

Looking for charged detectorstable particles at the LHC

Vasiliki A. Mitsou

23rd HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY **Workshop on the Standard Model and Beyond** August 27 – September 7, 2023, Corfu, Greece

Lifetime frontier

- Physics beyond the Standard Model has not appeared in searches so far
- Maybe we are not looking at the right signals
- Long-lived particles may be the answer

Lifetime frontier

 Physics beyond the Standard Model has not appeared in searches so far 3

- Maybe we are not looking at the right signals
- Long-lived particles may be the answer!

focus of this talk

High ionisation

Highly ionising particles (HIPs) characterised by one or both of these properties:

- → high charges (high z) ⇒ electric and/or magnetic charges
- \rightarrow slow moving (**low** β) \Rightarrow massive particles

$$-\frac{dE}{dx} = K \frac{2}{A\beta^2} \begin{bmatrix} \frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \end{bmatrix}$$
Electric charge – Bethe-Bloch formula

$$-\frac{dE}{dx} = K \frac{Z}{A} g^{2} \left[\ln \frac{2m_{e}c(\beta^{2})^{2}}{I_{m}} + \frac{K \mid g \mid}{2} - \frac{1}{2} - B(g) \right] \frac{\text{Magnetic charge}}{\text{Bethe-Ahlen}}{\text{formula}}$$

Multiply charged quasi-stable particles

High Electric Charge Objects (HECOs) predicted in many scenarios of physics beyond the SM

finite-sized objects (Q-balls) condensed states (strangelets) microscopic black holes (through their remnants)

They eventually decay into other particles

...

lQI[e]

Id-del

2021

Magnetic monopoles in a nutshell

- Why? Because they symmetrise Maxwell's equations
 electric ↔ magnetic charge duality
- Single magnetic charge (Dirac charge): g_D = 68.5e
 - higher charges are integer multiples of Dirac charge: g = ng_D, n = 1, 2, ...
 - > 4700 times more ionising than a minimum ionising particle!
- Photon-monopole coupling constant

large: g/hc ~ 20 (precise value depends on units)

- Dirac monopole is a *point-like* particle; GUT monopoles are *extended* objects
 - production of composite monopoles exponentially suppressed by $e^{-4/\alpha}$
- Monopole spin is not determined by theory \rightarrow free parameter
- Monopole mass not theoretically fixed → free parameter

For a review on monopole theory and searches: Mavromatos & VAM, <u>Int.J.Mod.Phys.A 35 (2020) 2030012</u>

Large Hadron Collider at CERN

- ATLAS and MoEDAL perform searches for magnetic monopoles & HECOS
- MoEDAL receives ~10–50 times less luminosity than ATLAS
- Complementarity

ATLAS general-purpose; based on electronic readout MoEDAL dedicated to (meta)stable particles; mostly passive detectors

ATLAS searches

- dE/dx in pixel detector
- Large dE/dx + ToF
- Multiply charged particles
- Monopoles and HECOs

ATLAS sub-systems for HIP searches

ATLAS

- 1. Energy loss (*dE*/*dx*) measurements
- 2. Timing information Time-of-Flight (ToF)

2022: *dE/dx* in pixel detector

- Wide sensitivity to charged, long-lived, massive particles with lifetimes of ~ns to stable → gluinos, charginos, sleptons
- Pixel detector provides ionisation measurements (σ ≈ 12%) along each track

Excess 2.4 σ in mass bin of 600 GeV gluino seen in 36.1 fb⁻¹ search [Phys. Lett. B 788 (2019) 96] not confirmed

