Anomalies and Dynamics in Strongly-coupled Gauge Theories, New Criteria for Different Phases. Lessons from susy gauge theories
K. Konishi (Univ. Pisa/INFN, Pisa)

Plan

Part 1: Intro: Strongly-coupled (chiral) gauge theories
Part 2: Generalized symmetries, Anomalies and Dynamics
Part 3: New criteria for color confinement and other phases
Part 4: Lessons from supersymmetry

Part 1: Introduction

A challenge for theorists

Understand better the dynamics of strongly-coupled chiral gauge theories

WHY

(i) We live in a chiral world

$$
\begin{aligned}
& O\left(10^{-6}\right) \sim O\left(10^{0}\right) \mathrm{cm} \\
& \text { e.g., DNA spirals }
\end{aligned}
$$

(spontaneken
(ii) Standard models of the fundamental interactions

$$
\begin{equation*}
S U(3)_{Q C D} \times\left(S U(2)_{L} \times U_{Y}(1)\right)_{G W S} \tag{*}
\end{equation*}
$$

$$
O\left(10^{-16}\right) \mathrm{cm}
$$

(iii) GUTs $\mathrm{SU}(5), \mathrm{SO}(\mathrm{I} 0) \ldots$?
(**) $\quad O\left(10^{-29} \mathrm{~cm}\right)$

- $\quad\left({ }^{*}\right)\left({ }^{* *}\right)$ are chiral gauge theories, but weakly coupled: well-understood in perturbation theory
- (*) to be regarded as a (very good) low-energy effective action

```
masses, neutrinos, families, ... , Higgs, .. ?????
```

- Surprisingly little is known today about strongly-coupled (asymptotically-free) chiral gauge theories
- Cfr. vectorlike theories, e.g.,

QCD (50 years of successful studies); $\mathcal{N}=2$ susy gauge theories (Seiberg-Witten solution $\sim 30 \mathrm{yrs}$)

Some examples: $\operatorname{SU}(\mathrm{N})$ gauge theories w fermions ("theoretical laboratories")
(i) $\quad \psi^{\{i j\}}, \quad \eta_{i}^{B}, \quad(i, j=1,2, \ldots, N, \quad B=1,2, \ldots, N+4)$,

$$
\square \square(N+4) \square \quad(+\mathrm{p} \text { pairs } \quad \square \oplus \square)
$$

(ii) $\quad \chi_{[i j]}, \quad \tilde{\eta}^{B j}, \quad B=1,2, \ldots,(N-4)$,
 in model Georgi-Glashow (GG)
(iii) $\quad \psi^{\{i j\}}, \quad \chi_{[i j]}, \quad \eta_{i}^{A}, \quad A=1,2, \ldots 8$,

(iv) $\frac{N-4}{k} \psi^{\{i j\}} \oplus \frac{N+4}{k} \chi_{[i j]}$ $\frac{N-4}{k} \square \oplus \frac{N+4}{k} \square$
(v) $\left.\quad \psi^{\prime} s \sim \quad \square\right\} \frac{N}{2} \quad(\mathrm{~N}=$ even $)$
(vi) $\quad N_{f}(\eta \oplus \tilde{\eta}) \quad$ (QCD)
(vii) $\quad N_{f} \lambda \quad$ (adjoint QCD)

A well-known tool - 't Hooft anomaly matching conditions unfortunately, is not sufficiently stringent

$$
\begin{aligned}
& \text { e.g., } \quad \psi \eta \text { model } \\
& \\
& \\
& \text { - } \chi \eta \text { model }
\end{aligned}
$$

$\psi \eta$ model

$$
\psi^{\{i j\}}, \quad \eta_{i}^{B}, \quad B=1,2, \ldots, N+4
$$

$$
G=S U(N)_{\mathrm{c}} \times S U(N+4)_{\mathrm{f}} \times U(1)
$$

(A) Confining, $\mathrm{SU}(\mathrm{N}+4) \times \mathrm{U}(\mathrm{I})$ symmetric phase (no condensates) massless baryons $\sim B^{[A B]}=\psi^{i j} \eta_{i}^{A} \eta_{j}^{B}, \quad A, B=1,2, \ldots, N+4$

	fields	$S U(N)_{\mathrm{c}}$	$S U(N+4)$	$U(1)$
UV	ψ	\square	$\frac{N(N+1)}{2} \cdot(\cdot)$	$N+4$
	η^{A}	$(N+4) \cdot \square$	$N \cdot \square$	$-(N+2)$
IR	$B^{[A B]}$	$\frac{(N+4)(N+3)}{2} \cdot(\cdot)$	\square	

(B) Color-flavor locked (Higgs) phase

$$
\begin{array}{r}
\left\langle\psi^{\langle i j} \eta_{i}^{B}\right\rangle=C \delta^{j B}, \quad j, B=1,2, \ldots N \\
G \rightarrow G^{\prime}=S U(N)_{\mathrm{cf}} \times S U(4)_{\mathrm{f}} \times U^{\prime}(1)
\end{array}
$$

The anomaly matching OK,

$$
\frac{N^{2}+7 N}{2} \text { massless baryons }
$$ $8 N+1$ Nambu-Goldstone

- Massless baryons and (NG) bosons in L.E.

	fields	$S U(N)_{\mathrm{cf}}$	$S U(4)_{\mathrm{f}}$	$U^{\prime}(1)$
UV	ψ	$\square \square$	$\frac{N(N+1)}{2} \cdot(\cdot)$	1
		$\square \square \square$	$N^{2} \cdot(\cdot)$	-1
	$\eta^{A_{1}}$	$\square \square \square$	$N \cdot \square$	$-\frac{1}{2}$
	$\eta^{A_{2}}$	$4 \cdot \square$		
IR	$B^{\left[A_{1} B_{1}\right]}$	\square	$\frac{N(N-1)}{2} \cdot(\cdot)$	-1
	$B^{\left[A_{1} B_{2}\right]}$	$4 \cdot \square$	$N \cdot \square$	$-\frac{1}{2}$

Standard 't Hooft anomaly matching in the case (A)

fields	$S U(N)_{c}$		$S U(N+4)$
ψ	$\square \square$	$\frac{N(N+1)}{2} \cdot(\cdot)$	$N+4$
η^{A}	$(N+4) \cdot \square$	$N \cdot \square$	$-(N+2)$
	\square	\square	
$B^{[A B]}$	$\frac{(N+4)(N+3)}{2} \cdot(\cdot)$	\square	$-N$

Table 6: Chirally symmetric phase of the $(1,0)$ model

Anomaly	$A_{U V}(\psi, \eta)$	$A_{I R}(B)$
$S U(N+4)^{3}$	N	$N+4-4$
$U(1) S U(N+4)^{2}$	$-(N+2) \cdot N$	$-N \cdot(N+4-2)$
$U(1)^{3}$	$(N+4)^{3} \frac{N(N+1)}{2}-(N+2)^{3} N(N+4)$	$-N^{3} \frac{(N+4)(N+3)}{2}(N+3)$
$U(1)$	$(N+4) \frac{N(N+1)}{2}-(N+2) N(N+4)$	$-N \frac{(N+4) 2}{2}$
$\mathbb{Z}_{N+2} S U(N+4)^{2}$	0	$N+2$
$\mathbb{Z}_{N+4} S U(N+4)^{2}$	N	$2 \cdot(N+4-2)$

Table 7: UV-IR Anomaly matching in Chirally symmetric phase

Part 2: Anomalies and Dynamics: new, more powerful constraints

0 . Tools: generalized symmetries and anomalies

1. $\left(\mathbb{Z}_{2}\right)_{F}$ anomaly
2. (Dynamical) Higgs phase
3. Strong anomaly and phases
4. Dynamical Abelianization
5. More general DSB

