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 Part 1:  Introduction

Understand better the dynamics of 
strongly-coupled chiral gauge theories

A challenge for theorists



WHY

We live in a chiral world    

e.g.,    D
NA spirals

  Standard models of the fundamental interactions                            

 GUTs  SU(5),   SO(10) …   ? 

(*) (**)  are chiral gauge theories, but weakly coupled:
well-understood in perturbation theory 

(*)   to be regarded as a (very good) low-energy effective action

(ii)

(i)

(iii)

Gauge-anomaly 

cancellation 

 masses, neutrinos, families, … , Higgs, … ?????

♦

♦

♦    Surprisingly little is known today about strongly-coupled (asymptotically-free) chiral 
gauge theories 

5.2
Symmetrie

s in quan
tum

mechan
ics
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It is a truly
remarkab

le fact
that

the stand
ard model

of fu
ndam

en-

tal in
terac

tions
—quan

tum
chrom

odyn
amics for t

he stron
g inter

actio
ns

and
the Glasho

w–W
einbe

rg–S
alam

model
of ele

ctrow
eak inter

actio
ns—

are a
ll the

ories
of th

is sor
t (wi

th the S
U(3) g

roup
in the f

ormer an
d the

SU(2) ⇥ U(1) g
roup

in the latte
r). The

impress
ive succe

ss of
the stan-

dard
model

in descr
ibing

basic
ally all of

the k
nown

fund
amental

phys
ical

phen
omena,

with
the e

xclus
ion of gra

vitat
ional

ones,
sugg

ests t
hat a

very

highl
y nont

rivia
l con

ceptu
al un

ificat
ion unde

rlies
the w

orkin
g of Na

ture

(’t H
ooft)

.5

5To
be prec

ise,
there

is a part
of

the
Glasho

w–W
einb

erg–
Sala

m model,

relat
ed to the

so-ca
lled

Higgs
part

i-

cle,
whic

h is not
entir

ely dete
rmined

by gaug
e princ

iples
. Futu

re expe
ri-

ments,
such

as the Larg
e Hadro

n Col-

lider
(LHC) ex

perim
ents

whic
h has j

ust

start
ed oper

ating
at CER

N, Genev
a,

are
hope

d to give
some indic

ation
s

whet
her t

he model
shou

ld be exten
ded

and
if so

in whic
h way.

Fina
lly, a

symmetry
can be re

alize
d in two di↵er

ent w
ays,

eithe
r man-

ifest
or hidd

en.
The

form
er is the usua

l way
a symmetry

is realiz
ed

in Natu
re, y

ieldin
g energ

y dege
nerac

y among
the state

s belon
ging

to

a multip
let of st

ates,
trans

form
ed among

each
other

by the parti
cular

symmetry
opera

tion
unde

r con
sider

ation
. Ho

weve
r, th

is is
not t

he only

way
a symmetry

can be realiz
ed. It is possi

ble that
the phys

ical l
aws

and
the H

amilton
ian are i

nvari
ant b

ut th
e gro

und
state

is no
t.

In the exam
ple of th

e left–r
ight

symmetry
of th

e human body
, an

exact
symmetry

may be re
alize

d in three
di↵er

ent w
ays.

Each
indiv

idual

is left–r
ight

symmetric
, wit

h the heart
in the cente

r; or
, for

each
left-

heart
ed perso

n there
is an

other
indiv

idual
with

the heart
on the right

,

but o
therw

ise w
ith ident

ical c
hara

cteri
stics

(a parit
y partn

er); o
r fina

lly,

the optio
n that

every
body

has t
he heart

on the left s
ide, e

ven if all
the

phys
ical a

nd biolo
gical

laws
are s

ymmetric
,6 i.e., m

ight
have

allow
ed for

6Of cou
rse,

this
is a

blata
nt si

mplific
a-

tion
for the sake

of di
scuss

ion.
Biolo

g-

ical s
ystem

s are
not l

eft–r
ight

symmet-

ric a
t the

deep
er lev

els a
lso (e.g.

DNA).

a left-h
earte

d as we
ll as

right
-hear

ted peop
le (se

e Fig
ure 5

.1). T
his la

st

optio
n, wh

ich Natu
re see

ms to h
ave a

dopt
ed, is

know
n as “s

pont
aneo

usly

brok
en” symmetry.

See S
ubse

ction
5.2.1

.

Left-rig
ht

symmetry

broken(spontaneously)

Left-rig
ht

symmetry

    O
K

for world    

Each person

is left-rig
ht

symmetric    

Fig.
5.1 Left–

right
symmetry

might

be reali
zed in di↵e

rent
ways

A well-
know

n exam
ple o

f spo
ntan

eousl
y brok

en symmetry
is the

spon
-

taneo
us m

agne
tizat

ion that
occu

rs in
certa

in metals
(ferro

magne
ts). B

e-

low some crit
ical t

emperat
ure,

all th
e spi

ns ar
e dir

ected
in the s

ame di-

recti
on, t

hus “
viola

ting”
the SO(3) r

otati
onal

invar
iance

of th
e Ham

il-

tonia
n. Ther

e are many
importa

nt appli
catio

ns in solid
-stat

e and
ele-

mentar
y parti

cle p
hysic

s of s
pont

aneo
usly

brok
en symmetrie

s.

C. N
. Yan

g, in
the c

onclu
ding

talk
of th

e TH
2002

Conf
erenc

e in Paris
,

chara
cteri

zed the 2
0th centu

ry theor
etica

l phy
sics b

y three
“melodi

es”:
7

7For t
he “p

hase
facto

r”, s
ee C

hapt
ers 8

and
14.

“Sym
metry

, qu
antiz

ation
, and

phas
e facto

r”

The
chall

enge
toda

y is to
find

out w
heth

er we
need

some new
princ

iples

or pa
radig

m, in addit
ion to these

conc
epts,

to unde
rstan

d Natu
re at a

deep
er lev

el, be
yond

the s
tand

ard model
of fu

ndam
ental

inter
actio

ns.

5.2
Sym

metrie
s in quan

tum
mecha

nics

The
prese

nce of a
symmetry

in a quan
tum

mechan
ical

syste
m is sig-

naled
by the exist

ence
of a

unita
ry opera

tor U whic
h commutes

with

the H
amilton

ian: [U,H
] = 0 .

(5.1)

♦ Cfr.  vectorlike theories,   e.g.,

   QCD (50 years of successful studies);
              susy gauge theories (Seiberg-Witten solution  ~ 30 yrs) 

(*)

(**)
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 Some  examples:  SU(N)  gauge theories w fermions

(iii) The third line is the pure flavor U (1)3 and (U⌘(N + 4))3 anomalies. They are
there even if no 1-form gauging is done.

(iv) The fourth line, present also for B = 0, would show that, if the first two
lines were absent, U ⌘(1),  = N+2, , ⌘ = N�2 would all be unbroken as
1

8⇡2

R
trF̃ 2 2 .

(v) The second line also shows that in the presence of the external A and A⌘ fields
(which are needed in order to have the color-flavor locked center symmetry),
the 1-form gauge symmetry is broken. This is another manifestation of the
failure of the gauging of the 1-form center symmetry.

We conclude, in view of the new anomalies induced by gauging of the 1-form
color-flavor center symmetry, that the chirally symmetric confined phase of Sec. 3.3
cannot be realized in the infrared, as neither breaking of U ⌘(1) nor of Z = ZN+2

can be appropriately described, without having vacuum degeneracies/NG bosons.
Thus the color-flavor locked Higgs phase discussed in Sec. 3.4 seems to be strongly
favored as a way of dynamically realizing the symmetries in the infrared.

4 (N , N�) = (0, 1) model

This model was also studied by by Appelquist-Duan-Sannino, by Poppitz and by
ourselves. The matter fermions are

�[ij] , ⌘̃
B j

, B = 1, 2, . . . , (N � 4) , (4.1)

or
¯

+ (N � 4) . (4.2)

The symmetry is
SU(N)c ⇥ SU(N � 4)f ⇥ U(1) , (4.3)

where the anomaly free U(1) charge is

� : N � 4 ; ⌘̃
B j : �(N � 2) . (4.4)

b0 = 11N � (N � 2)� (N � 4) = 9N + 6 . (4.5)

There are also discrete symmetries

� = N�2 ⇢ U (1) , ⌘ = N�4 ⇢ U⌘(1) . (4.6)

The symmetries of the system is summarized in Table 9.
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(i)

in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [36, 37]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [14, 15], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [12]. The first coefficient of the

2
A careful exposition of these ideas can be found e.g., in [30].

3
In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [34].
4
A recent application of this class of chiral gauge theories is found in [35].
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For the symmetric and antisymmetric representations,

T ( )

T ( )
= N + 2 ,

T ( )

T ( )
= N � 2 . (1.5)

The conjugate representations have the same Dynkin index.