10° GeV = 13 TeV. 139 fb 10⁵ $p_{-}^{trk} > 120 \text{ GeV}, |\eta| < 1.8$ SR-Inclusive High Entries / 100 $m(\tilde{g}) = 2.2 \text{ TeV}, m(\tilde{\chi}^0) = 100 \text{ GeV}, \tau(\tilde{g}) = 10 \text{ ns}$ Observed $\mathbf{r} \cdot \mathbf{m}(\widetilde{\boldsymbol{\chi}}^{\pm}) = 1.3 \text{ TeV}, \tau(\widetilde{\boldsymbol{\chi}}^{\pm}) = 10 \text{ ns}$ ---- m(τ) = 400 GeV, τ(τ) = 10 ns Expected 10² 10 dE/dx > 2.410⁻¹ 10⁻² 10^{-3} Data / Pred. 10 1000 2000 3000 5000 4000 m [GeV]

7 observed, 0.7±0.4 expected 3.3σ global excess

$$m_{\mathrm{d}E/\mathrm{d}x} \equiv \frac{p_{\mathrm{reco}}}{\beta\gamma(\langle \mathrm{d}E/\mathrm{d}x\rangle_{\mathrm{corr}})}$$

These 7 charged particles seen in calorimeter & muon systems, which estimate θ^{1} \rightarrow inconsistent with signal model, if z = 1

Large *dE/dx* + ToF

- Targeting singly charged massive charged slow particles: m > 100 GeV, τ > 3 ns
- Based on measurement of anomalously large ionisation energy loss in ID tracker
- Improves 2022 search [JHEP 06 (2023) 158] by ToF measured by hadronic calorimeter

Agreement with background expectation

- observed 6 events in signal region
- expected 5.1±0.5 background events

Multiply charged particles

- Searching heavy particles of charge $2e \le z \le 7e$
- Detectors

ā

z = 2

z > 2

Pixel, TRT, muon MDT \rightarrow dE/dx

192 036 934

high-threshold TRT hits

Pixel used only in z = 2; saturated readout for

 $15\,004$

441

data data

350 US Grents in 300 DS

250 0

200 E

'₁₅₀ヹ

100

-50

n

30

D

В

25

1.5σ

arXiv:2303.13613

Signal (m=500 GeV, z=2)

Signal (m=2000 GeV, z=2)

Data

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

35**_**ATLAS

30

25

20

15

10

S(MDT dE/dx)

 0.034 ± 0.002 (stat.) ± 0.004 (syst.)

Monopoles and HECOs

• Two different signals:

TRT: large high-threshold (HT) hit fraction, f_{HT} , due to HIP & associated δ -electrons

EM calorimeter: HIPs slow down (and usually stop) there, leaving a pencil-shape energy deposit, unlike extensive showers from

(much lighter) electron

 No events observed in signal region A

 0.15 ± 0.04 (stat) ± 0.05 (syst) background events expected, estimated as $N_A^{exp} = N_B N_C / N_D$ (ABCD method)

data / background

HECOs

arXiv:2308.04835

MoEDAL results

- Magnetic monopoles Drell-Yan & photon fusion
- Dyons
- Schwinger mechanism
- HECOs

MoEDAL – Monopole & Exotics Detector At LHC

LHC's first dedicated *search* experiment (approved 2010)

MoEDAL physics program, Int. J. Mod. Phys. A29 (2014) 1430050

DETECTOR TECHNOLOGIES

MoEDAL

① Nuclear Track Detectors (NTD)

- 2 Monopole Trapping detector(MMT) aluminum bars
- ③ **TimePix** radiation background monitor
 - Mostly passive detectors; no trigger; no readout
 - Permanent physical record of new physics
 - No Standard Model physics backgrounds

See also Jim Pinfold's talk

802

021

6

201

CC C

MoEDAL.

MMT scanning

- Monopoles can bind to nuclei and get trapped
- MMTs analysed in superconducting quantum interference device (SQUID) at ETH Zurich
- **Persistent current:** difference between resulting current after and before
- Outliers are scanned several times further

SQUID analysis – Persistent current after

q

Magnetic monopole limits

- Novelties in monopole models: β -dependent coupling, spin-1 monopoles, yy fusion
- MoEDAL set world-best collider limits for $|g| > 2 g_D$
- ATLAS set best limits for $|\mathbf{g}| \leq 2 \mathbf{g}_{D}$

non-perturbativity of large monopole-photon coupling

17

Dyons: electric & magnetic charge

Science 165 (1969) 757

A Magnetic Model of Matter

A speculation probes deep within the structure of nuclear particles and predicts a new form of matter.

