CP sensitivity in $e^+e^- \rightarrow ZH$ Snowmass and beyond

Andrei Gritsan Johns Hopkins University

September 25, 2023

ECFA HTE mini-workshop on e+e- physics at 240-350 GeV

CP-violating H(125) Couplings

- CP-violating H(125) couplings
 - tiny in the SM, excellent null-test
 - potential baryogengesis connected to the Higgs sector

Snowmass White Paper on Higgs CP

Dedicated Snowmass White Paper: <u>arXiv:2205.07715</u> (update 29 Nov 2022)

Snowmass White Paper: Prospects of CP-violation measurements with the Higgs boson at future experiments

Editor: Andrei V. Gritsan,¹ Contributors: Henning Bahl,² Rahool Kumar Barman,³ Ivanka Božović-Jelisavčić,⁴ Jeffrey Davis,¹ Wouter Dekens,⁵ Yanyan Gao,⁶ Dorival Gonçalves,³ Lucas S. Mandacarú Guerra,¹ Daniel Jeans,⁷ Kyoungchul Kong,⁸ Savvas Kyriacou,¹ Kirtimaan Mohan,⁹ Ren-Qi Pan,¹⁰ Jeffrey Roskes,¹ Nhan V. Tran,¹¹ Natasa Vukašinović,⁴ and Meng Xiao¹⁰

Quick overview:

Snowmass-2022

TABLE I: List of expected precision (at 68% C.L.) of CP-sensitive measurements of the parameters f_{CP}^{HX} defined in Eq. (2). Numerical values are given where reliable estimates are provided, \checkmark mark indicates that feasibility of such a measurement could be considered. The $e^+e^- \rightarrow ZH$ projections are performed with $Z \rightarrow \ell\ell$ in Appendix B but scaled to a ten times larger luminosity to account for $Z \rightarrow q\bar{q}$.

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
$\mathcal{L} (\mathrm{fb}^{-1})$	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	\checkmark	_	_	_	_		0.06		_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	—	—	—	~ 1	—	_	—	_	$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	_	_	_	_	_	_	_	_	$< 10^{-2}$
$Ht\bar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_	_	\checkmark	$< 10^{-2}$
H au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	—	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	_	_	_	\checkmark	_	$< 10^{-2}$

Starting Point: Snowmass-2013

- Start from Snowmass-2013, several developments in 10 years:
 - reliable LHC results on most measurements
 - more studies supporting future proposals (including White Papers) keptlumi
 - phenomenological development, EFT...
- Focus on: *CP* in *HZZ/HWW*, *HZ* γ , *H* $\gamma\gamma$, *Hgg*, *Htt*, $\dot{H}\tau\tau$, *H* $\mu\mu$

	Collider	pp	pp	e+e-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	target	
Same parameters of interest	E (GeV)	14,000	14,000	250	350	500	$1,\!000$	126	126	(theory)	
Came parametere er mereet	\mathcal{L} (fb ⁻¹)	300	3,000	250	350	500	1,000	250			
as in Snowmass-2013	spin- 2_m^+	$\sim 10\sigma$	$\gg 10\sigma$	>100	>10\sigma	>10\sigma	>100			$>5\sigma$	
arXiv:1310.8361	VVH [†]	0.07	0.02		· · · · · · · · · · · · · · · · · · ·	\checkmark		\checkmark	\checkmark	$< 10^{-5}$	
	VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	-	—	$< 10^{-5}$	
	VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	\checkmark	\checkmark	\checkmark	\checkmark	_	—	$< 10^{-5}$	
$\Gamma_{H \to Y}^{CP \text{ odd}}$	ggH	0.50	0.16	_	_	_	_	_	_	$< 10^{-2}$	
$f_{\rm CD}^{\rm HX} \equiv \frac{\Pi \neg \Lambda}{\Omega \Gamma}$	$\gamma\gamma H$	_	—	_	—	—	-	0.06	—	$< 10^{-2}$	
$\Gamma_{H \to X}^{CP} \Gamma_{H \to X}^{CP \text{ odd}} + \Gamma_{H \to X}^{CP \text{ even}}$	$Z\gamma H$	_			_	_	_	—	—	$< 10^{-2}$	
	$\tau \tau H$		\checkmark	0.01	0.01	0.02	0.06	\checkmark	\checkmark	$< 10^{-2}$	
- * * *	ttH	\checkmark	\checkmark	_	_	0.29	0.08	_	—	$< 10^{-2}$	
	$\mu\mu H$	_	_	_	_	_	_		\checkmark	$< 10^{-2}$	
not enough studies	† estimate										
	1 actimate	d :n V*	UU prod	3110W111a55-2013							