Tool: Generalized symmetries

- From 0 -form symm. (acting on local operators) to k-form symmetries (acting on line, surface, etc operators)
- e.g. the center Z_{N} symmetry in $\operatorname{SU}(\mathrm{N}) \mathrm{YM}$
- "Gauging" the $\underline{\text {-form }} \underline{\text { discrete } \mathbf{Z}_{\mathrm{N}}}$ symmetry $\quad \widetilde{a}=a+\frac{1}{N} B_{\mathrm{c}}^{(1)}$

$$
\begin{aligned}
& N B_{\mathrm{c}}^{(2)}=d B_{\mathrm{c}}^{(1)}, \quad B_{\mathrm{c}}^{(2)} \rightarrow B_{\mathrm{c}}^{(2)}+\mathrm{d} \lambda_{\mathrm{c}}, \quad B_{\mathrm{c}}^{(1)} \rightarrow B_{\mathrm{c}}^{(1)}+N \lambda_{\mathrm{c}} \\
& \widetilde{a} \rightarrow \widetilde{a}+\lambda_{\mathrm{c}} .
\end{aligned}
$$

$$
\frac{1}{8 \pi^{2}} \int_{\Sigma_{4}} \operatorname{tr} F^{2} \longrightarrow \frac{1}{8 \pi^{2}} \int_{\Sigma_{4}} \operatorname{tr}\left(\tilde{F}(\tilde{a})-B_{c}^{(2)}\right)^{2} \quad \longrightarrow \quad \begin{aligned}
& \text { fractional } \mathrm{I} / \mathrm{N} \text { 't Hooft } \\
& \text { Flux }
\end{aligned}
$$

CP/T broken at $\quad \theta=\pi \quad \begin{aligned} & (\mathrm{SU}(\mathrm{N}) \mathrm{YM}) \\ & (\operatorname{even} \mathbf{N})\end{aligned} \quad \begin{aligned} & \text { Gaiotto, Kapustin, Komargodski, Seiberg' } 17\end{aligned}$

$$
\begin{aligned}
a & \equiv t_{R}^{b} A_{\mu}^{b} d x^{\mu} \\
F^{2} & \equiv F \mathcal{\wedge}^{-} F=\frac{1}{2} F^{\mu \nu} F^{\rho \sigma} d x_{\mu} d x_{\nu} d x_{\rho} d x_{\sigma}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma} d^{4} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Differential form } \\
& \text { notation }
\end{aligned}
$$

Gauging 1 -form (color-flavor locked) Z_{N} center symmetry

- 1-form (color-flavor locked) Z_{N}

$$
\begin{aligned}
& \mathcal{P} e^{i \phi_{L} a} \rightarrow e^{\frac{2 \pi i}{N}} \mathcal{P} e^{i \phi_{L} a} ; \quad \psi^{k} \rightarrow e^{\frac{2 \pi i N_{k}}{N}} \psi^{k}, \quad \mathbb{Z}_{N} \subset S U(N) ; \\
& \Pi_{i} e^{i \phi_{L} A_{i}} \rightarrow\left(e^{2 \pi i \sum_{i, k} q_{k}^{(i)}}\right) \Pi_{i} e^{i \phi_{L} A_{i}} ; \quad \psi^{k} \rightarrow e^{2 \pi i \sum_{i} q_{k}^{i(i)}} \psi^{k}, \quad U_{i}(1) ; \\
& \sum_{i} q_{k}^{(i)}=-\frac{N_{L}}{N}, \quad \forall k
\end{aligned}
$$

- Gauging it

$$
\begin{equation*}
N B_{c}^{(2)}=d B_{\mathrm{c}}^{(1)}, \quad \tilde{a}=a+\frac{1}{N} B_{c}^{(1)} \tag{N}
\end{equation*}
$$

$\psi \eta$ model	$B_{\mathrm{c}}^{(2)} \rightarrow B_{\mathrm{c}}^{(2)}+\mathrm{d} \lambda_{\mathrm{c}}$, $B_{\mathrm{c}}^{(1)} \rightarrow B_{\mathrm{c}}^{(1)}+N \lambda_{\mathrm{c}}:$ $\widetilde{a} \rightarrow \widetilde{a}+\lambda_{\mathrm{c}}$. $\tilde{A} \rightarrow \tilde{A}-\lambda_{\mathrm{c}}$, $A_{0} \rightarrow A_{0}+\frac{N}{2} \lambda_{\mathrm{c}}$ $U(1)_{\psi \eta}$ $\left(\mathbb{Z}_{2}\right)_{F}$$\quad \oint \lambda_{\mathrm{c}}=\frac{2 \pi \ell}{N}$	
	1-form gauge fn	

$$
\begin{array}{ll}
\longrightarrow & d+\mathcal{R}_{\mathrm{S}}\left(\tilde{a}_{\mathrm{c}}-\frac{1}{N} B_{\mathrm{c}}^{(1)}\right)+\frac{N+4}{2}\left(\tilde{A}+\frac{1}{N} B_{\mathrm{c}}^{(1)}\right)+A_{0}-\frac{1}{2} B_{\mathrm{c}}^{(1)} \\
\text { Gauge inv. kin. terms } & d-\left(\tilde{a}_{\mathrm{c}}-\frac{1}{N} B_{\mathrm{c}}^{(1)}\right)-\frac{N+2}{2}\left(\tilde{A}+\frac{1}{N} B_{\mathrm{c}}^{(1)}\right)-\left(A_{0}-\frac{1}{2} B_{\mathrm{c}}^{(1)}\right)
\end{array}
$$

1. $\left(\mathbb{Z}_{2}\right)_{F}$ anomaly

- All BY and GG models have a non anomalous $\left(\mathbb{Z}_{2}\right)_{F}$ symmetry (fermion parity) $\subset L_{+}^{\uparrow}$

$$
\psi_{i} \rightarrow-\psi_{i} \quad: \text { In type I models (*) (e.g., even } \mathrm{N} \text { " } \psi \eta \text { model"), }
$$

because $\quad \Delta S=\sum_{i} c_{i} \times \frac{1}{8 \pi^{2}} \int_{\Sigma_{4}} \operatorname{tr}_{i} F_{\mu \nu} \tilde{F}^{\mu \nu} \times(\pm \pi)=2 \pi \mathbf{Z}$

$$
\text { with } \sum_{i} c_{i}=2 \mathbf{Z} \neq 0 \text { ! } \ll \text { instanton \# }
$$

- In type I models, the symmetry group space is disconnected:

$$
\begin{equation*}
G=\frac{S U(N) \times S U(N+4) \times U_{\psi \eta}(1) \times Z_{2}}{Z_{N}} \tag{*}
\end{equation*}
$$

- In type II BY and GG models, no \mathbf{Z}_{2} and $\quad \sum_{i} c_{i}=0$

No new results w.r.t. the conventional 't Hooft anomaly algorithm
Type I models: gauging of the I-form color-flavor locked Z_{N} symmetry

In \mathbb{R}, the massless baryons do not support the Z_{2} anomaly The confining, symmetric vacuum (\&) is inconsistent