SCIENCE

Julian Schwinger

Predicted in GUT theories, string theories, ...

 MoEDAL MMT scanning searching for captured dyons

a

First explicit accelerator search for direct dyon production!

ABOUT NEWS

MoEDAL hunts for dyons

The MoEDAL collaboration at CERN reports the first search at a particle accelerator for particles with both electric and magnetic charge

17 FEBRUARY, 2020 | By Ana Lopes

MoEDAL, PRL 126 (2021) 071801

MoEDAL

D

Monopoles via thermal Schwinger mechanism

Limits on monopoles of $1 - 3 g_D$ and masses up to 75 GeV

- First limits based on non-perturbative calculation of monopole production cross section
- First direct search sensitive to finite-size monopoles

MoEDAL, Nature 602 (2022) 7895, 63-67

Monopole-antimonopole pairs may be produced in strong magnetic fields present in heavy-ion collisions

MoEDAL bags a first

The MoEDAL experiment has conducted the first search at a particle collider for magnetic monopoles produced through the Schwinger mechanism

2 JULY, 2021 | By Ana Lopes

CERN

The MoEDAL experiment, seen here during installation in the LHC tunnel.

NTD analysis

Z/B

a)

- Passage of HIP through plastic NTD marked by *invisible* damage zone ("latent track") along the trajectory
- Damage zone revealed as a **cone-shaped etch-pit** when plastic sheet **chemically etched** \rightarrow in ethyl alcohol solution in INFN Bologna
- NTDs **scanned** to detect etch-pits with automatic scanning system
- Scanning efficiency for detection above threshold is >99%

original surface

etched surface

b)

800 microns

20

Strong etching Z=82 Z=82

Calibration with Pb⁸²⁺ and Xe⁵⁴⁺ ion beams

800 microns

2.4

HECOs results

- Limits on HECOs with electric charges in the range **15***e* – **175***e* and masses from 110 – 1020 GeV
- Upper limits on production cross section ~ **30–70 pb**
- Better sensitivity achieved in soon-tobe-released Run 2 analysis
 - higher c.m.s. energy: 13 TeV
 - larger integrated luminosity
 - Iarger exposed NTD surface
 - lower CR39 Z/B threshold than Macrofol

Non-perturbativity of large coupling can be tackled by appropriate resummation [Alexandre, Mavromatos, Musumeci, VAM, LHCP2023 & paper in preparation]

MoEDAL HECOs limits are the strongest to date, in terms of charge, at any collider experiment

MoEDAL, Eur.Phys.J.C 82 (2022) 694

Stable electrically charged particles produced via Drell-Yan

August 2023

Prospects for 'low' electric charges

- Supersymmetric long-lived particles
- Charges ~1*e* 10*e*

22

Long-lived SUSY partners in MoEDAL

- Benchmark decay chain: $\tilde{g}\tilde{g}$ production with $\tilde{g} \rightarrow jj\tilde{\chi}_1^0$, $\tilde{\chi}_1^0 \rightarrow \tau^{\pm}\tilde{\tau}_1$
 - $\tilde{\chi}_1^0$ moderately long-lived \rightarrow decays in tracker
 - $\tilde{\tau}_1$ charged long-lived \rightarrow interacts with detector
- Other decay chains studied too: $\tilde{g} \rightarrow jj\tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \rightarrow \pi^{\pm}\tilde{\tau}_1 \ \& \ \tilde{g} \rightarrow jj\tilde{\chi}_1^{\pm}, \ \tilde{\chi}_1^{\pm} \rightarrow \nu_{\tau}\tilde{\tau}_1$

MoEDAL can cover longlifetime region in Run 3 for gluinos, stops, sleptons and charginos