[‡] estimated in $V^* \to HV$ production mode

 $^\diamond$ estimated in $V^*V^* \to H$ (VBF) production mode

from 2013

Unique features of Facilities: $\gamma\gamma$ production

• Photon collider is unique with focus on $H\gamma\gamma$ coupling

- photon beam polarization is critical for CP
- most interesting parameter:

$$\mathcal{A}_{3} = \frac{|A_{\parallel}|^{2} - |A_{\perp}|^{2}}{|A_{\parallel}|^{2} + |A_{\perp}|^{2}} = \frac{2\mathcal{R}e(A_{--}^{*}A_{++})}{|A_{++}|^{2} + |A_{--}|^{2}} = \frac{|a_{2}|^{2} - |a_{3}|^{2}}{|a_{2}|^{2} + |a_{3}|^{2}} = (1 - 2f_{CP})$$

Detecting and Studying Higgs Bosons at a Photon-Photon Collider: <u>arXiv:hep-ph/0110320</u>

— measure as asymmetry between \parallel and \perp linear polarizations

for
$$E_0 = 110$$
 GeV and $\lambda = 1 \,\mu\text{m}$: $f_{CP} = \sin^2(\alpha^{\gamma\gamma}) \sim \pm 0.06$

at
$$2.5 \cdot 10^{34} \times 10^7 = 250 \, \text{fb}^{-1}$$

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
		\frown							\frown			
$H\gamma\gamma$	_	(0.50)	\checkmark	_	_	_	_	- (0.06) –	_	$< 10^{-2}$
$HZ\gamma$	_	~1	\checkmark	_	_	_	~ 1	_		_	_	$< 10^{-2}$

Unique features of Facilities: $\mu^+\mu^-$ production

- Muon collider is unique with focus on $H\mu\mu$ coupling
 - muon beam transverse polarization is critical for CP
 - not many fermion couplings can be tested with polarization and CP

later we will discuss $H\tau\tau$ and Htt (both 3rd family)

- same transverse polarization \Rightarrow CP-even
- opposite polarization \Rightarrow CP-odd

How Valuable is Polarization at a Muon Collider? A Test Case: Determining the CP Nature of a Higgs Boson: arXiv:hep-ph/0003091

- Unique feature of the muon collider (CP in coupling to 2nd family)
 - though comes with a price of lumi, likely not a priority at first stage

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	$1,\!000$	$1,\!300$	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
$H\mu\mu$	_	_	—	_	_	_	_	_		\checkmark	-	$< 10^{-2}$

• High energy $\mu^+\mu^-$: associated production $t\bar{t}H$, VBF

Unique features of Facilities: pp production

Unique features of Facilities: pp production

• $pp \rightarrow V^* \rightarrow VH \Rightarrow HWW, HZZ, HZ\gamma, H\gamma\gamma, Hgg$ couplings

Andrei Gritsan, JHU

September 25, 2023

HZZ, HWW in pp production

Update Snowmass-2013 (pheno) with recent LHC (mutual benefit):

Unique features of Facilities: e^+e^- production

Unique features of Facilities: e^+e^- production

Unique features of Facilities: e^+e^- production

• e^+e^- collider $\rightarrow Z^*/\gamma^* \rightarrow Z/\gamma^*H \Rightarrow HZZ, HZ\gamma, H\gamma\gamma$ couplings

e^+e^- production at higher energies (340 GeV)

- e^+e^- collider $\rightarrow Z^* \rightarrow ZH$
- Scan q^2 dependence of HVV

 \Rightarrow increased sensitivity (no cutoff)

but not genuine CP effect , CP-even higher-dim operator

• VBF $e^+e^- \rightarrow \nu \bar{\nu} H$

not much angular information q^2 -dependence through p_T^H ...