The symmetric traces appearing in the triangle anomalies are defined by

d(R) = Tr taRt
b
Rt

c
R + (b $ c) . (1.6)

For the symmetric and antisymmetric representations,

d( )

d( )
= N + 4 ,

d( )

d( )
= N � 4 . (1.7)

Furthermore, for a pair of conjugate representations

d(R⇤) = �d(R) . (1.8)

These are all we need in our analysis.

2 Revisiting the (N , N�) = (1, 1) (“ �⌘”) model

We first review the analysis of the model with left-handed fermion matter fields

 
{ij}

, �[ij] , ⌘
A
i , A = 1, 2, . . . 8 , (2.1)

a symmetric tensor, an anti-antisymmetric tensor and eight anti-fundamental multiplets of

SU(N), and add a few new comments with respect to [1].4 It is asymptotically free, the

first coe�cient of the beta function being,

b0 =
1

3
[11N � (N + 2)� (N � 2)� 8] =

9N � 8

3
. (2.2)

It is a very strongly coupled theory in the infrared and unlikely to flow into an infrared-

fixed point CFT. A nonvanishing instanton amplitude

h  . . . �� . . .�⌘...⌘i 6= 0 (2.3)

involves N + 2  ’s, N � 2 �’s and 8 ⌘’s.

4
Earlier studies on this model can be found in [6, 7, 11].
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(ii)

(iii)

(iv)

(1,0) model

(1,1) model

(0,1) model

Bars, Yankielowicz  (BY)

Georgi-G
lashow (GG)

symmetries involved must be broken. The pattern of the symmetry breaking predicted by

the assumption of dynamical Abelianization is found to fit nicely with these expectations.

2  �⌘ model and its symmetries

The  �⌘ model was studied earlier in [5,6,12] and more recently in [15,16]. It is an SU(N)

gauge theory with left-handed fermion matter fields

 
{ij}

, �[ij] , ⌘
A
i , A = 1, 2, . . . 8 , (2.1)

a symmetric tensor, an anti-antisymmetric tensor and eight anti-fundamental multiplets of

SU(N), or

�

¯

� 8⇥
¯

. (2.2)

The model has a global SU(8) symmetry. It is asymptotically free, the first coe�cient of

the beta function being,

b0 =
1

3
[11N � (N + 2)� (N � 2)� 8] =

9N � 8

3
. (2.3)

Such a � function suggests that it is a very strongly coupled theory in the infrared: it is

unlikely that it flows into an infrared-fixed CFT. But then some very nontrivial dynamical

phenomenon must take place towards the infrared: confinement, tumbling (dynamical

gauge symmetry breaking), or something else. The option that the system confines, with

no global symmetry breaking and with some massless “baryons” saturating the ’t Hooft

anomalies, does not appear to be plausible [5, 6, 12], as it would require an order / N of

the underlying fermions to form gauge-invariant baryons. The wish to understand what

happens in the (after all, simple) systems such as the  �⌘ model, was the driving motivation

for the renewed studies on this model [15, 16]. Several possible dynamical scenarios have

been found which are all compatible with ’t Hooft’s anomaly matching conditions, but the

results of the analysis remained not quite conclusive.

The system has three U(1) symmetries, U(1) , U(1)�, U(1)⌘, of which two combinations

are anomaly-free. For convenience we will take them below as

Ũ(1) :  ! e
2i↵
 , �! e

�2i↵
� , ⌘ ! e

�i↵
⌘ , (2.4)

and

U(1) � :  ! e
iN�2

N⇤ �
 , �! e

�iN+2
N⇤ �

� , ⌘ ! ⌘ , (2.5)

where

N
⇤ = GCD(N + 2, N � 2) and ↵, � 2 (0, 2⇡) . (2.6)

Any combination of the three classical U(1) symmetries which cannot be expressed as a

4

The system is asymptotically free and continues to evolve towards the infrared. We shall

not pursue further such a tumbling-like scenario, but it is possible that at the end the

system flows into the full dynamical Abelianization, studied in Sec. 3.

Even though we have focused our attention in this work on the  �⌘ theory for definite-

ness, there are other chiral gauge theories in which a bifermion condensate in the adjoint

representation might occur and in which dynamical Abelianization might be decisive in

determining the infrared physics. Possible examples are

(i) SU(N) theory (with N even), with odd number of fermions in the self-adjoint anti-

symmetric order N/2 tensor representation, studied in [17,27] ;

(ii) A generalization of the SU(N)  �⌘ model with a matter fermion content,

 
{ij},m

, �[ij] , ⌘
B
j , m = 1, 2, B = 1, 2, . . . , N + 12 , (5.3)

or

2 +

¯

+ (N + 12)
¯

. (5.4)

studied in [16] , and

(iii) SU(N) theories with fermions in the complex representation, N�4
k  

{ij}’s and N+4
k

�̄[ij],

N � 4

k
�

N + 4

k

¯

, (5.5)

(k being a common devisor of N � 4 and N + 4) studied recently [17, 37].

In all of them, the conventional ’t Hooft anomaly matching analysis is consistent with

dynamical Abelianization hypothesis, and in some cases, the preliminary analysis involving

the generalized symmetries and the mixed anomalies appears to give further support [17,37]

for it. Still, in some of this class of models, the symmetry breaking pattern may be di↵erent

from dynamical Abelianization, allowing for a more general types of infrared gauge theories.

We will come back to the discussion of these models in a separate investigation.
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forms, even though the bi-fermion condensate itself (5.14) breaks the discrete symmetry

more strongly,
 
2(N±2) �!

 
2 . (5.15)

6 Chiral models with N�4
k

 
{ij}’s and N+4

k
�̄[ij]’s

Let us consider now SU(N) gauge theories with Weyl fermions in the complex representa-

tion, N�4
k  

{ij}’s and N+4
k �̄[ij],

N � 4

k
� N + 4

k

¯

, (6.1)

where k is a common divisor of (N � 4, N + 4) and N � 5. With this matter content the

gauge anomaly cancels. Asymptotic freedom requirement

11N � 2

k
(N2 � 8) > 0 , (6.2)

leaves a plenty of possibilities for (N, k). Two particularly simple models which we analyze

in the following are:

(i) (N, k) = (6, 2): SU(6) theory with

� 5

¯

; (6.3)

(ii) (N, k) = (8, 4): SU(8) model with

� 3

¯

. (6.4)

6.1 SU(6) theory with 21� 5⇥ 15⇤

Classical continuous flavor symmetry group is

SU(5)⇥ U(1) ⇥ U(1)� . (6.5)
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�⌘ model

(v)

However our conclusion is not modified: (3.13) is actually equivalent to

 
3 �! 1 , (3.15)

in the vacuum with unbroken color�flavor
2 . This feature must be kept in mind in all our

analysis below: the crucial point is that in this paper we gauge only a subgroup of discrete

color center group, which does not act on the fermions 8.

The breaking  
6 !  

2 implies a threefold vacuum degeneracy, if the system confines

(with mass gap) and if in IR there are no massless fermionic degrees of freedom on which
 
6 /

 
2 can act 9. A possible explanation naturally presents itself. As the interactions

become strong in the infrared, it is reasonable to assume that bifermion condensate

h  i ⇠ ⇤3 6= 0 (3.16)

forms. As the field  is in 20 of the gauge group SU(6), a Lorentz invariant bifermion

composite can be in one of the irreducible representations of SU(6), appearing in the

decomposition

⌦ = � �+ . . . . (3.17)

The most natural candidate would be the first, 1, but it can be readily verified that such

a condensate vanishes by the Fermi-Dirac statistics. Another possibility is that   in

the adjoint representation gets a VEV, signaling a sort of dynamical Higgs mechanism

[24, 25, 26]. Even though such a condensate should necessarily be regarded as a gauge

dependent expression of some gauge invariant VEV (see below), it unambiguously signals
10 the breaking of global, discrete chiral symmetry as

 
6 !  