Felea, VAM et al, EPJC 80 (2020) 431

Study comparing MOEDAL vs. CMS: Sakurai, VAM *et al*, <u>J.Phys.Conf.Series</u> 1586 (2020) 012018

Multiply charged particles – model-specific

Doubly charged particles

Predicted in left-right symmetric models, seesaw neutrino models, little Higgs models, ... (+ SUSY extensions), extra dimensions, ... models considered: (scalar, fermion) × (*SU(2):* singlet, triplet)

• 2-, 3-, 4-ply charged states occur in some radiative neutrino mass models

long-lived due to small neutrino mass and high electric charge

MoEDAL can cover longlifetime region in Run 3 and HL-LHC

Acharya et al, EPJC 80 (2020) 572

Hirsch et al, EPJC 81 (2021) 697

Multiply charged particles – generic case

- Phenomenological study independent of underlying model
- Includes all production processes, including those with photons
 - most experimental searches only assume Drell-Yan
 - for high charges, photon contributions become very relevant

 ϕ^{+Q}, ψ^{+Q}

t-channel $\gamma\gamma$ fusion

color singlet

colorless

scalar

colorless

SU(2)

seagull $\gamma\gamma$ fusion (scalar only)

- Production of a bound state is considered
 - constrained by ATLAS and CMS searches for diphoton events
 - not relevant for MoEDAL

Altakach, Lamba, Masełek, VAM, Sakurai, EPJC 82 (2022) 848

color triplet

colored

scalar

colored

fermion

MoEDAL reach

- Singly charged colorless scalars only observable at HL-LHC
- MoEDAL sensitivity to colored scalars similar to colored fermions
- For high charges up to 8e good sensitivity expected from MoEDAL even in Run 3

Altakach, Lamba, Masełek, VAM, Sakurai, EPJC 82 (2022) 848

MoEDAL vs. ATLAS/CMS

- Grey region excluded by ATLAS/CMS Run 1 / Run 2 searches
- ATLAS/CMS direct detection based on searches for large *dE/dx* → better sensitivity at low charges
- ATLAS/CMS searches for diphoton resonances offer better coverage at high charges
- MoEDAL has the best sensitivity at intermediate electric charges at HL-LHC

Altakach, Lamba, Masełek, VAM, Sakurai, <u>EPJC 82 (2022) 848</u>

Beyond LHC: MEDICI @ FCC-hh

- MoEDAL preliminary plans for MEDICI (Monopole and Exotics Detector Infrastructure for Colliding Ions)
- MEDICI HIP → a polyhedral "ball" with radius 1 m sensitive to magnetic and electric charges
- Assuming 3 ab⁻¹ and no intervening material, magnetic monopole masses up to ~25 TeV can be reached

MoEDAL contribution to Snowmass, <u>arXiv:2209.03988</u>, EPJ-ST, *to appear*

Summary & outlook

- Highly ionizing particles are predicted in various scenarios of New Physics
 - Single or multiple electric charges
 - Isolated magnetic charges
- Growing interest in searching for these states in collider experiments

Combining dE/dx and timing information

- ATLAS & MoEDAL work in complementary way towards this direction
- Several studies show promising prospects for experiments to explore charges ≤10e in future LHC runs
- Stay tuned for upcoming MoEDAL results!
 - Run-2 NTD analysis @ 13 TeV → improved sensitivity to electric charges
 - Magnetic monopoles in Schwinger mechanism probed in CMS Run-1 beam pipe

30

Thank you for your attention!