Objection to (\%), (\$)

$$
\oint B_{c}^{(1)}=2 \pi ; \quad \oint A_{0}=\frac{2 \pi}{2}
$$

$\xrightarrow{\cdots} \rightarrow A_{0}$ singular (Z_{2} vortex) !!
Propose: use $\oint A_{0}=2 \pi \longrightarrow \oint B_{c}^{(1)}=4 \pi$: No Z_{2} anomaly !!!?
.... But (*) is a trivial Z_{2} holonomy

$$
\psi \rightarrow \psi, \quad \eta \rightarrow \eta, \quad!!
$$

- Cure: consider $\psi \eta$ model with a regulator Dirac pair q, \tilde{q} and a singlet scalar ϕ w/ Yukawa ("X - ray model")

$$
\Delta L=g \phi q \tilde{q}+h . c . \quad\langle\phi\rangle=v \gg \Lambda_{\psi \eta}
$$

$$
\frac{S U(N)_{c} \times \tilde{U}(1) \times U_{0}(1)}{\mathbb{Z}_{N}}
$$

Mixed anomalies

- $\tilde{A}-\left(B_{\mathrm{c}}^{(2)}\right)^{2}$

$$
\delta S_{\delta \alpha}=\frac{\tilde{C}}{8 \pi^{2}} \int_{\Sigma_{4}}\left(B_{\mathrm{c}}^{(2)}\right)^{2} \delta \alpha
$$

- $A_{0}-\left(B_{\mathrm{c}}^{(2)}\right)^{2}$

$$
\delta S_{\delta \alpha_{0}}=\frac{C_{0}}{8 \pi^{2}} \int_{\Sigma_{4}}\left(B_{\mathrm{c}}^{(2)}\right)^{2} \delta \alpha_{0}
$$

$$
C_{0}=N^{2}(N+3)
$$

$\left(\mathbb{Z}_{2}\right)_{F}$ anomaly (\%)
2. (Dynamical) Higgs phase
E.g., " $\psi \eta$ "model
\square $\oplus(N+4)$ \square

Color-flavor lockedVEV

$$
\begin{array}{r}
\left\langle\psi^{\{i j} \eta_{i}^{B}\right\rangle=C \delta^{j B}, \quad j, B=1,2, \ldots N \\
G \rightarrow G^{\prime}=S U(N)_{\mathrm{cf}} \times S U(4)_{\mathrm{f}} \times U^{\prime}(1)
\end{array}
$$

Massless baryons and (NG) bosons in L.E.

- The conventional anomaly matching manifest

	fields	$S U(N)_{\mathrm{cf}}$	$S U(4)_{\mathrm{f}}$	$U^{\prime}(1)$
UV	ψ	$\square \square$	$\frac{N(N+1)}{2} \cdot(\cdot)$	1
		$\square \square \square$	$N^{2} \cdot(\cdot)$	-1
	$\eta^{A_{1}}$	$\square \square \square$	$N \cdot \square$	$-\frac{1}{2}$
	$\eta^{A_{2}}$	$4 \cdot \square$		
IR	$B^{\left[A_{1} B_{1}\right]}$	\square	$\frac{N(N-1)}{2} \cdot(\cdot)$	-1
	$B^{\left[A_{1} B_{2}\right]}$	$4 \cdot \square$	$N \cdot \square$	$-\frac{1}{2}$

- OK with the Z_{2} anomaly (\%) = impossibility of gauging l-form Z_{N}

$$
\begin{array}{cc}
S U(N) \times U_{\psi \eta} \times \mathbf{Z}_{2} \\
\mathbf{Z}_{N} & \frac{N^{2}+7 N}{2} \text { massless baryons } \\
8 N+1 \text { Nambu-Goldstone }
\end{array}
$$

It is "matched" in the IR: $U_{\psi \eta}(1)$ hence the I-form $\mathbf{Z}_{\mathbf{N}}$
symmetry itself is spontaneously broken.

- N.B. For confining, symmetric vacuum (\&), (\%) means a matching failure (inconsistency)

3. Strong anomaly and phases

$$
\text { QCD }\left(N_{f}=2\right) \text { and the } U_{A}(1) \text { problem }
$$

$$
\langle U\rangle=\left\langle\bar{\psi}_{R} \psi_{L}\right\rangle \neq 0 \quad \xrightarrow{?} \quad m_{\eta} \gg m_{\pi}
$$

- Ans. $\quad \partial_{\mu} J_{A}^{\mu}=N_{f} \frac{g^{2}}{32 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu} ; \quad \int d^{4} x \frac{g^{2}}{32 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}=\mathbf{Z}$
- Leff: $L=L_{0}+\hat{L}$,

$$
\hat{L}=\frac{i}{2} q(x) \log \operatorname{det} U / U^{\dagger}+\frac{N}{a_{0} F_{\pi}^{2}} q^{2}(x)-\theta q(x)
$$

Anomalous
$\mathrm{U}_{\mathrm{A}}(\mathrm{I})$ variation $\quad \Delta S=2 N_{f} \alpha$
reproduced by the log det term

Q: Does (a multi-valued) $\log \operatorname{det} U / U^{\dagger}$ make sense?
Ans: Yes, as $\quad U=\langle U\rangle e^{i \frac{t^{a} \pi^{a}+t^{0} \eta}{F_{\pi}}}=$ const. $\left[1+\frac{i}{F_{\pi}}\left(t^{a} \pi^{a}+t^{0} \eta\right)+\ldots\right]$

- Invert the logic: Leff with the strong-anomaly log term implies

$$
\langle U\rangle=\left\langle\bar{\psi}_{R} \psi_{L}\right\rangle \neq 0 \quad \text { i.e., } \quad \text { XSB with massless pions }
$$

- Apply the same logic in chiral gauge theories
- Demand that the low-energy effective degrees of freedom (i.e. the phase) be such that Leff with the strong-anomaly term can be written in terms of them
- e.g. the " $\chi \eta$ " model : an $\mathrm{SU}(\mathrm{N})$ theory with fermions

$$
\square_{\oplus(N-4)} \square
$$

Strong-anomaly effective action

$$
\begin{aligned}
& \hat{L}=\frac{i}{2} q(x) \log (\chi \eta)^{N-4} \chi \chi+\text { h.c. } \quad q(x)=\frac{g^{2}}{32 \pi^{2}} F_{\mu \nu}^{a} \tilde{F}^{a, \mu \nu} \\
& (\chi \eta)^{N-4} \chi \chi \equiv \epsilon_{i_{1} i_{2} \ldots i_{N}} \epsilon_{m_{1} m_{2} \ldots m_{N-4}}(\chi \eta)^{i_{1} m_{1}}(\chi \eta)^{i_{2} m_{2}} \ldots(\chi \eta)^{i_{N-4} m_{N-4}} \chi^{i_{N-3} i_{N-2}} \chi^{i_{N-1} i_{N}}
\end{aligned}
$$

$\stackrel{\longleftarrow}{\rightleftarrows}\langle\chi \eta\rangle \neq 0, \quad\langle\chi \chi\rangle \neq 0 \quad$: dynamical Higgs phase!
Cfr. confining chirally symmetric vacuum with massless baryons

$$
\text { (} B \sim \chi \eta \eta \text {) only, fails }
$$

- Dynamical Higgs phase favored also in the " $\psi \eta$ " model as well as in all generalized BY and GG models

4. Dynamical Abelianization

- " $\psi \chi \eta "$ model: $\mathrm{SU}(\mathrm{N})$ theory with Weyl fermions

$$
\square \square \oplus \square \oplus 8 \times \square \quad G=S U(N) \times \frac{U(1)_{\psi_{\chi}} \times \tilde{U}(1) \times S U(8)}{\mathbb{Z}_{N} \times \mathbb{Z}_{8 / N^{*}}}
$$

with nonanomalous $U(1)$ symmetries

$$
\begin{aligned}
& \tilde{U}(1): \quad \psi \rightarrow e^{2 i \alpha} \psi, \quad \chi \rightarrow e^{-2 i \alpha} \chi, \quad \eta \rightarrow e^{-i \alpha} \eta, \\
& U(1)_{\psi \chi}: \quad \psi \rightarrow e^{i \frac{N-2}{N^{2}} \beta} \psi, \quad \chi \rightarrow e^{-i \frac{N+2}{N^{2}} \beta} \chi, \quad \eta \rightarrow \eta
\end{aligned}
$$