2 , (3.18)

with broken  
6 /

 
2 acting on the degenerate vacua. Four-fermion, gauge-invariant con-

densates such as

h    i 6= 0 , or h ̄ ̄  i 6= 0 , (3.19)

might also form, first of which also breaks  
6 in the same way. The condensate (3.16) thus

leads to threefold vacuum degeneracy, consistently with (3.13) implied by the  
6 � C

3

8The situation is subtler if one tries to gauge the full color center group, see [20].
9Here, as in the rest of the paper, we do not consider the more “exotic” possibility that discrete anomaly

matching may be achieved with a topological field theory or by a CFT in the IR.
10Note that the global symmetry group  

6 commutes with the color SU(6): there is no way a gauge

transformation eliminates the nontrivial properties of the condensate under  
6 .
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 0s ⇠ (N= even) 

(  +   p pairs                   )  

The one-gluon exchange strength turns out to be, in the six cases above, proportional
to

A :
2(N2 � 4)

N
� (N + 2)(N � 1)

N
� (N + 2)(N � 1)

N
= �2(N + 2)

N
;

B :
2(N + 1)(N � 4))

N
� (N + 1)(N � 2)

N
� (N + 1)(N � 2)

N
= �4(N + 1)

N
;

C :
(N + 1)(N � 2))

N
� N

2 � 1

2N
� N

2 � 1

2N
= �N + 1

N
;

D :
N

2 � 1

2N
� N

2 � 1

2N
� (N + 1)(N � 2)

N
= �(N + 1)(N � 2)

N
;

E : N � (N + 2)(N � 1)

N
� (N + 1)(N � 2)

N
= �N

2 � 4

N
;

F :
N

2 � 1

2N
� N

2 � 1

2N
� (N + 2)(N � 1)

N
= �(N + 2)(N � 1)

N
,

G : 0� N
2 � 1

2N
� N

2 � 1

2N
= �N

2 � 1

N

respectively. We note that the �̃ ( �) and � ( ⌘) condensates considered by us (cases
E and F, respectively) correspond precisely to the two most attractive channels,
at large N : their attraction strength scales as O(N) in contrast to the other four
channels which scale as O(1).

 L, 
c
R ⇠ � ¯
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N+4
k �[ij]

  ((“theoretical laboratories”)



 A well-known tool - ’t Hooft anomaly matching conditions -  
          unfortunately, is not sufficiently stringent

🔵

🔵

model

model
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e.g.,



matching condition.

(ii) SU(8)Ũ(1)2: again only ⌘ai contribute both in the UV and in the IR. The matching is

trivial.

(iii) Ũ(1)3: In the UV, all of  ,�, ⌘ give contributions,

8 · N(N + 1)

2
� 8 · N(N � 1)

2
� 8N = 0 ; (3.44)

in the IR,  ii and ⌘ai contribute:

8 ·N � 8 ·N = 0 . (3.45)

(iv) Ũ(1): In the UV,  ,�, ⌘ give

2 · N(N + 1)

2
� 2 · N(N � 1)

2
� 8 ·N = �6N ; (3.46)

whereas in the IR,  ii and ⌘ai give

2 ·N � 8N = �6N . (3.47)

fields SU(8) Ũ(1)

 N(N+1)
2 · (·) N(N+1)

2 · (2)
� N(N�1)

2 · (·) N(N�1)
2 · (�2)

⌘A N · 8N · (�1)
( � )ii ⇠  ii N · (·) N · (2)
 �⌘A ⇠ ⌘A N · 8N · (�1)

Table 3: Full dynamical Abelianization in the  �⌘ model, in Subsection 3.5

4 (N , N�) = (1, 0) model: a review

Let us review the (N , N�) = (1, 0) model. The matter fermions are in

 {ij} , ⌘Bi , B = 1, 2, . . . , N + 4 , (4.1)

or

+ (N + 4)
¯

. (4.2)
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The (continuous) symmetry of this model is

SU(N)c ⇥ SU(N + 4)f ⇥ U(1) , (4.3)

where U(1) is an anomaly-free combination of U (1) and U⌘(1), with

Q : N + 4; , Q⌘ : �(N + 2) . (4.4)

The discrete group is 2 if N is even; none if N is odd.

4.1 Chirally symmetric phase of (N , N�) = (1, 0) model

Let us first examine the possibility that no condensates form, the system confines and the

flavor symmetry is unbroken. The candidate massless baryons are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (4.5)

antisymmetric in AB. All the SU(N + 4)f ⇥ U(1) anomalies are saturated by those by

B[AB], as shown by Appelquist-Duan-Sannino, and as can be seen by inspection of the

Table 4.

fields SU(N)c SU(N + 4) Ũ(1)

 N(N+1)
2 · (·) N + 4

⌘A (N + 4) · ¯
N · �(N + 2)

B[AB] (N+4)(N+3)
2 · (·) �N

Table 4: Chirally symmetric phase of the (1, 0) model

4.2 Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase appears, with

h {ij⌘Bi i = C �jB , j, B = 1, 2, . . . N , (4.6)

in which the symmetry is reduced to

SU(N)cf ⇥ SU(4)f ⇥ U 0(1) . (4.7)

As this forms a subgroup of the full symmetry group, (4.3), it is quite easily seen, by

making the decomposition of the fields in the subgroup, that a subset of the same baryons

saturate all of the triangles associated with the reduced symmetry group. See Table 5.
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Appelquist, Duan, Sannino, ‘00  

The anomaly matching OK, 

fields SU(N)cf SU(4)f U 0(1)

 N(N+1)
2 · (·) N(N+1)

2 · (1)

⌘A1
¯ �

¯

N2 · (·) N2 · (�1)

⌘A2 4 · ¯
N · 4N · (�1

2)

B[A1B1]

¯

N(N�1)
2 · (·) N(N�1)

2 · (�1)

B[A1B2] 4 · ¯
N · 4N · (�1

2)

Table 5: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 4.2. A1 or
B1 stand for A,B = 1, 2, . . . , N . A2 or B2 the rest of the flavor indices.

It is not known which of the possibilities, 4.1 or 4.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N + 1 Nambu-Goldstone bosons, in the latter.

Let us check the a theorem and the ACS criterion for both.

fUV = 2(N2 � 1) +
7

4

✓
N(N + 1)

2
+ (N + 4)N

◆
=

1

8
(37N2 + 63N � 16) . (4.8)

In the infrared, for the unbroken-symmetry Subsection 4.1 :

fIR =
7

4

(N + 4)(N + 3)

2
=

7

8
(N2 + 7N + 12) (4.9)

So

fUV � fIR =
1

4
(15N2 + 7N � 50) � 0 , N � 2 . (4.10)

For the color-flavor locking scenario Subsection 4.2 with partially broken symmetries:

fIR =
7

4

✓
N(N � 1)

2
+ 4N

◆
+ 8N + 1 =

1

8
(7N2 + 113N + 8) (4.11)

so that

fUV � fIR =
1

4
(15N2 � 25N � 12) � 0 , N � 3 . (4.12)

These results are already discussed in the papers ACSS and ADS, where it was noted that

the symmetric phase 4.1 has a lower fIR.
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2 · (1)

⌘A1
¯ �

¯

N2 · (·) N2 · (�1)

⌘A2 4 · ¯
N · 4N · (�1

2)

B[A1B1]

¯

N(N�1)
2 · (·) N(N�1)

2 · (�1)

B[A1B2] 4 · ¯
N · 4N · (�1

2)

Table 5: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 4.2. A1 or
B1 stand for A,B = 1, 2, . . . , N . A2 or B2 the rest of the flavor indices.

It is not known which of the possibilities, 4.1 or 4.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N + 1 Nambu-Goldstone bosons, in the latter.

Let us check the a theorem and the ACS criterion for both.

fUV = 2(N2 � 1) +
7

4
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N(N + 1)

2
+ (N + 4)N

◆
=

1

8
(37N2 + 63N � 16) . (4.8)

In the infrared, for the unbroken-symmetry Subsection 4.1 :

fIR =
7

4

(N + 4)(N + 3)

2
=

7

8
(N2 + 7N + 12) (4.9)

So

fUV � fIR =
1

4
(15N2 + 7N � 50) � 0 , N � 2 . (4.10)

For the color-flavor locking scenario Subsection 4.2 with partially broken symmetries:

fIR =
7

4

✓
N(N � 1)

2
+ 4N

◆
+ 8N + 1 =

1

8
(7N2 + 113N + 8) (4.11)

so that

fUV � fIR =
1

4
(15N2 � 25N � 12) � 0 , N � 3 . (4.12)

These results are already discussed in the papers ACSS and ADS, where it was noted that

the symmetric phase 4.1 has a lower fIR.
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(B)

in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [36, 37]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [14, 15], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [12]. The first coefficient of the

2
A careful exposition of these ideas can be found e.g., in [30].

3
In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [34].
4
A recent application of this class of chiral gauge theories is found in [35].

– 3 –

Massless baryons and (NG) bosons in L.E.♦
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fields SU(N)cf SU(4)f U
0(1)

UV  
N(N+1)

2 · (·) 1

⌘
A1

¯ �

¯

N
2 · (·) �1

⌘
A2 4 · ¯

N · �1
2

IR B
[A1B1]

¯

N(N�1)
2 · (·) �1

B
[A1B2] 4 · ¯

N · �1
2

Table 6: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 3.2. A1 or B1 stand for

A,B = 1, 2, . . . , N , A2 or B2 the rest of the flavor indices.