LHC & High Luminosity LHC (HL-LHC)

Heavy charged LL particles in ID+calo+MDT

- 36 fb⁻¹ of 13 TeV pp collisions
- Detectors

Phys. Rev. D 99 (2019) 092007

Tile, MDT, RPC \rightarrow ToF

Pixel \rightarrow dE/dx

- Combination of *dE/dx* and ToF for R-hadrons²
- Stau SR based only on ToF

Signal region	Trigger	Candidate	Candidates	Final requirements				
		selection	per event	$ \eta $	$p \; [\text{GeV}]$	β_{ToF}	$(\beta\gamma)_{dE/dx}$	Mass
SR-Rhad-MSagno	$E_{\rm T}^{\rm miss}$	ID+CALO	≥ 1	≤ 1.65	≥ 200	≤ 0.75	≤ 1.0	ToF & dE/dx
SR-Rhad-FullDet	$E_{\rm T}^{\rm miss}/\mu$	LOOSE	≥ 1	≤ 1.65	≥ 200	≤ 0.75	≤ 1.3	ToF & dE/dx
SR-Rhad-FullDet	$E_{\rm T}^{\rm miss}/\mu$	ID+CALO	≥ 1	≤ 1.65	≥ 200	≤ 0.75	≤ 1.0	ToF & dE/dx
SR-2Cand-FullDet	$E_{\rm T}^{\rm miss}/\mu$	LOOSE	= 2	≤ 2.00	≥ 100	≤ 0.95	-	ToF
SR-1Cand-FullDet	$E_{\rm T}^{\rm miss}/\mu$	TIGHT	= 1	≤ 1.65	≥ 200	≤ 0.80	-	ToF

MoEDAL physics goals

- MoEDAL baseline detector optimised for the detection of (meta)stable highly ionising particles
 - high charges (high z)
 - magnetic → monopoles!
 - electric → Highly Electrically Charged particles (HECOs)
 - slow moving (**low** β) \Rightarrow massive
- MAPP upgrade designed for *neutral LLPs* and *millicharged* particles

Int. J. Mod. Phys. A29 (2014) 1430050

Results

- 2016 First monopole results @ 8 TeV F <u>CERN Press Release</u> JHEP 1608 (2016) 067 [arXiv:1604.06645]
- 2017 First monopole results @ 13 TeV Phys.Rev.Lett. 118 (2017) 061801 [arXiv:1611.06817]
- 2018 MMT results Phys.Lett.B 782 (2018) 510–516 [arXiv:1712.09849] spin-1 monopoles ← FIRST in colliders β-dependent coupling
- 2019 MMT results Phys.Rev.Lett. 123 (2019) 021802 [arXiv:1903.08491]
 photon fusion interpretation ← FIRST at LHC
- 2020 MMT search for Dyons ← FIRST in colliders
 Phys.Rev.Lett. 126 (2021) 071801 [arXiv:2002.00861]
- 2021 Schwinger thermal production ← FIRST <u>Nature 602 (2022) 7895, 63 [arXiv:2106.11933]</u>
- 2021 NTD & MMT ← FIRST NTD analysis <u>arXiv:2112.05806</u>

First limits in highly electrically charged objects

Run-2 MoEDAL deployment

MMT

- Installed in forward region under beam pipe & in **sides**
- Approximately 800 kg of Al
- Total 2400 aluminum bars

HCC-NTD Installed in LHCb acceptance between RICH1 and Trigger Tracker

JL4 - .

Low-threshold NTD

- Top of VELO cover
- Closest possible location to IP

36

Monopoles via thermal Schwinger mechanism

Monopole-antimonopole pairs may be produced in strong magnetic fields present in heavy-ion collisions

5.02 TeV/nucleon **B** Pb-Pb Collisions $(L_{int} = 0.235 \text{ nb}^{-1})$

Advantages over DY & yy-fusion production

cross-section calculation using semiclassical techniques \Rightarrow does not suffer from nonperturbative nature of coupling

no exponential suppression $e^{-4/\alpha}$ for finite-sized monopoles

Gould, Ho, Rajantie, <u>PRD 100, 015041 (2019)</u>, <u>arXiv:2103.14454</u> Ho & Rajantie, <u>PRD 101, 055003 (2020)</u>, <u>PRD 103 (2021) 11, 115033</u>

Schwinger production results

- Exposure of MMTs in 0.235 nb⁻¹ of Pb-Pb heavy-ion collisions at 5.02 TeV per nucleon
- Limits on monopoles of 1 3 g_D and masses up to 75 GeV
- First limits from collider experiment based on non-perturbative calculation of monopole production cross section
- First direct search sensitive to monopoles that are not point-like

