ECFA HTE mini-workshop on e+e- physics at 240-350 GeV CERN, Sept. 25th, 2023

Single Transverse Spin Asymmetry as a New Probe of SMEFT Dipole Operators

Xin-Kai Wen Peking University In collaboration with Bin Yan, Zhite Yu and C.-P. Yuan Basing on arXiv: 2307.05236 and works in progress Thanks a lot to the organizers of ECFA-HTE group Remote online, CERN 2023/09/25

New Physics and SMEFT

We need new physics and new measurements to answer open questions:

- 1. What is Dark Matter?
- 2. What is the origin of the neutrino mass?
- 3. What is the source of matter-antimatter asymmetry?
- 4. What is the nature of the electroweak symmetry breaking?
- 5. What is the nature of the Higgs boson (Composite or elementary particle)?

6.....

None new fundamental resonance since 2012 but anomalies bursting \rightarrow NP

New Physics and SMEFT

None new fundamental resonance has been discovered.

A Sta	TLAS Heavy Particl atus: March 2023	e Sear	che	s* - 9	5% CL Upper Exclus	ion Limits	(f. dt – (3	ATLA	S Preliminary $\sqrt{s} = 13$ TeV
	Model <i>ℓ</i> , ;	/ Jets†	E_{T}^{miss}	∫£ dt[fb	⁻¹] Limit		j 01 = (0		Reference
Extra dimen.	$\begin{array}{c c} \text{ADD} \ G_{KK} + g/q & 0 \ e, \mu, \\ \text{ADD} \ \text{Onorresonant} \gamma\gamma & 2_2 \\ \text{ADD} \ \text{OBH} \ \text{multijet} & - \\ \text{ADD} \ \text{OBH} \ \text{multijet} & - \\ \text{RSI} \ G_{KK} \rightarrow \gamma\gamma & 2_2 \\ \text{Bulk} \ \text{RS} \ G_{KK} \rightarrow \gamma\gamma & 1 \ e, \\ \text{Bulk} \ \text{RS} \ G_{KK} \rightarrow \gamma\gamma & 1 \ e, \\ \text{SUED} \ \text{APP} \ 1 \ e, \end{array}$	$\begin{array}{ccc} & - & - & - & - & - & - \\ & & & 2 & - & - \\ & & & - & - & - \\ & & & - & -$	Yes - - - 2j Yes j Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	Mg Mg Mg Mg Mg Mg Gev mass Gev mass Sev mass Sev mass Strass Sev mass	4.5 2.3 TeV 3.8 TeV 1.8 TeV	11.2 e 8.6 TeV 9.4 Te\ 9.55 Te\ feV	$\begin{array}{l} V & n = 2 \\ n = 3 \; \text{HLZ NLO} \\ n = 6 \\ n = 6, \; M_0 = 3 \; \text{TeV, rot BH} \\ k/\overline{M}_{P_1} = 0.1 \\ k/\overline{M}_{P_1} = 1.0 \\ \Gamma/m = 15\% \\ \text{Tier}(1.1), \; \mathcal{B}(A^{(1.1)} \rightarrow tt) = 1 \end{array}$	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge bosons	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} \mu & & - & & & & \\ & & & 2 b \\ \mu & & \geq 1 b, \geq 2 \\ \mu & & - & & \\ \mu & & & - & \\ \mu & & 2 j (J J J \\ \mu & & 2 j (VBF \mu \mu 2 j (J J J J J \end{array}$	– J Yes Yes J – Yes J – Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	27 mass 27 mass 27 mass 27 mass WY mass WY mass WY mass WY mass 340 GeV 27 mass Wy mass 340 GeV	2.42 TeV 2.1 TeV 4.1 Te 4.3 Te 4.4 T 4.3 Te 3.9 Te 5.4	1 TeV 6.0 TeV 9 TeV eV eV eV 0 TeV	$\begin{split} & \Gamma/m = 1.2\% \\ & g_V = 3 \\ & g_V c_H = 1, g_F = 0 \\ & g_V = 3 \\ & m(N_R) = 0.5 \text{TeV}, g_L = g_R \end{split}$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
CI	Cl qqqq - Cl llqq 2 e, Cl eebs 2 e Cl μμbs 2 μ Cl tttt ≥1 e	2j μ – 1b ,μ ≥1b,≥1	- - j Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ	1.8 TeV 2.0 TeV 2.57 TeV		$\begin{array}{c} \textbf{21.8 TeV} \bar{\eta_{LL}} \\ \textbf{35.8 TeV} \\ \textbf{g}_* = 1 \\ \textbf{g}_* = 1 \\ C_{4t} = 4\pi \end{array} \boldsymbol{\pi}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
DΜ	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2j τ,γ 1–4j μ 2b annel	- Yes Yes	139 139 139 139	m _{med} 376 GeV m _{z'} 376 GeV	3.8 TeV 3.0 TeV GeV		$\begin{array}{l} g_q{=}0.25, g_{\chi}{=}1, \ m(\chi){=}10 \ {\rm TeV} \\ g_q{=}1, \ g_{\chi}{=}1, \ m(\chi){=}1 \ {\rm GeV} \\ \tan\beta{=}1, \ g_{\chi}{=}0.8, \ m(\chi){=}100 \ {\rm GeV} \\ \tan\beta{=}1, \ g_{\chi}{=}1, \ m(\chi){=}10 \ {\rm GeV} \end{array}$	ATL-PHYS-PUB-2022-036 2102.10874 2108.13391 ATLAS-CONF-2021-036