The discrete anomaly  is broken by the condensate  ⌘. There is (for generic N)

no combination between  and ⌘ which survives, therefore there is no discrete anomaly

matching condition.

It is not known which of the possibilities, 3.1 or 3.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N+1 Nambu-Goldstone bosons, in the latter. Thus

the complementarity [18], as noted in [1], does not work here even though the (dynamical)

Higgs scalars  ⌘ are in the fundamental representation of color.

4 (N , N�) = (2, 0)

This is a straightforward generalization of the  ⌘ model above. The matter fermions are

 
{ij,m}

, ⌘
B
i , m = 1, 2 , B = 1, 2, . . . , 2(N + 4) , (4.1)

or

2 + 2(N + 4)
¯

. (4.2)

The (continuous) symmetry of this model is

SU(N)c ⇥ SU(2)f ⇥ SU(2N + 8)f ⇥ U(1) , (4.3)

where U(1) is an anomaly-free combination of U (1) and U⌘(1),

U(1) :  ! e
i↵/2(N+2)

 , ⌘ ! e
�i↵/2(N+4)

⌘ . (4.4)

The first coe�cient of the beta function is

b0 =
1

3
[11N � 2(N + 2)� 2(N + 4)] =

7N � 12

3
, (4.5)
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where U(1) is an anomaly-free combination of U (1) and U⌘(1), with

Q : N + 4 , Q⌘ : �(N + 2) . (3.5)

There are also discrete symmetries

 = N+2 ⇢ U (1) , ⌘ = N+4 ⇢ U⌘(1) . (3.6)

3.1 Chirally symmetric phase in the (1, 0) model

Let us first examine the possibility that no condensates form, the system confines and the

flavor symmetry is unbroken [3]. The candidate massless baryons are:

B
[AB] =  

ij
⌘
A
i ⌘

B
j , A,B = 1, 2, . . . , N + 4 , (3.7)

antisymmetric in A $ B. All the SU(N + 4)f ⇥ U(1) anomalies are saturated by B
[AB]

as can be seen by inspection of the Table 5. The discrete anomaly  SU(N)2 is also

matched, as can be easily checked.

fields SU(N)c SU(N + 4) U(1)

UV  
N(N+1)

2 · (·) N + 4

⌘
A (N + 4) · ¯

N · �(N + 2)

IR B
[AB] (N+4)(N+3)

2 · (·) �N

Table 5: Chirally symmetric phase of the (1, 0) model. As in other Tables of the text, the multiplicity,

charges and the representation are shown for each set of fermions. (·) stands for a singlet representation.

3.2 Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase appears [9, 1], with

h {ij}
⌘
B
i i = c⇤3

�
jB

, j, B = 1, 2, . . . N , (3.8)

in which the symmetry is reduced to

SU(N)cf ⇥ SU(4)f ⇥ U
0(1) . (3.9)

As this forms a subgroup of the full symmetry group, (3.4), it is quite easily seen, by making

the decomposition of the fields in the direct sum of representations in the subgroup, that

a subset of the same baryons saturate all of the triangles associated with the reduced

symmetry group, see Table 6.
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 ⌘ model



Standard ’t Hooft anomaly matching in the case (A)

fields SU(N)c SU(N + 4) U(1)

 
N(N+1)

2 · (·) N + 4

⌘
A (N + 4) ·

¯
N · �(N + 2)

B
[AB] (N+4)(N+3)

2 · (·) �N

Table 6: Chirally symmetric phase of the (1, 0) model

Anomaly AUV ( , ⌘) AIR(B)
SU(N + 4)3 N N + 4� 4

U(1)SU(N + 4)2 �(N + 2) ·N �N · (N + 4� 2)

U(1)3 (N + 4)3N(N+1)
2 � (N + 2)3N(N + 4) �N

3 (N+4)(N+3)
2

U(1) (N + 4)N(N+1)
2 � (N + 2)N(N + 4) �N

(N+4)(N+3)
2

N+2 SU(N + 4)2 0 N + 2

N+4 SU(N + 4)2 N 2 · (N + 4� 2)

Table 7: UV -IR Anomaly matching in Chirally symmetric phase

3.4 Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase appears, with

h ij
⌘
B
i i = C �

jB
, j, B = 1, 2, . . . N , (3.32)

in which the symmetry is reduced to

SU(N)cf ⇥ SU(4)f ⇥ U
0(1) . (3.33)

As this forms a subgroup of the full symmetry group, (3.4), it is quite easily seen, by
making the decomposition of the fields in the subgroup, that a subset of the same baryons
saturate all of the triangles associated with the reduced symmetry group. See Table 8.

fields SU(N)cf SU(4)f U
0(1)

 
N(N+1)

2 · (·) 1

⌘
A1

¯
�

¯

N
2 · (·) �1

⌘
A2 4 ·

¯
N · �1

2

B
[A1B1]

¯

N(N�1)
2 · (·) �1

B
[A1B2] 4 ·

¯
N · �1

2

Table 8: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 3.4. A1 or
B1 stand for A,B = 1, 2, . . . , N . A2 or B2 the rest of the flavor indices.
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 Part 2:    Anomalies and Dynamics:  
      new, more powerful constraints     (’18-’23) 

1.                anomaly

The situation is analogous in a large class of chiral gauge theories, to be discussed in

Sec. 4 below. Clearly, the conventional ’t Hooft anomaly matching requirement is not

powerful enough to discriminate among possible (confining or dynamical Higgs) vacua.

To go beyond the conventional (perturbative) ’t Hooft anomaly analyses, it is necessary

to consider the global properties of the symmetry groups, not only the algebra. For even

N the true symmetry group of the model is found to be [69]:

SU(N)color ⇥Gf , Gf =
SU(N + 4)⇥ U(1) ⌘ ⇥ (Z2)F

ZN ⇥ ZN+4
, (2.21)

and not (2.20), where (Z2)F is the fermion parity,  , ⌘ ! � ,�⌘.

Indeed, as promised, there is a subgroup of SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ ⇥ ( 2)F ,

N = SU(N) \ {U(1) ⌘ ⇥ (Z2)F} , (2.22)

which leaves the matter fields invariant.6 The gauge transformation with e
2⇡i
N 2 ZN ⇢

SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (2.23)

can be undone by the following (Z2)F ⇥ U(1) ⌘ transformation:

 ! (�1) ei
N+4

2
2⇡
N  = e�iN2

2⇡
N ei

N+4
2

2⇡
N  , ⌘ ! (�1) e�iN+2

2
2⇡
N ⌘ = ei

N
2

2⇡
N e�iN+2

2
2⇡
N ⌘ .

(2.24)

A relevant fact is that the odd elements of ZN belong to the disconnected component

of U(1) ⌘ ⇥ (Z2)F whereas the even elements belong to the connected component of the

identity.

The presence of a subgroup which acts trivially means that there is a 1-form global sym-

metry. Again, in the discrete language introduced before, it acts on transition functions.

In particular, if gcij, uij and qij are the transition functions for SU(N), U(1) ⌘ and ( 2)F ,

one may introduce some N transitions functions (a N gauge field), zij, and transform

gij ! zijgij , uij ! (zij)
�1uij , and qij ! (zij)

�N
2 qij . (2.25)

If one drops the cocycle condition for zij, one gauges the 1-form symmetry. In this case

one must introduce also the 2-form connection 7, described by the new data Bijk 2 N ,

which are read from the transition functions

gijgjkgki = Bijk , uijujkuki = (Bijk)
�1 , qijqjiqki = (Bijk)

�N
2 . (2.26)

6There is another independent subgroup, N+4, which does not act on matter filed, leading to another

N+4 1-form center symmetry. In [69] the e↵ects of gauging this flavor center symmetry and the resulting
mixed anomalies in the  ⌘ model have also been taken into account. None of the main results however
were found to depend on it. Here for simplicity we consider only the gauging of the color-flavor locked
center symmetry N , together with U(1) ⌘ and ( 2)F .

