mathcal{O}_{qqNN}^{6} \mid \left(\bar{Q}_{Li} \gamma_{\mu} Q_{Lj} \right) \left(\bar{N} \gamma^{\mu} N \right)$ $\begin{array}{c|c} \mathcal{O}_{SSqDq}^{6} & S^{2}(\bar{Q}_{Li} \not \!\!D Q_{Lj}) \\ \mathcal{O}_{SSqu\Phi}^{6} & S^{2}(\bar{Q}_{Li} u_{Rj} \widetilde{\Phi}) \end{array}$

It is consistent for the NP to have a Z₂ symmetry, hence stable. Leads to missing energy.

MET

Minimal width

The operator mediate top decay also contribute to singlet decay

Loop with 1st generation suffer from further helicity suppression.

Loop with 1st generation suffer from further helicity suppression.

Long lived particles

Unlike higgs \rightarrow LLP, or disappearing track, need another radiation to trigger

Conclusions

- * HL-LHC is a top factory.
 - * Great opportunity to go after top rare decays.
- * Rich SM final states.
- * NP final states, new opportunity for LLP searches.
- * e+e- can be complementary in some channels.

Why 350?

Gains from run at ttbar

* Top mass a key input for electroweak precision.

Parameter	Current	CEPC baseline	Improved m_t
S	3.4×10^{-2}	8.1×10^{-3}	6.6×10^{-3}
T	2.8×10^{-2}	9.2×10^{-3}	6.5×10^{-3}

Beyond top mass

$$egin{aligned} \mathcal{O}_{Hq}^{(1)} &= rac{i}{\Lambda^2} (H^\dagger \overleftrightarrow{D}_\mu H) (ar{q}_L \gamma^\mu q_L), \ \mathcal{O}_{Hq}^{(3)} &= rac{i}{\Lambda^2} (H^\dagger au^I \overleftrightarrow{D}_\mu H) (ar{q}_L \gamma^\mu au^I q_L) \ \mathcal{O}_{Ht} &= rac{i}{\Lambda^2} (H^\dagger \overleftrightarrow{D}_\mu H) (ar{t}_R \gamma^\mu t_R), \ \mathcal{O}_{Hb} &= rac{i}{\Lambda^2} (H^\dagger \overleftrightarrow{D}_\mu H) (ar{b}_R \gamma^\mu b_R), \end{aligned}$$

Modifies Vqq couplings

Also qqVh, little impact on Higgs coupling fits

Better sensitivities to these running at the ttbar energies

Better sensitivities at ttbar

Better at higher energies

Gain up to a factor of a few

Even better if one can run at even higher energies.