ΓO		$\begin{array}{rl} \geq 2 j \\ \geq 2 j \\ 2 b \\ \geq 1 \tau \geq 2 j, \geq 2 \\ \geq 1 \tau \geq 1 j, \geq 1 \\ \geq 1 \tau 0 - 2 j, 2 \\ \text{annel} \geq 1 j, \geq 1 \\ , \tau & \geq 1 b \end{array}$	Yes Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139	LO mass LO mass LO [*] mass LO [*] mass LO ⁴ mass LO ⁴ mass LO ⁶ mass LO ⁶ mass LO ⁶ mass	1.8 TeV 1.7 TeV 1.9 TeV 1.24 TeV 1.35 TeV 1.21 TeV 2.0 TeV 1.65 TeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_3^\circ \to b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_2^\circ \to t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_2^\circ \to t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_2^\circ \to t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_2^\circ \to b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_2^\circ \to b\tau) = 1, \mathrm{YM} \ \mathrm{coupl.} \\ \mathcal{B}(\mathrm{LQ}_2^\circ \to b\tau) = 1, \mathrm{YM} \ \mathrm{coupl.} \end{array}$	2006.05872 2008.05872 2033.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294
Vector-like fermions	$\begin{array}{lll} \mbox{VLQ } TT \rightarrow Zt + X & 2e^{i2}\mu^{j2} \\ \mbox{VLQ } BB \rightarrow Wt/Zb + X & multi-ch \\ \mbox{VLQ } T_{5j1}T_{5j1}T_{5j3} \rightarrow Wt + X & 2(SS)/2 \\ \mbox{VLQ } T \rightarrow Ht/Zt & 1 e, \\ \mbox{VLQ } Y \rightarrow Wb & 1 e, \\ \mbox{VLQ } V = Hb & 0 e, \\ \mbox{VLL } t' \rightarrow Z\tau/H\tau & multi-ch \end{array}$	$\begin{array}{l} 3e,\mu \ge 1 \ b,\ge 1\\ \text{annel}\\ 3\ e,\mu\ge 1 \ b,\ge 1\\ \mu \ge 1 \ b,\ge 3\\ \mu \ge 1 \ b,\ge 1\\ \mu \ge 2b,\ge 1j,\ge \\ annel \ge 1 \ j \end{array}$	j – j Yes j Yes j Yes 1J – Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T sys mass T mass Y mass B mass r' mass 8' mass	1 46 TeV 1.4 TeV 1.64 TeV 1.8 TeV 1.8 TeV 1.85 TeV 2.0 TeV 36 GeV		$\begin{array}{l} {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\mathcal B}(T_{5/3} \to Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ {\rm SU(2) \ singlet, \ \kappa_{7} = 0.5 } \\ {\mathcal B}(Y \to Wb) = 1, \ c_{6}(Wb) = 1 \\ {\rm SU(2) \ doublet, \ \kappa_{8} = 0.3 } \\ {\rm SU(2) \ doublet, \ \kappa_{8} = 0.3 } \\ {\rm SU(2) \ doublet \ } \end{array}$	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 2303.05441
Exctd ferm.	Excited quark $q^* \rightarrow qg$ - Excited quark $q^* \rightarrow q\gamma$ 1 γ Excited quark $b^* \rightarrow bg$ - Excited lepton τ^* 2 τ	2j 1j 1b,1j ≥2j		139 36.7 139 139	q* mass q* mass b* mass τ* mass	5 3.2 TeV 4.6	6.7 TeV .3 TeV TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Other	Type III Seesaw 2.3.4 LRSM Majorana v 2.µ Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 2.3.4 e, Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2.3.4 e, Multi-charged particles	$e, \mu \ge 2j$ 2j u (SS) various u (SS) - -	Yes - Yes - - -	139 36.1 139 139 139 34.4	N ^e mass 9 N _R mass 350 GeV H ^{±+} mass 350 GeV H ^{±+} mass mulls-charged particle mass monopole mass monopole mass	10 GeV 3.2 TeV 1.08 T V 1.59 TeV 2.37 TeV		$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1g_D, \text{ spin } 1/2 \end{split}$	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-034 1905.10130
	vs = 13 Te partial da	a $\sqrt{s} = 1$	3 TeV lata		10 ⁻¹	1		⁰ Mass scale [TeV]	
*On ÷Sn	*Unly a selection of the available mass limits on new states or phenomena is shown.								
1011	iaii radidə (large-radidə) jels die de	inclea by the	, iener j	(0).					