7Again, an element of H2(M, N ), Bijk 2 N .
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3.    Strong anomaly and phases

2.   (Dynamical) Higgs phase

4.   Dynamical Abelianization 

5.   More general DSB

0.   Tools:  generalized symmetries and anomalies



Tool:  

🔵

From 0-form symm. (acting on local operators)
to k-form symmetries (acting on line, surface, etc operators)

e.g.  the center ZN   symmetry in SU(N) YM 

Gaiotto, Kapustin, Seiberg, Willet,

Gaiotto, Kapustin, Komargodski, Seiberg,

Aharony, Seiberg, Tachikawa, 

Poppitz,  K
ikuchi, Tanizaki, Sakai, Shimizu, Yonekura, 

’05  -  

ei
H
� A ! ⌦N ei

H
� A , ⌦N = e2⇡i/N 2 N

2

Wilson loop

Polyakov loop

♦

Generalized symmetries

♦ “Gauging” the 1-form discrete ZN  symmetry    

(*)

 ⌘ q q̃

N ⇢ SU(N) 4⇡
N �2⇡

N
2⇡
N �2⇡

N

Ũ(1) N+4
2 � �N+2

2 � N+2
2 � �N+2

2 �
U0(1) � �� � �

Table 2: The choice � = 2⇡
N and � = ±⇡ reproduces indeed N .

3 Gauging 1-form N symmetry: mixed anomalies

We consider now the gauging of the 1-form N symmetry in the X-ray model, lying in the

intersection (see Table 2)

N = SU(N)c \ (Ũ(1)⇥ U0(1)) (3.1)

where Ũ(1) and U0(1) are defined in Table 1 7. In other words, our theory is described by

the connection
SU(N)c ⇥ Ũ(1)⇥ U0(1)

N
, (3.3)

rather than by the simple product principal bundle

SU(N)⇥ Ũ(1)⇥ U0(1) . (3.4)

Accordingly, we introduce the gauge fields

1. Ã: Ũ(1) 1-form gauge field,

2. A0: U0(1) 1-form gauge field,

3. B(2)
c : N 2-form gauge field,

in addition to the dynamical color gauge SU(N) field, a.

The gauging of 1-form discrete ZN symmetry proceeds by introducing a pair of 2-form

and 1-form gauge fields [15]- [36] �
B(2)

c , B(1)
c

�
(3.5)

satisfying

NB(2)
c = dB(1)

c , (3.6)

and coupling to them the SU(N) gauge fields a and Ũ(1)⇥U0(1) gauge fields, Ã and A(1)
0 ,

appropriately. For the SU(N) gauge field a, this is done by embedding it into a U(N)

7Also, as

U(1) ⌘ ⌦ UV (1) = Ũ(1) ; Q ⌘ +
N + 2

2
QV = Q̃ (3.2)

it is possible to gauge the 1-form N symmetry together with U(1) ⌘, UV (1) and U0(1). Here we choose
to proceed with gauging N lying in the intersection (3.1).

8

gauge field ea as

ea = a+
1

N
B(1)

c (3.7)

and requiring the invariance under the 1-form gauge transformation,

B(2)
c ! B(2)

c + d�c , B(1)
c ! B(1)

c +N�c ,

ea ! ea+ �c . (3.8)

The Ũ(1) and U0(1) gauge fields must also transform simultaneously:

Ã ! Ã� �c , A0 ! A0 +
N

2
�c . (3.9)

�c is the (1-form) Abelian gauge function such that

I
�c =

2⇡`

N
, (` 2 ) . (3.10)

The relation (3.6) indicates that one has now an SU(N)

N
connection rather than SU(N). It

implies that there are nontrivial fractional ’t Hooft fluxes carried by the gauge fields

1

2⇡

Z

⌃2

B(2)
c =

n1

N
, n1 2 N , (3.11)

in a closed two-dimensionl subspace, ⌃2.

The fact that we are gauging the (color-flavor locked) 1-form N lying in the intersection

SU(N)c \ (Ũ(1) ⇥ U0(1)) means that the nontrivial color N holonomy at the boundary

of ⌃2, I

L

B(1)
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where
NB

(2) = dB
(1)

,

B
(1) ! B

(1) +N� , B
(2) ! B

(2) + d� .

1

8⇡2

Z

⌃4

trF 2 �! 1

8⇡2

Z

⌃4

tr (F̃ (ã)� B
(2)
c )2 (4.16)

=
1

8⇡2

Z
tr (F̃ (ã))2 � N

8⇡2

Z
(B(2)

c )2 = �
N

(4.17)

1

8⇡2

Z

⌃4

trF 2 =
1

32⇡2

Z
d
4
xF

A
µ⌫F̃

A
µ⌫ 2 (4.18)

a ⌘ a
µ
dxµ , F (a) ⌘ da+ a

2
, F

µ⌫ = @
µ
a
⌫ � @

⌫
a
µ � [aµ, a⌫ ] ;

a
2 ⌘ a ^ a , a 2 su(N) a ! g

�1
ag + g

�1
dg , g 2 SU(N)

ã 2 u(N) , � ⌘ �
µ
dxµ 2 u(1)

a ! g
�1
ag + g

�1
dg , g(x+ L) = e

2⇡i/N
g(x) , (4.19)

exp i

I

L

a ! e
2⇡i/N exp i

I

L

a (4.20)

The Dirac operators are

d+Aã+ A� , d+ ã+ A⌘ . (4.21)

In order for these to be invariant, we need

Aã ! Aã+ 2� . (4.22)

It means that the gauge invariant combinations are

Aã� 2

N
B

(1)
, A� �

2

N
B

(1)
, A⌘ +

1

N
B

(1)
, is (4.23)
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anomaly can be evaluated starting from a 6D (six-dimensional) Abelian anomaly [41, 42]3

1

24⇡2
trR

�
F̃ � B

(2)
c + dA 

�3

=
D(R)

24⇡2
tr
�
F̃ � B

(2)
c )3 +

2T (R)

8⇡2
tr
�
F̃ � B

(2)
c

�2 ^ dA + . . . . (2.8)

Let us recall that, in the standard quantization (i.e., in the absence of the 1-form discrete

symmetry gauging),
B

(1)
c , B

(2)
c ! 0 , F̃ (ã) ! F (a) , (2.9)

and the above reduces to

D(R)

24⇡2
trF 3 +

2T (R)

8⇡2
trF 2 ^ dA + . . . . (2.10)

By using the identity [42, 41]

trF 3 = d {tr(a(da)2 +
3

5
(a)5 +

3

2
a
3
da)} (2.11)

(also trF 2 = d {tr(ada + 2
3a

3)}) the first term leads to the SU(N) gauge anomalies. The

second term gives the boundary term

2T (R)

8⇡2

Z

⌃5

trF 2 ^ A 
(2.12)

which, after variations
A ⌘ dA

(0)
 , A

(0)
 ! A

(0)
 + �↵ (2.13)

yields, by anomaly inflow, the well-known 4D anomaly,

�S
�A

(0)
 

=
2T (R)

8⇡2

Z
trF 2

�↵ = 2T (R) �↵ , (2.14)

where represents the integer instanton number, leading to the well-known result that the

discrete subgroup
2T (R) ⇢ U (1) (2.15)

remains unbroken by instantons.

With the 1-form gauging in place, i.e., with (B(2)
c , B

(1)
c ) fields present in Eq. (2.8), U (1)

symmetry could be further broken to a smaller discrete subgroup, due to the replacement,

trF 2 ! tr
�
F̃ � B

(2)
c

�2
. (2.16)

3D(R) is the value of the symmetric trace of the product of three generators normalized to the one evalu-

ated in the fundamental representation; T (R) is the Dynkin index of the representation R, see Appendix A.

Throughout, the simplified di↵erential form notation is used, e.g., F 2 ⌘ F^F = 1
2F

µ⌫F ⇢�dxµdx⌫dx⇢dx� =

1
2✏µ⌫⇢�F

µ⌫F ⇢�d4x, etc.
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Gauging 1-form (color-flavor locked)  ZN   center symmetry

1-form (color-flavor locked)  ZN    🔵

fermions present are all in the adjoint representation of SU(N)). However the situation

changes if some global, nonanomalous U(1) symmetries, Ui(1), i = 1, 2, . . ., are present,

such that when Ui(1) are gauged (in the usual sense, by the introduction of external gauge

fields Aµ
i ), the color N ⇢ SU(N) and the Ui(1) transformations can compensate each

other for the fermions.

As one encircles a closed loop L in spacetime, the fields transform as

Pei
H
L a ! e

2⇡i
N Pei

H
L a ;  k ! e

2⇡iNk
N  k , N ⇢ SU(N) ; (2.11)

⇧i e
i
H
L Ai !

⇣
e2⇡i

P
i,k q

(i)
k

⌘
⇧i e

i
H
L Ai ;  k ! e2⇡i

P
i,k q

(i)
k  k , Ui(1) ; (2.12)

where a ⌘ aAµ t
A dxµ is the SU(N) gauge field; Nk is the N -ality of the kth fermion, q(i)k is

the charge of  k under Ui(1). The factor ei
H
L Ai is the Aharonov-Bohm phase for the i-th

fermion.