Monopole mass reach appears to be 20–30 times lower than current bounds from ATLAS and MoEDAL, however, this cross-section calculation is theoretically sound

MoEDAL, Nature 602 (2022) 7895, 63-67

Monopoles in Schwinger mechanism – Future

- Run-1 CMS beam pipe analysis in heavy-ion run
- HL-LHC projection for MoEDAL's MMTs

Conservative theoretical assumptions Nuclear track detectors not included in projection Assuming 2.5 nb⁻¹ Pb-Pb collisions at $Vs_{NN} = 5.52$ TeV

~20 GeV increase in sensitivity in HL-LHC heavy-ion run

Opportunities for new physics searches with heavy ions at colliders, Snowmass 2021 white paper, <u>arXiv:2203.05939</u>

Geneva Euture Ps Collider LHC SPS 27 km 100 km

For FCC : $\sqrt{s_{NN}} \sim 40 \text{ TeV}$ $\Rightarrow M \gtrsim 600 \text{ GeV}$

Theoretical improvements in semiclassical and fully classical approaches

40

Corfu 2023 V.A. Mitsou

CMS beam pipe

Beam pipe

- most directly exposed piece of material
- covers very high magnetic charges
- 2012: first pieces of CMS beam pipe tested [EPJC72 (2012) 2212]
 - far from collision point
- Feb 2019: CMS officially transfers ownership of the Run-1 CMS beam pipe to MoEDAL
- Beam pipe scanned with SQUID at ETH Zurich
- Analysis for Pb-Pb collision data ongoing
- Schwinger mechanism assumed
- Results to be released soon

NTD+MMT search for HECOs and monopoles

Prototype NTD array of 125 × 25 cm × 25 cm stacks (7.8 m²)

3 layers of CR39[®] polymer \rightarrow low threshold $z/\theta \sim 5 \Rightarrow$ time intensive analysis

3 layers of Makrofol DE[®] **used in analysis (less "visual noise");** threshold *z/6* ~ 50

3 layers of Lexan[®] \rightarrow protective layers only

NTDs sheets kept in boxes mounted onto LHCb VELO alcove walls

MoEDAL, <u>arXiv:2112.05806</u> [hep-ex]

NTD results on HECOs

- Drell-Yan production
 - Z exchange is also taken into account for fermions [Song & Taylor, J.Phys.G 49 (2022) 045002]

- non-perturbativity of large coupling can be tackled by appropriate **resummation** [Alexandre, Mavromatos, *in progress*]
- Limits set on HECO pairs with cross-sections from
 ~ 30 70 pb

HIP kinematics

- MoEDAL NTDs sensitive to highly ionising particles with velocities 8 < 0.15 | Q |
 if sufficiently slow moving, even low charges may be detected
- Assumed to be "detector-stable", i.e. they decay after passing the whole detector volume
- MoEDAL is background-free experiment

 → discovery scenarios require 1, 2 or 3
 signal events (N_{sig})
- Integrated luminosities at IP8 (LHCb/MoEDAL)
 - Run-3 \rightarrow 30 fb⁻¹
 - High Luminosity LHC (HL-LHC) \rightarrow 300 fb⁻¹
 - roughly 10 times less than ATLAS & CMS

Altakach, Lamba, Masełek, VAM, Sakurai, EPJC 82 (2022) 848

Long-lived SUSY partners

• Supersymmetric charged long-lived states: sleptons, R-hadrons, charginos

plus doubly charged higgsinos in L-R symmetric models

ATLAS & CMS have constrained these spartners. Analyses limited by:

trigger requirements

offline selections to suppress SM backgrounds timing: signal from slow-moving particles to arrive within correct bunch crossings

 Due to absence of trigger, timing and SM backgrounds, MoEDAL can relax selection requirements and increase sensitivity to charged long-lived SUSY particles