New Physics models excluded to Multi-TeV @ LHC

EWPO
$$\mathcal{L} = \frac{C_6}{\Lambda^2} \mathcal{O}_6 + \frac{C_8}{\Lambda^4} \mathcal{O}_8 + \dots$$
Global Fitting

F. Maltoni et al., SMEFiT, 2021 P. Athron et al., GAMBIT, 2017 J.Y. Gu, Y. Du et al., 2022

B. Grzadkowski, et al. *JHEP* 10 (2010)W. Buchuller, D. wyler, 1986B. Henning et al, 2015

Powerful Tool @EW $\{G, P\}_{SM}$, linear rep. H...

Xin-Kai Wen (Peking Univ.)

Dipole Operator

E/M Dipole Moment Direct & Dominant Effect

Loop-induced by the BSM Indirect probes of quantum effects of NP

Minimal models for muon g-2: 1 field extensions

May have same physics source but Z only detected by colliders

Data for Dipole Operator

EW dipole couplings constrained poorly in traditional method via cross-section and width

How to Probe Dipole Operator at $1/\Lambda^2$

Our proposal:

- Transverse polarization effect of beams
 (Interference between the different helicity states)
- ✓ C_{dipole}/Λ^2 , interfering with the massless SM
- ✓ Without depending on other NP operators
- ✓ Non-trivial azimuthal angular distribution

Single Transverse Spin Azimuthal Asymmetries

$$\rho = \frac{1}{2} \left(1 + \boldsymbol{\sigma} \cdot \boldsymbol{s} \right) = \frac{1}{2} \begin{pmatrix} 1 + \lambda & b_{\mathrm{T}} e^{-i\phi_0} \\ b_{\mathrm{T}} e^{i\phi_0} & 1 - \lambda \end{pmatrix}$$