We recall that that the center symmetry is formally defined as a path-ordered sequence

of local SU(N) gauge transformations along the loop, hence the fermions must also trans-

form in order to keep the action invariant. After encircling the loop and coming back to

the original point, the gauge field is transformed by a nontrivial periodicity with a N fac-

tor, dragging the fermions fields to transform as in (2.11). It would violate their periodic

boundary condition (i.e., their uniqueness at each spacetime point). This is the reason

why the presence of a fermion, e.g., in the fundamental representation, breaks the center

symmetry itself 5.

When the conditions X

i

q(i)k = �Nk
N , 8k (2.13)

are satisfied, however, a new, color-flavor locked center symmetry (2.11), (2.12), can be

defined, accompanying the color N center transformations with appropriate Ui(1) gauge

transformations.

As the ordinary N center transformation, such a color-flavor combined N center

symmetry is still just a global 1-form symmetry.

A more powerful idea is to introduce the gauging of this 1-form symmetry and studying

possible topological obstructions in doing so (generalized ’t Hooft’s anomalies) [15]- [36].

As in the case of conventional gauging of 0-form symmetries, the idea of gauging is that

of identifying the field configurations connected by the given symmetry transformations,

and of eliminating the double counting in the sum over field configurations. However,

as one is now dealing with a 1-form symmetry, the associated gauge transformations are

parametrized by a 1-form Abelian gauge function 6 � = �µ(x)dxµ, see (3.8), (3.9) below.

5In the case of the Polyakov loop defined in the Euclidean spacetime, the fermions are required to
satisfy antiperiodic boundary condition, but the conclusion is the same.

6Here we remember the crucial aspect of higher form symmetries: they are all Abelian. This is the
reason why the color-flavor locked 1-form symmetries are possible.
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🔵 Gauging it

 ⌘ q q̃

N ⇢ SU(N) 4⇡
N �2⇡

N
2⇡
N �2⇡

N

Ũ(1) N+4
2 � �N+2

2 � N+2
2 � �N+2

2 �
U0(1) � �� � �

Table 2: The choice � = 2⇡
N and � = ±⇡ reproduces indeed N .

3 Gauging 1-form N symmetry: mixed anomalies

We consider now the gauging of the 1-form N symmetry in the X-ray model, lying in the

intersection (see Table 2)

N = SU(N)c \ (Ũ(1)⇥ U0(1)) (3.1)

where Ũ(1) and U0(1) are defined in Table 1 7. In other words, our theory is described by

the connection
SU(N)c ⇥ Ũ(1)⇥ U0(1)

N
, (3.3)

rather than by the simple product principal bundle

SU(N)⇥ Ũ(1)⇥ U0(1) . (3.4)

Accordingly, we introduce the gauge fields

1. Ã: Ũ(1) 1-form gauge field,

2. A0: U0(1) 1-form gauge field,

3. B(2)
c : N 2-form gauge field,

in addition to the dynamical color gauge SU(N) field, a.

The gauging of 1-form discrete ZN symmetry proceeds by introducing a pair of 2-form

and 1-form gauge fields [15]- [36] �
B(2)

c , B(1)
c

�
(3.5)

satisfying

NB(2)
c = dB(1)

c , (3.6)

and coupling to them the SU(N) gauge fields a and Ũ(1)⇥U0(1) gauge fields, Ã and A(1)
0 ,

appropriately. For the SU(N) gauge field a, this is done by embedding it into a U(N)

7Also, as

U(1) ⌘ ⌦ UV (1) = Ũ(1) ; Q ⌘ +
N + 2

2
QV = Q̃ (3.2)

it is possible to gauge the 1-form N symmetry together with U(1) ⌘, UV (1) and U0(1). Here we choose
to proceed with gauging N lying in the intersection (3.1).
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gauge field ea as

ea = a+
1

N
B(1)

c (3.7)

and requiring the invariance under the 1-form gauge transformation,

B(2)
c ! B(2)

c + d�c , B(1)
c ! B(1)

c +N�c ,

ea ! ea+ �c . (3.8)

The Ũ(1) and U0(1) gauge fields must also transform simultaneously:

Ã ! Ã� �c , A0 ! A0 +
N

2
�c . (3.9)

�c is the (1-form) Abelian gauge function such that

I
�c =

2⇡`

N
, (` 2 ) . (3.10)

The relation (3.6) indicates that one has now an SU(N)

N
connection rather than SU(N). It

implies that there are nontrivial fractional ’t Hooft fluxes carried by the gauge fields

1

2⇡

Z

⌃2

B(2)
c =

n1

N
, n1 2 N , (3.11)

in a closed two-dimensionl subspace, ⌃2.

The fact that we are gauging the (color-flavor locked) 1-form N lying in the intersection

SU(N)c \ (Ũ(1) ⇥ U0(1)) means that the nontrivial color N holonomy at the boundary

of ⌃2, I

L

B(1)
c = 2⇡n1 , n1 2 N , (3.12)

is accompanied by the Aharonov-Bohm flavor holonomies (see Table 2)

I

L

Ã =
2⇡n1

N
,

I

L

A0 =
2⇡n1

2
. (3.13)

This can be reformulated as a generalized cocycle condition associated with the color-flavor

locked SU(N)⇥Ũ(1)⇥U0(1)

N
transition functions [25].

The fermion kinetic term with the background gauge fields is determined by the minimal
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1-form gauge fn

SU(N)  ->  U(N)

beta function is
b0 = 11N � (N + 2)� (N + 4) = 9N � 6 . (2.3)

The fermion kinetic term is given by

 �µ
�
@ +RS(a)

�
µ
PL +

N+4X

B=1

⌘B�
µ
�
@ +RF⇤(a)

�
µ
PL⌘B , (2.4)

with an obvious notation. In order to emphasize that this is the chiral gauge theory, we
explicitly write the chiral projector PL = 1��5

2 in the fermion kinetic terms. The symmetry
group is

SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ , (2.5)

where U(1) ⌘ is the anomaly-free combination of U(1) and U(1)⌘,

U(1) ⌘ :  ! ei(N+4)↵ , ⌘ ! e�i(N+2)↵⌘ . ↵ 2 . (2.6)

The group (2.5) is actually not the true symmetry group of our system, but its covering
group. It captures correctly the local aspects, e.g., how the group behaves around the
identity element, and thus is sufficient for the consideration of the conventional, perturbative
triangle anomalies associated with it, reviewed below in this section.

Its global structures however contain some redundancies, which must be modded out
appropriately in order to eliminate the double counting. They furthermore depend crucially
on whether N is odd or even. These questions will be studied more carefully in Sec. 3, as
they turn out to be central to the main theme of this work: the determination of the mixed
anomalies and the associated, generalized ’t Hooft anomaly matching conditions.

2.1 Chirally symmetric phase

It was noted earlier [8, 14, 15] that the standard ’t Hooft anomaly matching conditions
associated with the continuous symmetry group U(1) ⌘ ⇥ SU(N + 4) allowed a chirally
symmetric, confining vacuum in the model. Let us indeed assume that no condensates
form, the system confines, and the flavor symmetry is unbroken. The candidate massless
composite fermions ("baryons") are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (2.7)

antisymmetric in A $ B. All the SU(N + 4)⇥U(1) ⌘ anomaly triangles are saturated by
B[AB] as can be seen by inspection of Table 1. 5

2.2 Color-flavor locked Higgs phase

As the theory is very strongly coupled in the infrared (see (2.3)), it is also natural to consider
the possibility that a bifermion condensate

h {ij}⌘Bi i = c⇤3�jB 6= 0 , j, B = 1, 2, . . . N , c ⇠ O(1) (2.8)
5
There are discrete unbroken symmetries  and  which will be defined later (3.5), (3.6) which

are already contained in the covering space (2.5). The discrete anomalies  SU(N)2,  SU(N + 4)2,

⌘ SU(N)2 and ⌘ SU(N � 4)2 are also matched as a direct consequence.
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Figure 2. The torus U(1) ⇥ U(1)⌘ (for N = 2 on the left and N = 4 on the right) and its unbroken

subgroup U(1) ⌘ ⇥ ( 2)F (red line for U(1) ⌘ ⇥ {1} and blue line for U(1) ⌘ ⇥ {�1} ) passing through all

the points of the lattice ( N+2) ⇥ ( N+4)⌘. The dots indicate the elements of the group ( N ), diamonds

indicate the elements of ( 2)F . (Z2)F is defined below, Eq. (3.19).