- Assume :

$$
\left\langle\psi^{i k} \chi_{k j}\right\rangle=\Lambda^{3}\left(\begin{array}{ccc}
c_{1} & & \\
& \ddots & \\
& & c_{N}
\end{array}\right)_{j}^{i} \quad c_{n} \in \mathbb{C}, \quad \sum_{n} c_{n}=0 \quad \text { Bologne. }
$$

Fate of the symmetries and the structure of Leff

$$
S U(N) \times \frac{S U(8)_{\mathrm{f}} \times \tilde{U}(1) \times U(1)_{\psi \chi}}{\mathbb{Z}_{N} \times \mathbb{Z}_{8 / N^{*}}} \longrightarrow \frac{\prod_{\ell=1}^{N-1} U(1)_{\ell} \times S U(8)_{\mathrm{f}} \times \tilde{U}(1)}{\prod_{\ell=1}^{N-1} \mathbb{Z}_{\ell} \times \mathbb{Z}_{N} \times \mathbb{Z}_{2}}
$$

- $\tilde{U}(1)$: non anom.; unbroken

Manifest symmetry in IR

- $U(1)_{\psi \chi}$ non anom.; broken
- $U(1)_{a n}$ anom.; unbroken
$\longrightarrow \quad \mathrm{I}$ NG boson (π); massless fermions
- unbroken "discrete" symmetries

UV

IR

$\underline{\text { UV vs IR degrees of freedom }}$

- Let us now check the D.A. against the mixed-anomalies

$$
G=S U(N) \times \frac{U(1)_{\psi_{\chi}} \times \tilde{U}(1) \times S U(8)}{\mathbb{Z}_{N} \times \mathbb{Z}_{8 / N^{*}}}
$$

- Gauge the color-flavor locked 1-form $\mathbb{Z}_{N}=S U(N) \cap \tilde{U}(1)$ symmetry.

Various mixed anomalies: (p.63)

	$\tilde{U}(1)$	$U(1)_{\psi \chi}$	$\left(\mathbb{Z}_{N+2}\right)_{\psi}$	$\left(\mathbb{Z}_{N-2}\right)_{\chi}$	$S U(8)_{\eta}$	$\mathbb{Z}_{N^{*}}$	$\mathbb{Z}_{4 / N^{*}}$
Mixed Anomalies	\checkmark	X	X	X	\checkmark	\checkmark	\checkmark
Dyn. Abel.	\checkmark	X	X	X	\checkmark	\checkmark	\checkmark

Assumption of the dynamical Abelianization is consistent
5. More general dynamical symmetry breaking DSB

$$
\begin{array}{ll}
0 \quad \text { (adj. repr) but } \\
\langle\psi \chi\rangle=\text { diag. }\left(c_{1} \mathbf{1}_{n_{1}}, c_{2} \mathbf{1}_{n_{2}}, \ldots\right), \quad \sum_{i} c_{i} n_{i}=0 & \begin{array}{l}
\text { Non Abelian } \mathbb{R} \text {-fre subgroup(s) } \\
\text { surviving in the } \mathbb{R} ?
\end{array} \\
\text { SU }(\mathbb{N}) \rightarrow \operatorname{SU}(n) \times \cdots
\end{array}
$$

$\langle\psi \chi\rangle \neq 0 \quad$ (adj. repr) but
$\mathrm{SU}(\mathrm{N})$ models with

$$
\frac{N-4}{k} \square \oplus \frac{N+4}{k} \square
$$

- $\quad N=5, k=1$:

$$
\begin{aligned}
& G_{C}=S U(5) \rightarrow S U(3) \times S U(2) \times U(1) \\
& G_{F}=S U(9) \times U_{0}(1) \rightarrow S U(8) \times U_{0}(1)^{\prime}
\end{aligned}
$$

$$
\beta(S U(3))>0
$$

$$
\beta(S U(2))<0
$$

\square

- $\quad N=6, k=2: \quad$ No breaking w IR-free NonAbelian groups
- $\quad \mathrm{SU}(\mathrm{N})$ theory with

$$
{ }_{2} \square \square \oplus \square_{\oplus(N+12)} \square
$$

N	$\left[n^{*}\right]$	$S U(N) \rightarrow \cdots$
3	2	$S U(3) \rightarrow S U(2) \times U(1)$
4	2	$S U(4) \rightarrow S U(2) \times S U(2) \times U(1)$
5	2	$S U(5) \rightarrow S U(2) \times S U(2) \times U(1)^{2}$
6	2	$S U(6) \rightarrow S U(2) \times S U(2) \times S U(2) \times U(1)^{2}$
\vdots	\vdots	\vdots
$N \rightarrow \infty$	$\left[n^{*}\right]$	$S U(N) \rightarrow \prod_{1}^{7} S U\left(\left[n^{*}\right]\right) \times S U\left(N-7\left[n^{*}\right]\right) \times U(1)^{7}$

$$
G_{C}=S U(5) \rightarrow S U(3) \times S U(2) \times U(1)
$$

	fields	$S U(3)$	$S U(2)$	$U(1)$	$S U(9)$	$U_{0}(1)$
UVV	$\psi^{i j}$	\square	\square	(\cdot)	4	(\cdot)
	$\psi^{i J}$	\square	\square	-1	(\cdot)	$\frac{9}{N+2}$
	$\psi^{J K}$	(\cdot)	$\square \square$	-6	(\cdot)	$\frac{9}{N+2}$
	-					
	$\chi_{i j}^{A}$	$\square=\square$	(\cdot)	-4	\square	$-\frac{1}{N-2}$
	$\chi_{i J}^{A}$	\square	\square	1	\square	$-\frac{1}{N-2}$
	$\chi_{J K}^{A}$	(\cdot)	(\cdot)	6	\square	$-\frac{1}{N-2}$

Table 1: $\psi \chi$ model, $N=5, k=1 . ~ A=1,2, \ldots, 9, i, j=1,2,3 ; J, K=4,5$.

Table 2: $N=5, k=1, \psi \chi$ model: massless fermions. $B=1,2, \ldots, 8$.

$\longrightarrow \quad$| | fields | $S U(3)$ | $S U(2)$ | $U_{Y}(1)$ | $S U(3)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IR | u_{R}^{c} | \square | (\cdot) | $-\frac{4}{3}$ | \square |
| | q_{L} | \square | \square | $\frac{1}{3}$ | \square |
| | e_{R}^{c} | (\cdot) | (\cdot) | 2 | \square |
| | d_{R}^{c} | \square | (\cdot) | $\frac{2}{3}$ | \square |
| | ψ_{L} | (\cdot) | \square | -1 | \square |
| | ν_{R}^{c} | (\cdot) | (\cdot) | 0 | \square |
| | ϕ | (\cdot) | \square | 1 | (\cdot) |

Part 3: Criteria for confinement and other phases

Reflections

- In chiral BY and GG models, a putative confinement phase with fully unbroken global symmetries (no condensates forming) is inconsistent.
- BY and GG models are (likely) in color-flavor locked dynamical Higgs phase;
- In " $\psi \chi \eta$ " and other models with $\langle\psi \chi\rangle \neq 0$ in adj repr.
\longrightarrow Dynamical Abelianization (Coulomb phase)
$\longrightarrow \quad$ More general DSB (nonAbelian IR gauge group)
- In QCD (vector-like) the $\operatorname{SU}(3)$ color is confined.