Transverse polarization effect \rightarrow Interference of helicity amplitudes Breaking the rotational invariance \rightarrow A nontrivial azimuthal behavior

Ken-ichi Hikasa, Phys.Rev.D 33 (1986) 3203, PhysRevD.38 (1988) 1439

Transverse Spin Polarization

Spin dependent amplitude square:

$$|\mathcal{M}|^2 =
ho_{lpha_1 lpha_1'}(\boldsymbol{s})
ho_{lpha_2 lpha_2'}(ar{\boldsymbol{s}}) \mathcal{M}_{lpha_1 lpha_2}(\phi) \mathcal{M}^*_{lpha_1' lpha_2'}(\phi)$$

$$oldsymbol{s} = (b_1, b_2, \lambda) = (b_{\mathrm{T}} \cos \phi_0, b_{\mathrm{T}} \sin \phi_0, \lambda)$$

$$\rho = \frac{1}{2} \left(1 + \boldsymbol{\sigma} \cdot \boldsymbol{s} \right) = \frac{1}{2} \begin{pmatrix} 1 + \lambda & b_{\mathrm{T}} e^{-i\phi_0} \\ b_{\mathrm{T}} e^{i\phi_0} & 1 - \lambda \end{pmatrix}$$

$$\mathcal{M}_{\lambda_{1},\lambda_{2}}\left(\theta,\phi\right)=e^{i\left(\lambda_{1}-\lambda_{2}\right)\phi}\mathcal{T}_{\lambda_{1},\lambda_{2}}\left(\theta\right)$$

dipole operator $\rightarrow \mathcal{M}_{\pm\pm}$, massless SM $\rightarrow \mathcal{M}_{\pm\mp}$

	U	L	T
U	$ \mathcal{M} ^2_{UU} \to 1$	$ \mathcal{M} _{UL}^2 \to 1$	$ \mathcal{M} _{UT}^2 o \cos \phi, \sin \phi$
L	$ \mathcal{M} _{LU}^2 o 1$	$ \mathcal{M} ^2_{LL} ightarrow 1$	$ \mathcal{M} _{LT}^2 o \cos \phi, \sin \phi$
T	$ \mathcal{M} _{TU}^2 \to \cos\phi, \sin\phi$	$ \mathcal{M} _{TL}^2 \to \cos\phi, \sin\phi$	$ \mathcal{M} _{TT}^2 \to 1, \cos 2\phi, \sin 2\phi$

X.-K.W, BY, ZY, C.-P.Y, work in progress

G. Moortgat-Pick et al. Phys. Rept. 460 (2008), JHEP 01 (2006)

A New Probe of Dipole Operators

Linearly dependent on the dipole couplings C_{dipole} and spin b_T $A_{LR}^i = \frac{\sigma^i(\cos\phi > 0) - \sigma^i(\cos\phi < 0)}{\sigma^i(\cos\phi > 0) + \sigma^i(\cos\phi < 0)} = \frac{2}{\pi}A_R^i$ $A_{UD}^i = \frac{\sigma^i(\sin\phi > 0) - \sigma^i(\sin\phi < 0)}{\sigma^i(\sin\phi > 0) + \sigma^i(\sin\phi < 0)} = \frac{2}{\pi}A_I^i,$

Pinning down Dipole Operators

$$\mu^{+}\mu^{-}: |\phi, \theta\rangle \xrightarrow{\mathcal{CP}} |\phi, \theta\rangle \qquad Z\gamma: |\phi, \theta\rangle \xrightarrow{\mathcal{CP}} |\phi + \pi, \pi - \theta\rangle \qquad \stackrel{\mathcal{R}}{\rightarrow} \qquad A_{R}^{Z\gamma} \propto s_{T} - \bar{s}_{T}$$

Xin-Kai Wen (Peking Univ.)