Let us consider the fermion parity defined by

 ! � , ⌘ ! �⌘ , (3.19)

which is equivalent to a 2⇡ space rotation. It is clear that (Z2)F is not violated by the ’t
Hooft vertex, so let us check if this is not a part of U(1) ⌘. If it were included, there would
be � such that

ei
N+4

2 � = e�iN+2
2 � = �1 . (3.20)

Multiplying these equations, we get ei� = 1, which is a contradiction.7

It can be checked that any discrete transformation keeping ’t Hooft vertex invariant
can be made of U(1) ⌘ ⇥ (Z2)F . For example, (ZN+2) generated by  ! e

2⇡i
N+2 can also

be given by
�
� = 2⇡

N+2 ,�1
�
2 U(1) ⌘ ⇥ (Z2)F . Similarly for (ZN+2)⌘.

For even N , we thus find that the symmetry group is

Gf =
U(1) ⌘ ⇥ SU(N + 4)⇥ (Z2)F

ZN ⇥ ZN+4
. (3.21)

The division by ZN in Eq. (3.21) is because the center of the color SU(N) is shared by
elements in U(1) ⌘ ⇥ (Z2)F . Indeed, the gauge transformation with e

2⇡i
N 2 ZN ⇢ SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (3.22)

can be written equally well as the following (Z2)F ⇥ U(1) ⌘ transformation:

 ! (�1) ei
N+4

2
2⇡
N  = e�iN2

2⇡
N ei

N+4
2

2⇡
N  , ⌘ ! (�1) e�iN+2

2
2⇡
N ⌘ = ei

N
2

2⇡
N e�iN+2

2
2⇡
N ⌘ .

(3.23)
Note that the odd elements of ZN belong to the disconnected component of U(1) ⌘⇥ (Z2)F
while the even elements belong to the identity component.

7
Here we observe a crucial difference with the case of an odd N theory. There, the requirement ei(N+4)↵ =

e�i(N+2)↵ = �1 leads to e2i↵ = 1, i.e., ↵ = 0,⇡, showing that (Z2)F ⇢ U(1) ⌘.

– 9 –
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 ⌘ model

Gauge inv. kin. terms

coupling procedure as

 �µ
✓
@ +RS(ea) +

N + 4

2
Ã+ A0

◆

µ

PL 

+ ⌘�µ
✓
@ +RF⇤(ea)� N + 2

2
Ã� A0

◆

µ

PL⌘ .

+q�µ
✓
@ +RF(ea) +

N + 2

2
Ã+ A0

◆

µ

PLq

+ q̃�µ
✓
@ +RF⇤(ea)� N + 2

2
Ã+ A0 � B(1)

c

◆

µ

PLq̃ (3.14)

(with an obvious notation).

The (1-form) gauge invariant Dirac operators are accordingly

d+RS(ãc �
1

N
B(1)

c ) +
N + 4

2
(Ã+

1

N
B(1)

c ) + A0 �
1

2
B(1)

c , (3.15)

acting on  ,

d� (ãc �
1

N
B(1)

c )� N + 2

2
(Ã+

1

N
B(1)

c )� (A0 �
1

2
B(1)

c ) , (3.16)

acting on ⌘,

d+ (ãc �
1

N
B(1)

c ) +
N + 2

2
(Ã+

1

N
B(1)

c ) + (A0 �
1

2
B(1)

c ) , (3.17)

acting on q, and

d� (ãc �
1

N
B(1)

c )� N + 2

2
(Ã+

1

N
B(1)

c ) + (A0 �
1

2
B(1)

c ) , (3.18)

acting on q̃. Note that we have rewritten each fermion kinetic terms in (3.14) such that the

invariance under the 1-form gauge transformations, (3.8), (3.9), is manifest. The gauge-

flavor field tensors acting on the fermions are accordingly:

RS(F (ea)� B(2)
c ) +

N + 4

2
(dÃ+B(2)

c ) + dA0 �
N

2
B(2)

c ,

RF⇤(F (ea)� B(2)
c )� N + 2

2
(dÃ+B(2)

c )� (dA0 �
N

2
B(2)

c ) ,

RF(F (ea)� B(2)
c ) +

N + 2

2
(dÃ+B(2)

c ) + (dA0 �
N

2
B(2)

c ) ,

RF⇤(F (ea)� B(2)
c )� N + 2

2
(dÃ+B(2)

c ) + (dA0 �
N

2
B(2)

c ) . (3.19)

Note that by turning o↵ the 1-form gauge fields
�
B(2)

c = 0, B(1)
c = 0

�
, one goes back to the

standard SU(N)⇥ Ũ(1)⇥ U0(1) gauge theory.
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Note that by turning o↵ the 1-form gauge fields
�
B(2)

c = 0, B(1)
c = 0

�
, one goes back to the

standard SU(N)⇥ Ũ(1)⇥ U0(1) gauge theory.
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{ k}. In general, the color center N symmetry is broken by the fermions (unless the

fermions present are all in the adjoint representation of SU(N)). However the situation

changes if some global, nonanomalous U(1) symmetries, Ui(1), i = 1, 2, . . ., are present,

such that when Ui(1) are gauged (in the usual sense, by the introduction of external gauge

fields Aµ
i ), the color N ⇢ SU(N) and the Ui(1) transformations can compensate each

other for the fermions.

As one encircles a closed loop L in spacetime, the fields transform as

Pei
H
L a ! e

2⇡i
N Pei

H
L a ;  k ! e

2⇡iNk
N  k , N ⇢ SU(N) ; (2.11)

⇧i e
i
H
L Ai !

⇣
e2⇡i

P
i,k q

(i)
k

⌘
⇧i e

i
H
L Ai ;  k ! e2⇡i

P
i q

(i)
k  k , Ui(1) ; (2.12)

where a ⌘ aAµ t
A dxµ is the SU(N) gauge field; Nk is the N -ality of the kth fermion, q(i)k is

the charge of  k under Ui(1). The factor ei
H
L Ai is the Aharonov-Bohm phase for the i-th

fermion.

We recall that that the center symmetry is formally defined as a path-ordered sequence

of local SU(N) gauge transformations along the loop, hence the fermions must also trans-

form in order to keep the action invariant. After encircling the loop and coming back to

the original point, the gauge field is transformed by a nontrivial periodicity with a N fac-

tor, dragging the fermions fields to transform as in (2.11). It would violate their periodic

boundary condition (i.e., their uniqueness at each spacetime point). This is the reason

why the presence of a fermion, e.g., in the fundamental representation, breaks the center

symmetry itself 6.

When the conditions X

i

q(i)k = �Nk
N , 8k (2.13)

are satisfied, however, a new, color-flavor locked center symmetry (2.11), (2.12), can be

defined, accompanying the color N center transformations with appropriate Ui(1) gauge

transformations.

As the ordinary N center transformation, such a color-flavor combined N center

symmetry is still just a global 1-form symmetry.

A more powerful idea is to introduce the gauging of this 1-form symmetry and studying

possible topological obstructions in doing so (generalized ’t Hooft’s anomalies) [15]- [36].

As in the case of conventional gauging of 0-form symmetries, the idea of gauging is that

of identifying the field configurations connected by the given symmetry transformations,

and of eliminating the double counting in the sum over field configurations. However,

as one is now dealing with a 1-form symmetry, the associated gauge transformations are

parametrized by a 1-form Abelian gauge function 7 � = �µ(x)dxµ, see (3.8), (3.9) below.

6In the case of the Polyakov loop defined in the Euclidean spacetime, the fermions are required to
satisfy antiperiodic boundary condition, but the conclusion is the same.

7Here we remember the crucial aspect of higher form symmetries: they are all Abelian. This is the

7



1.                 anomaly

All BY and GG models  have a non anomalous            symmetry  (fermion parity)♦

1 Introduction

The dynamics of two wide classes of chiral gauge theories - the so-called Bars-Yankielowicz

(BY) and generalized Georgi-Glashow (GG) models [1] - [6] - has been re-examined recently

[7–9], in the light of a gauged color- N 1-form symmetry, and of the stronger forms of

’t Hooft anomaly matching constraints following from that. In particular certain mixed

anomalies involving a 2 symmetry were found to imply that chirally symmetric confining

vacua in these models, where the global symmetries in the infrared are saturated by the

hypothetical massless composite fermions (the baryons), are inconsistent. Dynamical Higgs

vacua characterized by color-flavor locked bifermion condensates, are instead found to be

compatible with the indications coming from the pattern of the mixed anomalies [7–9].

An independent study [10], relying on the appropriate infrared realization of the so-

called strong anomalies, provides a further support to those conclusions.