What is confinement?

Color confinement ?

Def.A Particles with color (e.g., quarks) cannot be freely propagating, i.e., "confined" inside color-singlet hadrons (mesons and baryons).

Def. B Wilson-loop, Polyakov-loop criteria
vilson-loop, Polyakov-loop criteria area law

$$
\begin{aligned}
W(\gamma)=\operatorname{Tr}\left\{\mathcal{P} e^{i \oint_{\gamma} A_{\mu} d x^{\mu}}\right\} \quad \lim _{A_{\mu}} \equiv A_{\mu}^{a} T^{a}
\end{aligned} \quad \lim _{\gamma \rightarrow \infty}\langle W(\gamma)\rangle= \begin{cases}e^{-A} & \text { confinement } \\
e^{-L} & \text { Higgs } \\
\text { perimeter law }\end{cases}
$$

- $\quad P(\mathbf{r})=\frac{1}{N} \operatorname{Tr}\left\{\mathcal{T} e^{i \int_{0}^{\beta} d \tau A_{0}(\mathbf{r}, \tau)}\right\}$

$$
\text { Center symmetry } \quad P(\mathbf{r}) \rightarrow \mathbb{Z}_{N} P(\mathbf{r}) \quad \lim _{\beta \rightarrow \infty}|\langle P(\mathbf{r})\rangle|=0
$$

- Lattice simulation $\longrightarrow S U(N) Y M$ is in confinement phase!
- But there is nothing to confine in YM theory !!
- massless quarks \longrightarrow no center symmetry; the string splits, area law lost
- what distinguish Confinement and Higgs phase (both perimeter law) ?
- Def. A is also problematic. Gauge non-invariant (colored) operators/states as gauge invariant ones, in a given gauge.
- e.g., Weinberg-Salam $\operatorname{SU}(2) x U(1)$ theory

Higgs VEV $\langle\phi\rangle=\binom{v}{0}, \quad v \neq 0 \quad$ really means $\quad\left\langle\sum_{i=1}^{2} \phi^{i *} \phi^{i}\right\rangle \neq 0$
Brout-Englert-Higgs '64
CMS, Atlas '12

Also, the neutrino and electron in $\psi_{L}=\binom{\nu_{L}}{e_{L}}$:
© H Hoft
really mean $\quad \nu_{L} \sim \phi^{\dagger} \cdot \psi_{L}, \quad e_{L} \sim \epsilon_{\alpha \beta} \psi_{L}^{\alpha} \phi^{\beta}$

- Does it mean that there are no distinctions (Higgs and confinement)?

No, There are differences in the spectrum
Abbot, Farhi ${ }^{8} 1$

- In $\psi \eta$ model, the NG boson $\quad \sum_{n, j}^{N} \psi^{n j} \eta_{j}^{n}=\operatorname{Tr}(\psi \eta) \propto 1+\frac{i}{F_{\pi}^{(0)}} \phi_{0}+\ldots$
\sim gauge-invariant $\quad \operatorname{det} U, \quad U^{k \ell} \equiv \psi^{k j} \eta_{j}^{\ell}$
Dynamical Higgs phase
but the "confining" system, $\langle\operatorname{det} U\rangle \neq 0,\langle\psi \eta\rangle=0$, has a different symmetry.
- Dynamical Higgs phase and Elitzur's theorem

Def. C Confinement $=$ dual superconductivity (dual Meissner effect) $\begin{gathered}\text { tt troft } \\ \text { Seiberg, }\end{gathered}$ $U(1)^{2} \subset S U(3)_{\text {color }}$ A particle has el. and mag. q. numbers

$$
\left(n_{1}, n_{2} ; m_{1}, m_{2}\right),
$$

$$
\mathrm{U}(\mathrm{I}) \text {, e m charges = }
$$

Def. Dirac unit between two particles

$$
n_{1} e_{1}, m_{1} g_{1}, \quad e_{1} g_{1}=n / 2
$$

$$
\mathcal{D} \equiv \sum_{i}\left(n_{i}^{(1)} m_{i}^{(2)}-n_{i}^{(2)} m_{i}^{(1)}\right)
$$

Criterion

$$
\left\langle M^{(1)}\right\rangle \neq 0 \quad \longrightarrow \text { Particles (2) with } \quad \mathcal{D} \neq 0 \quad \operatorname{Mod} 3 \quad \text { are confined }
$$

e.g. $\quad\left\langle M_{(0,0 ; 1 ; 0)}\right\rangle \neq 0, \quad \longrightarrow$ Quark $_{(1,0 ; 0 ; 0)}$ is confined!
(magnetic monopole condensation)

- Def. C is also problematic:
- The idea involves Abelian monopoles
- $\left\langle M_{b}^{a}\right\rangle=\delta_{b}^{a} \Lambda \neq 0 \quad \rightarrow \quad$ Confinement $\quad X S B \rightarrow S U\left(N_{f}\right)_{V}$

But too many NG bosons; also doubling of the Regge trajectories
Confinement $=$ NonAblelian dual Meissner effect ?
Condensation of (strongly-coupled) NonAbelian monoples?

(Tentative) New criteria

- The phase of an $\operatorname{SU}(\mathrm{N})$ gauge theory NOT determined by the underlying pure $\operatorname{SU}(\mathrm{N}) \mathrm{YM}$ theory (in the "confinement phase"),
- BUT by elementary (scalar), composite (bifermion), or solitonic condensates and by the type of NG bosons they produce:
- No colored NG bosons \longrightarrow Confinement (e.g., YM, QCD, Susy QCD/YM)
- $\mathrm{N}^{2}-1$ colored NG bosons \longrightarrow Higgs phase (e.g., BY and GG models, GWS)
- $\mathrm{N}(\mathrm{N}-1)$ colored NG bosons

Dynamical Abelianization ($\psi \chi \eta, \mathcal{N}=2$ Susy) (Coulomb phase, or dual Higgs)

- Other groups of colored NG bosons

Partial Higgs/confinement/Coulomb (being explored..)

Part 4: Supersymmetry and strongly-coupled gauge theories

Montonen-Olive duality
Susy instanton calculus,
Veneziano-Yankielovicz, Seiberg's duality in SQCD, Seiberg-Witten,
Witten-Olive, Witten
Generalized KK anomaly,
Argyres-Douglas, SCFT, EHIY
Argyres-Plesser-Seiberg-Witten
GST duality,
SCFT and confinement
(Susy-inspired) results on
NonAbelian vortices and monopoles

Some reflections

Part 4: Supersymmetry and strongly-coupled gauge theories

Montonen-Olive duality
Susy instanton calculus,
Veneziano-Yankielovicz, Seiberg's duality in SQCD, Seiberg-Witten, Witten-Olive, Witten
Generalized Konishi anomaly,
Argyres-Douglas, SCFT, EHIY
Argyres-Plesser-Seiberg-Witten
GST duality,
SCFT and confinement
(Susy-inspired) results on
NonAbelian vortices and monopoles

Some reflections

1. SYM, SQCD

- $\mathcal{N}=1 \quad$ SQCD

Taylor-Veneziano-Yankielowicz'83 KK'84
Affleck-Dine-Seiberg'84
Rossi, Veneziano, '88 Affleck-Dine-Seurice, Rossi, Veneziano,
Amati, KK, Meu