Pinning down Dipole Operators

$$\mathcal{L}_{\text{eff}} = -\frac{1}{\sqrt{2}} \bar{\ell}_L \sigma^{\mu\nu} \left(g_1 \Gamma_B^e B_{\mu\nu} + g_2 \Gamma_W^e \sigma^a W_{\mu\nu}^a \right) \frac{H}{v^2} e_R + \text{h.c.}$$

Aligned Spin

$$\phi_0 = \bar{\phi}_0 = 0$$

Opposite Spin
 $(\phi_0, \bar{\phi}_0) = (0, \pi)$
 $\sqrt{s} = 250 \text{ GeV}, \mathcal{L} = 5 \text{ ab}^{-1}$

The sensitivity to Γ_Z^e is much stronger than Γ_{γ}^e

$$A_{R\setminus I}(\Gamma_{\gamma}^e) < A_{R\setminus I}(\Gamma_Z^e)$$

Parity property

$$\mathcal{M}_{++}^* \mathcal{M}_{-+} = -\mathcal{M}_{+-}^* \mathcal{M}_{--}(g_L \leftrightarrow g_R)$$
$$|\mathcal{M}|_{1\phi}^2 \sim (g_L - g_R) [(g_L^e + g_R^e) \Gamma_{\gamma}^e + \Gamma_Z^e]$$

• SM
$$(g_L^e + g_R^e) = -\frac{1}{2} + 2\sin^2\theta_W \ll 1$$

• SM $WW\gamma < WWZ$

$$\bullet \quad \Gamma^e_W \,=\, \Gamma^e_Z \,+\, s^2_W \Gamma^e_\gamma$$

$$A_{LR}^{i} = \frac{\sigma^{i}(\cos\phi > 0) - \sigma^{i}(\cos\phi < 0)}{\sigma^{i}(\cos\phi > 0) + \sigma^{i}(\cos\phi < 0)} = \frac{2}{\pi}A_{R}^{i}$$

Pinning down Dipole Operators

For the imaginary parts of dipole couplings, things are similar

 $A_{UD}^{i} = \frac{\sigma^{i}(\sin\phi > 0) - \sigma^{i}(\sin\phi < 0)}{\sigma^{i}(\sin\phi > 0) + \sigma^{i}(\sin\phi < 0)} = \frac{2}{\pi}A_{I}^{i}$

Aligned Spin $\phi_0 = \bar{\phi}_0 = 0$ Opposite Spin $(\phi_0, \bar{\phi}_0) = (0, \pi)$ $\sqrt{s} = 250 \text{ GeV}, \mathcal{L} = 5 \text{ ab}^{-1}$

Offering a new opportunity for directly probing potential CP-violating effects.

Summary

- ✓ The muon g-2 data may hint the NP effects from the dipole operators, but their weak interactions are difficult to be probed since the leading effects are from $1/\Lambda^4$
- ✓ We propose a new method to probe dipole operator at 1/Λ² via *transverse polarized beams* Single Transverse Spin Azimuthal Asymmetries
- STSAA simultaneously constrains well both Re & Im parts without impact from other NP

offering a new opportunity for directly probing potential CP-violating effects.

- ✓ Our bound could be reached around O(0.01%~0.1%), much stronger sensitivity than other approaches by 1~2 orders of magnitude
- ✓ Future colliders (Z/Higgs/Top factory...)

Polarized Muon collider, hadron colliders, electron-Ion collider

Thank you

Backup: Some Formulae

$$|\Theta,\chi\rangle_1 = \cos\frac{\Theta}{2}|h=+\rangle + \sin\frac{\Theta}{2}e^{i\chi}|h=-\rangle$$

Superposition of the two helicity states along polarization $\vec{s}(\Theta, \chi)$

 $T_{h\bar{h}} = \langle \phi, \dots | T | \chi, \bar{\chi} \rangle = \langle \phi = 0, \dots | T | \chi - \phi, \bar{\chi} - \phi \rangle \qquad 2\text{-to-2 rotational invariance}$