• VBF
$$e^+e^- \rightarrow e^+e^-H$$

recent study (ICHEP-2022) does not surpass $e^+e^- \rightarrow Z^* \rightarrow ZH$ at intermediate energies

e⁺e⁻ production at 240 and 350 GeV

• e^+e^- collider $\rightarrow Z^*/\gamma^* \rightarrow Z/\gamma^*H \Rightarrow HZZ, HZ\gamma, H\gamma\gamma$ couplings

e⁺e⁻ production at 240 and 350 GeV

• e^+e^- collider $\rightarrow Z^*/\gamma^* \rightarrow Z/\gamma^*H \Rightarrow HZZ, HZ\gamma, H\gamma\gamma$ couplings

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	$3,\!000$	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	\checkmark	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	—	—	~ 1	_	_	_	_	$< 10^{-2}$
	i											

• Room for improvement:

- target 7.2 ab^{-1} for 4 IPs in 3 years at FCC 240 GeV ~1 ab^{-1} at FCC 350 GeV, ~2 ab^{-1} at 365 GeV
- target all main Z and H final states
- include full detector simulation & all backgrounds
- $-q^2$ interplay between 240 GeV and 350 GeV

Summary on Higgs CP

- As part of Snowmass several conclusions:
 - $-e^+e^-$ comparable to HL-LHC in Higgs *CP*, except *Hgg*
 - -pp HL reach full spectrum of Higgs *CP*, except $H\mu\mu$
 - $-\gamma\gamma$ at 125 GeV + polarize unique *CP* in $H\gamma\gamma$

- HWW, HZZ HZγ, Hγγ, Hgg Htt, Hττ, Hμμ
- $-\mu^+\mu^-$ at 125 GeV + polarize unique *CP* in $H\mu\mu$ (2nd family)
- $-e^{-}p$ allow *CP* in VBF, ttH
- -pp at 100 TeV the furthest reach, including CP in $HV\gamma$
- Framework for FCC studies
 - benefit from detailed simulation of signal & background

$$e^+e^- \to Z^*/\gamma^* \to Z/\gamma^*H$$

- explore $Z/\gamma^* \to \ell^+ \ell^- / q \bar{q} / \nu \bar{\nu}$ and $H \to any$

- can start from SM simulation and re-weight for BSM (but lack of γ^*H , γH)
- need to agree on lumi scenarios (e.g. Snowmass and FCC differ)

BACKUP

Fermion couplings at an e^+e^- collider

- e⁺e⁻ pheno studies at Snowmass-2013: <u>arXiv:1308.2674</u>
 - $-H \rightarrow \tau \tau$ the only CP in *Hff* at $e^+e^- \sqrt{s} < 500$ GeV
 - reach $f_{CP} \sim 0.008 \ (\alpha \sim 5^{\circ})$ at e^+e^- ref. lumi

note: worse at higher \sqrt{s} : no vertex in $e^+e^- \rightarrow \nu \bar{\nu} H$

- Linear collider $e^+e^- \rightarrow t\bar{t}H$
 - cross section dependence studied of $0^+ vs$. 0^- at <u>Snowmass-2013</u> recent similar study in <u>arXiv:1807.02441</u>

need dedicated *CP*-sensitive study (see LHC studies)

from Snowmass-2013

ν /W* τ

Φ

				<u></u>								
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	$14,\!000$	100,000	250	350	500	1,000	1,300	125	125	$3,\!000$	(theory)
$\mathcal{L} (\mathrm{fb}^{-1})$	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
$Ht\bar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_		\checkmark	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	-	—	_	\checkmark	_	$< 10^{-2}$