- $\operatorname{det} m \neq 0 \quad\langle\lambda \lambda\rangle=$

$$
\begin{gathered}
m_{i}\left\langle Q_{i} \tilde{Q}_{i}\right\rangle=\text { indep. of } i=\Lambda_{1}^{\frac{3 n_{c}-n_{f}}{n_{c}}}\left(\prod_{i=1}^{n_{f}} m_{j}^{1 / n_{c}}\right) \cdot e^{2 \pi i k / n_{c}}, \quad k=1,2, \ldots, n_{c}: \\
m \rightarrow 0: \quad \begin{array}{l}
\langle Q \tilde{Q}\rangle \rightarrow \infty, \quad N_{f}<N_{c} \quad \text { (run-away vacua) } \\
\\
\langle\lambda \lambda\rangle,\langle Q \tilde{Q}\rangle \rightarrow 0, \quad N_{f}>N_{c}
\end{array}
\end{gathered}
$$

- $m=0: \quad$ QMS (flat directions)

Seiberg's EM duality, phases, SCFT

N_{f}	$<N_{c}$	N_{c}	$N_{c}+1 \leq N_{f}<\frac{3 N_{c}}{2}$	$\frac{3 N_{c}}{2}<N_{f} \leq 3 N_{c}$	$>3 N_{c}$
Phases	No vacua	finite vacua	Free magnetic phase	SCFT	Infrared free
IR Deg. freedom	-	M, B, \bar{B}	M, B, \bar{B}	Q, \tilde{Q} or q, \tilde{q}, M	Q, \tilde{Q}

2. SCFT (superconformal th) $\mathcal{N}=2$ SYM, SQCD

- SU(3) SYM

$$
4 u^{3}=27 \tilde{v}^{2}, \quad \tilde{v}=v \pm 2 \Lambda^{3}
$$

\longrightarrow Nonlocal U(1) SCFT

Argyres-Douglas '95

$$
\begin{aligned}
\mathbf{n}^{(1)} & =(1,0 ; 0,0) \\
\mathbf{n}^{(2)} & =(0,0 ;-1,0) \\
\mathbf{n}^{(3)} & =(1,0 ;-1,0)
\end{aligned}
$$

- $\operatorname{SU}(3) \quad \mathrm{N}_{\mathrm{F}}=4 \mathrm{SQCD}$

$$
u=3 m^{2}, \quad v=2 m^{3}
$$

Nonlocal
SU(2) x U(1) SCFT

Auzzi, Grena, KK '02

\square| Matrix | Charge |
| :--- | :--- |
| M_{1}, M_{4} | $(\pm 1,1,0,0)^{4}$ |
| A_{2}, A_{5} | $(\pm 1,-1, \mp 1,0)^{4}$ |
| M_{2}, M_{5} | $(\pm 2,2, \mp 1,0)$ |
| A_{3}, A_{6} | $(\pm 2,-2, \pm 1,0)$ |
| M_{3}, M_{6} | $(0,2, \pm 1,0)$ |
| A_{1}, A_{4} | $(\pm 4,-2, \mp 1,0)$ |

- Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang, Gaiotto,

SCFT points of $\mathcal{N}=2 \quad \operatorname{SQCD}$ with $\operatorname{SU}(\mathrm{N}), \mathrm{USp}(2 \mathrm{~N})$

QMS of $\mathrm{N}=2$ SQCD (SU(n) with n_{f} quarks)

- $\mathrm{N}=1$ Confining vacua (with $\boldsymbol{\Phi}^{2}$ perturbation)
- $\mathrm{N}=1$ vacua (with $\boldsymbol{\Phi}^{2}$ perturbation) in free magnetic pha

Argyres, Plesser, Seiberg '96
Carlino, KK, Murayama '00
Di Pietro, Giacomelli '11

3. IR CFT (conformally inv fixed points) ~ confinement

- Naively, diametrically opposite concepts
- In systems with parameters ($\mathrm{N}_{\mathrm{F}}, \mathrm{g}, \mathrm{QMS}$), however, they may be close to each other, as the parameters are varied

Banks-Zacks,
SQCD Seiberg
\longrightarrow deviation of the RG flow: CFT \longrightarrow Confinement

- The same degrees of freedom describing the CFT f.p. describe confinement vacuum nearby
- Interesting nonAbelian CFT's are strongly coupled (cfr. Abelian dual superconductor)

Ass A difficulty!

Confinement and RG flow

4. How to study strongly-coupled conformal IR fixed points (and show near-by confinement)

- S duality in exact conformal theories (w arbitrary g)
$g=\infty \leftrightarrow g_{D}=1 / g \sim 0$
$N=4$
Argyres-Seiberg 07
* GST duality: apply Argyres-Seiberg to the SCFT IR fixed points
Gaiotto-Seiberg-Tachikawa
Giacomelli' 12
- GST allows us to study a singular SCFT, to deform it to get confinement and XSB

4. How to study strongly-coupled conformal IR fixed points (and show near-by confinement)

- S duality in exact conformal theories (w arbitrary g)
$g=\infty \leftrightarrow g_{D}=1 / g \sim 0$
$N=4$
Argyres-Seiberg 07
* GST duality: apply Argyres-Seiberg to the SCFT IR fixed points
Gaiotto-Seiberg-Tachikawa
Giacomelli' 12
- GST allows us to study a singular SCFT, to deform it to get confinement and XSB

RG flows

THE END

Thank you for your attention !

1. $\langle\lambda \lambda\rangle$

- $\mathcal{N}=1 \quad$ SYM

$$
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle=\frac{\mu}{T_{G}}\left\langle\operatorname{Tr} \phi^{2}\right\rangle
$$

es of μ; by matching the dynamical scales as $\Lambda_{\mathcal{N}=1}^{3}=\mu \Lambda_{\mathcal{N}=2}^{2}$ onsidered here) upon decoupling the adjoint matter, one finds

$$
\begin{aligned}
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{S U(r+1)} & =\Lambda_{\mathcal{N}=1}^{3} \\
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{S O(2 r+1)} & =2^{\frac{4}{2 r-1}-1} \Lambda_{\mathcal{N}=1}^{3} \\
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{U S p(2 r)} & =2^{1-\frac{2}{r+1}} \Lambda_{\mathcal{N}=1}^{3}, \\
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{S O(2 r)} & =2^{\frac{2}{r-1}-1} \Lambda_{\mathcal{N}=1}^{3},
\end{aligned}
$$

- OK w/ results from SQCD (weak instanton calc.)

Squark, gaugino condensates, K anomaly, decoupling of quarks
cfr. 4/5 puzzle

- $\langle\lambda \lambda\rangle \neq 0, \quad Z_{2 N} \rightarrow Z_{2}$

XSB \& N vacua (SU(N)

Seiberg-Witten
adj mass $\mathcal{N}=1$ perturbation,
(Exact)

Konishi-anomaly, decoupling

- $\langle\lambda \lambda\rangle \neq 0 \quad$ Toron?
- $\Delta L_{\mathcal{N}=0}=m_{\lambda} \lambda \lambda+h . c$.

nixed anomaty
(ii) $\quad\left(N_{\psi}, N_{\chi}\right)=(0,1)$ model
$\chi_{[i j]}, \quad \tilde{\eta}^{B j}, \quad B=1,2, \ldots,(N-4)$

$$
S U(N)_{\mathrm{c}} \times S U(N-4)_{\mathrm{f}} \times U(1)
$$

(A) Confinement with no XSB
looks consistent

fields	$S U(N)_{c}$	$S U(N-4)$	$U(1)$
	\square		
χ	\square	$\frac{N(N-1)}{2} \cdot(\cdot)$	$N-4$
$\tilde{\eta}^{A}$	$(N-4) \cdot \square$	$N \cdot \square$	$-(N-2)$
$B^{\{A B\}}$	$\frac{(N-4)(N-3)}{2} \cdot(\cdot)$	\square	$-N$

(B) Color-flavor locked dyn. Wigs
$\left\langle\chi_{[i j]} \tilde{\eta}^{B j}\right\rangle=$ const. $\Lambda^{3} \delta_{i}^{B}$ $\square_{\otimes} \square \rightarrow \square_{\oplus \ldots} \ldots$
$\rightarrow S U(N-4)_{\mathrm{cf}} \times U(1)^{\prime} \times S U(4)_{\mathrm{c}}$
The same massless baryons $B^{C D}$ do the job
No NG bosons; complementarity (?)