Ken-ichi Hikasa, Phys. Rev.D 33 (1986) 3203, PhysRevD.38 (1988) 1439

1

$$|\mathcal{M}|^{2}\left(\boldsymbol{s}, \bar{\boldsymbol{s}}, \theta, \phi\right) = \sum_{\alpha_{1}, \alpha_{2}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}} \rho_{\alpha_{1}, \alpha_{1}^{\prime}}\left(\boldsymbol{s}\right) \bar{\rho}_{\alpha_{2}, \alpha_{2}^{\prime}}\left(\bar{\boldsymbol{s}}\right) \mathcal{M}_{\alpha_{1}, \alpha_{2}}\left(i \to f; \theta, \phi\right) \mathcal{M}_{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}}^{\dagger}\left(i \to f; \theta, \phi\right)$$

$$s = (b_1, b_2, \lambda) = (b_T \cos \phi_0, b_T \sin \phi_0, \lambda) \qquad \rho = \frac{1}{2} (1 + \boldsymbol{\sigma} \cdot \boldsymbol{s})$$

$$\mathcal{M}_{\lambda_1, \lambda_2} (\theta, \phi) = e^{i(\lambda_1 - \lambda_2)\phi} \mathcal{T}_{\lambda_1, \lambda_2} (\theta) \qquad |M|^2 = |M|^2_{\text{unpol}} - \frac{1}{2} \lambda_T \bar{\lambda}_T \text{Re}[T^*_{++}T_{--}] \\ - \frac{1}{2} \lambda_T \bar{\lambda}_T \text{Re}[e^{-2i\phi} T^*_{+-}T_{-+}] \\ + \frac{1}{2} \lambda_T \text{Re}[e^{-2i\phi} T^*_{+-}T_{-+}] \\ + \frac{1}{2} \lambda_T \text{Re}\left[e^{-i\phi} (T^*_{+-}T_{--} + T^*_{++}T_{-+})\right] \\ - \frac{1}{2} \bar{\lambda}_T \text{Re}\left[e^{-i\phi} (T^*_{+-}T_{-+} + T^*_{+-}T_{-+})\right] \\ - \frac{1}{2} \bar{\lambda}_T \text{Re}\left[e^{-i\phi} (T^*_{+-}T_{++} + T^*_{--}T_{-+})\right]$$

 $\eta = \frac{\eta_c \eta_d}{\eta_a \eta_b} \cdot (-1)^{s_a + s_b - s_c - s_d}$

X.-K.W, BY, ZY, C.-P.Y, works in progress

Bhung Sing-Kai (Peking Univ.)

Backup: Polarized beam realization

Transverse polarization is more natural Sokolov-Ternov effect (92.4%, minutes-hours, 50GeV) Laser-assistant Spin-precession

Photon-based scheme:

Polarized positrons are produced via pair production in a thin target from circularly-polarized photons with energy of multi-MeV (up to about 100 MeV). The cost difference between an polarized source and an upgrade from a unpolarized source is small (~ 1%). At 500 GeV, loss of polarization <1%, at IP <0.25%.

Polarized electron source consists of a polarized high-power laser beam and a high- voltage dc gun with a semiconductor photocathode.

Only polarization parallel or anti-parallel to the guide fields of the damping ring is preserved. Need to avoid spin-orbit coupling resonance depolarizing effects.

The spin rotator systems between the damping rings and the main linacs *permit the setting of arbitrary polarization vector orientations* at the IP.

Polarized-photons source:

- I. a high-energy electron beam (>~ 150 GeV) passing through a short period, helical undulator. (E-166, SLAC)
- II. Compton backscattering of laser light off a GeV energy-range electron beam. (KEK) In both schemes a polarization of about $|Pe+| \ge 90\%$ is reported.

G. Moortgat-Pick et al. Phys. Rept. 460 (2008), hep-ph/0507011