⊾W*

Gluon fusion in pp production

• *pp* is unique to measure *Hgg* coupling

BSM loop (point-like) or SM fermion loop

$$a_2^{gg} = -\alpha_s \kappa_Q / (6\pi) \quad \& \quad a_3^{gg} = -\alpha_s \tilde{\kappa}_Q / (4\pi)$$

Update Snowmass-2013 (pheno) with recent LHC (mutual benefit):

$H\gamma\gamma, HZ\gamma$ in *pp* production

• CP in photon couplings appear challenging at all colliders

poor precision in VBF and VH

Appendix A: Recent updates of the studies at a hadron collider

Contributed by Jeffrey Davis, Savvas Kyriacou, and Jeffrey Roskes.

HZZ, HWW in pp production

Update Snowmass-2013 (pheno) with recent LHC (mutual benefit):

Fermion couplings: $t\bar{t}H$ at pp

- Very first test of CP in *Hff* in 2020:
 - $-t\bar{t}H$ spin-off from Snowmass-2013 (arXiv:1606.03107) pheno projection agreement with CMS/ATLAS

no sensitivity to $2\text{Re}\left(A_{\text{CP even}}A_{\text{CP odd}}^*\right)$ (semi-leptonic, hadronic)

need di-lepton channel for CP interf: <u>arXiv:1507.07926</u>

- reach $f_{CP} \sim 0.05$ ($\alpha \sim 13^{\circ}$) at HL-LHC arXiv:2110.07635 pheno projection with di-leptonic, semi-leptonic, hadronic $t\bar{t}$ decay
- similar in tH; no sensitivity to $b\bar{b}H$, or other light q

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	$3,\!000$	(theory)
$\mathcal{L} (\mathrm{fb}^{-1})$	300	₹ 3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
$Ht\bar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark		_	\checkmark	$< 10^{-2}$

Decay: $H \rightarrow \tau^+ \tau^-$ at pp

• Very first test of CP in $H\tau\tau$ in 2020

CMS: <u>CMS-HIG-20-006</u>

Overview of Higgs CP at Colliders

• Now cover all couplings at pp and e^+e^- colliders:

Andrei Gritsan, JHU

Higgs *CP* from EDM

Electric Dipole Moment (EDM) of electron $d_e < 1.1 \times 10^{-29} e \text{ cm}$ atoms/molecules $d_n < 1.8 \times 10^{-26} e \text{ cm}$ H, γ, g , γ, Z, g $d_e^{\rm SM} \sim 10^{-38} \ e \,{\rm cm}$ expect $\times 10^{-2}$ in ~10 years <u>arXiv:2203.08103</u> ℓ, q Appendix C: EDM constraints Contributed by Wouter Dekens. $H\gamma\gamma$ HZZHgg $Ht\bar{t}$ HX coupling $HZ\gamma$ $Hu\bar{u}$ Hdd $H\tau\tau$ $H\mu\mu$ Hee $2.4 \cdot 10^{-8} \ 4.4 \cdot 10^{-8} \ 1.2 \cdot 10^{-13} \ 4.3 \cdot 10^{-7}$ $2.2 \cdot 10^{-2}$ $f_{CP}^{HX}/(1-f_{CP}^{HX})$ 0.12 0.72 0.039 36 < $.1 \cdot 10$ only EDM SMEFT - assuming *CP*-even SM coupling to 1st family 1.0 - assuming one *CP*-odd coupling at a time 0.8 J 0.6 lost tight constraints with 3 couplings already 0.4 $f_{CD}^{H\gamma\gamma}, f_{CD}^{HZ\gamma}, f_{CD}^{HZZ}$ 0.2 $\frac{1}{1.0} f_{CP}^{H\gamma\gamma}$ 0.0 0.2 0.8 0.4 0.6 $f_{\gamma\gamma}$