- But $\chi_{\left[i_{2}, j_{2}\right]}$ still around and strongly coupled
$\rightarrow\langle\chi \chi\rangle \neq 0$
Dark Matter?
Tumbling (?): SU(4) confined

Theoretical laboratories : chiral $\operatorname{SU}(\mathrm{N})$ gauge theories with Weyl fermions (battle fields?)

$$
N_{\psi} \square \oplus N_{\tilde{\psi}} \square \square N_{\tilde{\chi}} \square \oplus N_{\chi} \square \oplus N_{\tilde{\eta}} \square \oplus N_{\eta} \square \oplus N_{a d j}
$$

λ

Figure 1: All the possible $\left(N_{\psi}, N_{\chi}\right)$ models that are AF at large N.

Part 4: Supersymmetry and strongly-coupled gauge theories

Montonen-Olive duality
Susy instanton calculus,
Veneziano-Yankielovicz, Seiberg's duality in SQCD, Seiberg-Witten,
Witten-Olive, Witten
Generalized KK anomaly,
Argyres-Douglas, SCFT, EHIY
Argyres-Plesser-Seiberg-Witten
GST duality,
SCFT and confinement
(Susy-inspired) results on
NonAbelian vortices and monopoles

Some reflections

1. $\langle\lambda \lambda\rangle$

- $\mathcal{N}=1 \quad$ SYM

$$
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle=\frac{\mu}{T_{G}}\left\langle\operatorname{Tr} \phi^{2}\right\rangle
$$

es of μ; by matching the dynamical scales as $\Lambda_{\mathcal{N}=1}^{3}=\mu \Lambda_{\mathcal{N}=2}^{2}$ onsidered here) upon decoupling the adjoint matter, one finds

$$
\begin{aligned}
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{S U(r+1)} & =\Lambda_{\mathcal{N}=1}^{3} \\
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{S O(2 r+1)} & =2^{\frac{4}{2 r-1}-1} \Lambda_{\mathcal{N}=1}^{3} \\
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{U S p(2 r)} & =2^{1-\frac{2}{r+1}} \Lambda_{\mathcal{N}=1}^{3}, \\
\left\langle\frac{\operatorname{Tr} \lambda^{2}}{16 \pi^{2}}\right\rangle_{S O(2 r)} & =2^{\frac{2}{r-1}-1} \Lambda_{\mathcal{N}=1}^{3},
\end{aligned}
$$

- OK w/ results from SQCD (weak instanton calc.)

Squark, gaugino condensates, K anomaly, decoupling of quarks
cfr. 4/5 puzzle

- $\langle\lambda \lambda\rangle \neq 0, \quad Z_{2 N} \rightarrow Z_{2}$

XSB \& N vacua (SU(N)

Seiberg-Witten
adj mass $\mathcal{N}=1$ perturbation,
(Exact)

Konishi-anomaly, decoupling

- $\langle\lambda \lambda\rangle \neq 0 \quad$ Toron?
- $\Delta L_{\mathcal{N}=0}=m_{\lambda} \lambda \lambda+h . c$.

nixed anomaty
- $\mathcal{N}=1 \quad$ SQCD

Taylor-Veneziano-Yankielowicz'83 KK'84 Dine-Seiberg'84 Affleck-DI, Meurice, Rossi, Venti,
Amatian

- $\operatorname{det} m \neq 0 \quad\langle\lambda \lambda\rangle=$

$$
\begin{gathered}
m_{i}\left\langle Q_{i} \tilde{Q}_{i}\right\rangle=\text { indep. of } i=\Lambda_{1}^{\frac{3 n_{c}-n_{f}}{n_{c}}}\left(\prod_{i=1}^{n_{f}} m_{j}^{1 / n_{c}}\right) \cdot e^{2 \pi i k / n_{c}}, \quad k=1,2, \ldots, n_{c}: \\
m \rightarrow 0: \quad \begin{array}{l}
\langle Q \tilde{Q}\rangle \rightarrow \infty, \quad N_{f}<N_{c} \quad \text { (run-away vacua) } \\
\\
\langle\lambda \lambda\rangle,\langle Q \tilde{Q}\rangle \rightarrow 0, \quad N_{f}>N_{c}
\end{array}
\end{gathered}
$$

- $m=0: \quad$ QMS (flat directions)

Seiberg's EM duality, phases, SCFT

N_{f}	$<N_{c}$	N_{c}	$N_{c}+1 \leq N_{f}<\frac{3 N_{c}}{2}$	$\frac{3 N_{c}}{2}<N_{f} \leq 3 N_{c}$	$>3 N_{c}$
Phases	No vacua	finite vacua	Free magnetic phase	SCFT	Infrared free
IR Deg. freedom	-	M, B, \bar{B}	M, B, \bar{B}	Q, \tilde{Q} or q, \tilde{q}, M	Q, \tilde{Q}

2. SCFT (superconformal th) $\mathcal{N}=2$ SYM, SQCD

- SU(3) SYM

$$
4 u^{3}=27 \tilde{v}^{2}, \quad \tilde{v}=v \pm 2 \Lambda^{3}
$$

\longrightarrow Nonlocal U(1) SCFT

Argyres-Douglas '95

$$
\begin{aligned}
\mathbf{n}^{(1)} & =(1,0 ; 0,0) \\
\mathbf{n}^{(2)} & =(0,0 ;-1,0) \\
\mathbf{n}^{(3)} & =(1,0 ;-1,0)
\end{aligned}
$$

- $\operatorname{SU}(3) \quad \mathrm{N}_{\mathrm{F}}=4 \mathrm{SQCD}$

$$
u=3 m^{2}, \quad v=2 m^{3}
$$

Nonlocal
SU(2) x U(1) SCFT

Auzzi, Grena, KK '02

\square| Matrix | Charge |
| :--- | :--- |
| M_{1}, M_{4} | $(\pm 1,1,0,0)^{4}$ |
| A_{2}, A_{5} | $(\pm 1,-1, \mp 1,0)^{4}$ |
| M_{2}, M_{5} | $(\pm 2,2, \mp 1,0)$ |
| A_{3}, A_{6} | $(\pm 2,-2, \pm 1,0)$ |
| M_{3}, M_{6} | $(0,2, \pm 1,0)$ |
| A_{1}, A_{4} | $(\pm 4,-2, \mp 1,0)$ |

- Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang, Gaiotto,

SCFT points of $\mathcal{N}=2 \quad \operatorname{SQCD}$ with $\operatorname{SU}(\mathrm{N}), \mathrm{USp}(2 \mathrm{~N})$

QMS of $\mathrm{N}=2$ SQCD (SU(n) with n_{f} quarks)

- $\mathrm{N}=1$ Confining vacua (with $\boldsymbol{\Phi}^{2}$ perturbation)
- $\mathrm{N}=1$ vacua (with $\boldsymbol{\Phi}^{2}$ perturbation) in free magnetic pha

Argyres, Plesser, Seiberg '96
Carlino, KK, Murayama '00
Di Pietro, Giacomelli '11

IR CFT (conformally inv fixed points) ~ confinement

- Naively, diametrically opposite concepts
- In systems with parameters ($\mathrm{N}_{\mathrm{F}}, \mathrm{g}, \mathrm{QMS}$), however, they may be close to each other, as the parameters are varied

Banks-Zacks,
SQCD Seiberg

- Small relevant deformation (perturbation, or produced by the system itself)
\longrightarrow deviation of the RG flow: CFT \longrightarrow Confinement
- The same degrees of freedom describing the CFT f.p. describe confinement vacuum nearby
- Interesting nonAbelian CFT's are strongly coupled (cfr. Abelian dual superconductor)

As A difficulty!

Confinement and RG flow

How to study strongly-coupled conformal IR fixed points (and show near-by confinement)

- S duality in exact conformal theories (w arbitrary g)
$g=\infty \leftrightarrow g_{D}=1 / g \sim 0$
$\mathcal{N}=4$
Argyres-Seiberg ${ }^{07}$
* GST duality: apply Argyres-Seiberg to the SCFT IR fixed points

Gaiotto-Seiberg-Tachikawa

- GST allows us to study a singular SCFT, to deform it to get confinement and XSB

RG flows

$N_{f}<\frac{11}{2} N_{c}$

$$
a_{I R}=\frac{N_{f}^{2}-1}{360}
$$

$$
c_{I R}=\frac{N_{f}^{2}-1}{120}
$$

Real-world QCD
$\mathrm{N}=0$ SCFT
$a_{U V}=\frac{11 N_{f} N_{c}}{360}+\frac{31}{180}\left(N_{c}^{2}-1\right)$
$c_{O V}=\frac{1}{20} N_{f} N_{c}+\frac{N_{c}^{2}-1}{10}$

Real-world QCD
N=0 SCFT
$a_{U V}=\frac{11 N_{f} N_{c}}{360}+\frac{31}{180}\left(N_{c}^{2}-1\right)$
$c_{U V}=\frac{1}{20} N_{f} N_{c}+\frac{N_{c}^{2}-1}{10}$

UV

Back to p. 26

To sum up: Susy gauge theories

- Deep insights and understanding on:
- Quantum monopoles and dyons; Dualities
- (S)CFT, IR fixed-points
- Hint: Confinement in QCD ~ close to nontrivial CFT

But
Deform $\Delta L_{(\mathcal{N}=0)}$ to learn dynamics of non-Susy theories ? No (t easy...)

- QMS (flat directions) in susy systems: where to start?
- Bifermion condensates
$\langle\psi \eta\rangle,\langle\chi \eta\rangle,\langle\psi \chi\rangle,\left\langle\bar{q}_{R} q_{L}\right\rangle$ (QCD)
$\Phi=A+\sqrt{2}-$ chiral superfie $+\cdots$
all vanish by supersymmetry: Susy must be sp.ly broken
- Interesting possible phases (dynamical Higgs, Abelianization, etc.) in chiral gauge theories: all out of reach of Susy cousins

AF or CFT

Up to 2 loops:

$$
\begin{aligned}
& \alpha_{N_{\psi}, N_{\chi}}=\left(\begin{array}{cccccc}
-\frac{22 \pi}{17 N} & -\frac{24 \pi}{13 N} & -\frac{28 \pi}{5 N} & \frac{40 \pi}{19 N} & \frac{\pi}{2 N} & \frac{8 \pi}{77 N} \\
-\frac{24 \pi}{13 N} & -\frac{2 \pi}{N} & -\frac{8 \pi}{N} & \frac{20 \pi}{11 N} & \frac{8 \pi}{17 N} & \frac{\pi}{10 N} \\
-\frac{28 \pi}{5 N} & -\frac{8 \pi}{N} & -\frac{14 \pi}{N} & \frac{8 \pi}{5 N} & \frac{4 \pi}{9 N} & \frac{8 \pi}{83 N} \\
\frac{40 \pi}{19 N} & \frac{20 \pi}{11 N} & \frac{8 \pi}{5 N} & \frac{10 \pi}{7 N} & \frac{8 \pi}{19 N} & \frac{4 \pi}{43 N} \\
\frac{\pi}{2 N} & \frac{8 \pi}{17 N} & \frac{4 \pi}{9 N} & \frac{8 \pi}{19 N} & \frac{2 \pi}{5 N} & \frac{8 \pi}{89 N} \\
\frac{8 \pi}{77 N} & \frac{\pi}{10 N} & \frac{8 \pi}{83 N} & \frac{4 \pi}{43 N} & \frac{8 \pi}{89 N} & \frac{2 \pi}{23 N}
\end{array}\right)+O\left(1 / N^{2}\right) . \\
& \alpha<0: A F ; \\
& N_{\psi}, N_{\chi}=1,2, \ldots 6 \\
& \beta(g)=-\frac{g}{4 \pi}\left(\beta_{0} \frac{\alpha}{(4 \pi)}+\beta_{1}\left(\frac{\alpha}{4 \pi}\right)^{2}+\ldots\right)
\end{aligned}
$$

Actually all terms are of the same order in $1 / \mathrm{N} .$. . Need 't Hooft 's 1/N expansion

MAC like thinking

(i) $\left(N_{\psi}, N_{\chi}\right)=(1,0)$ model: a review

$$
\psi^{\{i j\}}, \quad \eta_{i}^{B}, \quad B=1,2, \ldots, N+4 \quad, \quad G=S U(N)_{\mathrm{c}} \times S U(N+4)_{\mathrm{f}} \times U(1)
$$

(A) Confining, $S U(N+4) \times U(1)$ symmetric phase with no condensates
massless baryons $\sim B^{[A B]}=\psi^{i j} \eta_{i}^{A} \eta_{j}^{B}, \quad A, B=1,2, \ldots, N+4$

	fields	$S U(N)_{\mathrm{c}}$	$S U(N+4)$	$U(1)$
UV	ψ	\square	$\frac{N(N+1)}{2} \cdot(\cdot)$	$N+4$
	η^{A}	$(N+4) \cdot \square$	$N \cdot \square$	$-(N+2)$
IR	$B^{[A B]}$	$\frac{(N+4)(N+3)}{2} \cdot(\cdot)$	\square	

(B) CF locked (Higgs) phase

$$
\begin{gathered}
\left\langle\psi^{\langle i j} \eta_{i}^{B}\right\rangle=C \delta^{j B}, \quad j, B=1,2, \ldots N \\
G \rightarrow G^{\prime}=S U(N)_{\mathrm{cf}} \times S U(4)_{\mathrm{f}} \times U^{\prime}(1)
\end{gathered}
$$

The anomaly matching OK, $\frac{N^{2}+7 N}{2}$ massless baryons $8 N+1$ Nambu-Goldstone

- Massless baryons and (NG) bosons in L.E.

	fields	$S U(N)_{\mathrm{cf}}$	$S U(4)_{\mathrm{f}}$	$U^{\prime}(1)$
UV	ψ	\square	$\frac{N(N+1)}{2} \cdot(\cdot)$	1
		$\square-\square$	$N^{2} \cdot(\cdot)$	-1
	$\eta^{A_{1}}$	$\square \square \square$	$N \cdot \square$	$-\frac{1}{2}$
	$\eta^{A_{2}}$	$4 \cdot \square$	N	
IR	$B^{\left[A_{1} B_{1}\right]}$	\square	$\frac{N(N-1)}{2} \cdot(\cdot)$	-1
	$B^{\left[A_{1} B_{2}\right]}$	$4 \cdot \square$	$N \cdot \square$	$-\frac{1}{2}$