The arguments based on the mixed 2 � N anomalies have been put in question

in [11]. Apart from the details of the arguments adopted there, the problem boils down to

the singular nature of the external “ 2 gauge field” A2, introduced in [7–9] to construct the

color-flavor 1-form N symmetry which resides in the intersection 1 SU(N)\{ 2⇥U ⌘(1)}.
The 2 gauge field needs to wind

I

L

A2 =
2⇡m

2
, m 2 , (1.1)

along a closed loop L, to parametrize the holonomy 2

 ! � , ⌘ ! �⌘ , (1.2)

and to give the color-flavor-locked 1-form N symmetry. Such a field contains necessarily

a singularity (i.e., a singular 2 vortex) somewhere inside the closed 2D space ⌃2 bounded

by L.

The authors of [11] show that, by choosing instead a (regular, hence legitimate) “ 2

gauge field” A2 such that (cfr. (1.1))

Z

⌃2

dA2 = 2⇡ , (1.3)

(a formula in the line below Eq. (2.13) of [11]), the flux carried by the N gauge field B(2)
c

becomes Z

⌃2

N B(2)
c = 4⇡k , k 2 , (1.4)

1For definiteness, here we consider the case of the “ ⌘ model” studied in [7] and in [11], and adopt the
notation used there.

2We recall that an appropriate U ⌘(1) holonomy [7] together with this 2 transformation, lead to a N

transformation of the fermions fields, undoing their N ⇢ SU(N) gauge transformations.

3
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 i ! � i

instanton #

♦ In type I models,  the symmetry group space is disconnected:  

The situation is analogous in a large class of chiral gauge theories, to be discussed in

Sec. 4 below. Clearly, the conventional ’t Hooft anomaly matching requirement is not

powerful enough to discriminate among possible (confining or dynamical Higgs) vacua.

To go beyond the conventional (perturbative) ’t Hooft anomaly analyses, it is necessary

to consider the global properties of the symmetry groups, not only the algebra. For even

N the true symmetry group of the model is found to be [69]:

SU(N)color ⇥Gf , Gf =
SU(N + 4)⇥ U(1) ⌘ ⇥ (Z2)F

ZN ⇥ ZN+4
, (2.21)

and not (2.20), where (Z2)F is the fermion parity,  , ⌘ ! � ,�⌘.

Indeed, as promised, there is a subgroup of SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ ⇥ ( 2)F ,

N = SU(N) \ {U(1) ⌘ ⇥ (Z2)F} , (2.22)

which leaves the matter fields invariant.6 The gauge transformation with e
2⇡i
N 2 ZN ⇢

SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (2.23)

can be undone by the following (Z2)F ⇥ U(1) ⌘ transformation:

 ! (�1) ei
N+4

2
2⇡
N  = e�iN2

2⇡
N ei

N+4
2

2⇡
N  , ⌘ ! (�1) e�iN+2

2
2⇡
N ⌘ = ei

N
2

2⇡
N e�iN+2

2
2⇡
N ⌘ .

(2.24)

A relevant fact is that the odd elements of ZN belong to the disconnected component

of U(1) ⌘ ⇥ (Z2)F whereas the even elements belong to the connected component of the

identity.

The presence of a subgroup which acts trivially means that there is a 1-form global sym-

metry. Again, in the discrete language introduced before, it acts on transition functions.

In particular, if gcij, uij and qij are the transition functions for SU(N), U(1) ⌘ and ( 2)F ,

one may introduce some N transitions functions (a N gauge field), zij, and transform

gij ! zijgij , uij ! (zij)
�1uij , and qij ! (zij)

�N
2 qij . (2.25)

If one drops the cocycle condition for zij, one gauges the 1-form symmetry. In this case

one must introduce also the 2-form connection 7, described by the new data Bijk 2 N ,

which are read from the transition functions

gijgjkgki = Bijk , uijujkuki = (Bijk)
�1 , qijqjiqki = (Bijk)

�N
2 . (2.26)

6There is another independent subgroup, N+4, which does not act on matter filed, leading to another

N+4 1-form center symmetry. In [69] the e↵ects of gauging this flavor center symmetry and the resulting
mixed anomalies in the  ⌘ model have also been taken into account. None of the main results however
were found to depend on it. Here for simplicity we consider only the gauging of the color-flavor locked
center symmetry N , together with U(1) ⌘ and ( 2)F .

7Again, an element of H2(M, N ), Bijk 2 N .
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:  In type I models  (*) (e.g.,  even N                      ),                
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+

Type I  models (*) :

 all BY and GG models 

with N, p even

Type II: others  
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 ⌘ model

Even N

♦ In type II BY and GG models,  no Z2    and      
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No new results w.r.t.  the conventional ’t Hooft anomaly algorithm

Type I models:   gauging of the 1-form  color-flavor locked ZN   symmetry  
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The confining, symmetric vacuum  (&)   is inconsistent

(%)

($)
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G =
SU(N)⇥ SU(N + 4)⇥ U ⌘(1)⇥ Z2

ZN

Bolognesi, KK, Luzio  ‘19

Master formula for BY, GG

Bolognesi, KK, Luzio, ’21, ’22 
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In IR,  the massless baryons do not support the Z2   anomaly

because 

with !

No problem in

Higgs phase 

c2( ) = 1, c2(⌘) = �1, see (2.35).

Now

trR
h�
F (ã)

�2i
= trR

h�
F (ã)� B(2)

c +B(2)
c

�2i

= tr
h�
RR

�
F (ã)� B(2)

c

�
+N (R)B(2)

c d(R)

�2i

= tr
h
RR

�
F (ã)� B(2)

c )2 +N (R)2
�
B(2)

c

�2
d(R)

i
. (2.38)

RR is the matrix form for the representation R and N (R) its N -ality, and we used the fact

that

trR
�
F (ã)� B(2)

c

�
= 0 , (2.39)

valid for an SU(N) element in a general representation. d(R) is the d(R) ⇥ d(R) unit

matrix (d(R) is the dimension of the representation R). One finds

trR
h�
F (ã)

�2i
= D(R) trF

h�
F (ã)� B(2)

c

�2i
+ d(R)N (R)2

�
B(2)

c

�2
=

= D(R) trF [F (ã)]2 +
⇥
�D(R) ·N + d(R)N (R)2

⇤ �
B(2)

c

�2
, (2.40)

where D(R) is twice the Dynkin index TR, (2.14). Note that

1

8⇡2

Z

⌃4

trF
⇥
F (ã)2

⇤
2 : (2.41)

the first term in Eq. (2.40) corresponds to the conventional instanton contribution to

the ( 2)F anomaly. In all models of interest here, however, the sum of the instanton

contribution from the fermions is of th form,

(an even integer)⇥
1

8⇡2

Z

⌃4

trF
⇥
F (ã)2

⇤
⇥ (±⇡) = 2⇡ , (2.42)

which is trivial.

The fact that ( 2)F anomaly is absent in the standard instanton analysis because of a

(nonvanishing) even coe�cient, and of the quantized instanton flux, but not because of an

algebraic cancellation from di↵erent fermions, is of utmost importance. Indeed, the gauging

of the 1-form N by the introduction of the 2-form gauge fields B(2)
c basically amounts to

the fractionalization of the instanton flux à la ’t Hooft, (2.34), and as a consequence, a

nonvanishing mixed anomaly involving ( 2)F can appear.

Thus the non-vanishing mixed ( 2)F � [ N ]2 anomaly comes only from the second term

of Eq. (2.40), containing the 2-form gauge field,

�S(Mixed anomaly) = (±⇡) ·
X

fermions

⇣
d(R)N (R)2 �N ·D(R)

⌘ 1

8⇡2

Z

⌃4

�
B(2)

c

�2
. (2.43)
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Objection to  (%), ($)

A0  singular  (Z2   vortex) !! 

Propose: use No  Z2   anomaly  !!!?    

….   But  (*) is a trivial  Z2    holonomy  
                                               !!

(*)

twice those used in [7], and accordingly the anomalies found there would disappear. How-

ever, (1.3) means that their background 2 gauge field corresponds to the holonomy

 !  , ⌘ ! ⌘ , (1.5)

i.e., no transformation (a trivial element of 2). The fact that one finds no anomaly for this

background is certainly correct (and consistent), but the significance of such an observation

is not entirely clear.

Note that a phrase, “there is no 2 anomaly”, is intrinsically ambiguous. It is not

clear whether one is claiming that there is no 2 symmetry, or that there is one but

not anomalous; whether one is talking about a 0-form or 1-form symmetry, and even by

limiting ourselves to the last case, whether one is dealing with a global or gauged 1-form

2 symmetry.

In order to grasp correctly the main issue it is indeed necessary to distinguish the

concepts of the global 1-form N symmetry from the gauged version of it. The former,

a color-flavor locked N symmetry, is a generalization of the familiar center symmetry of

pure SU(N) Yang-Mills theory. This symmetry certainly exists in the  ⌘ and other models

studied in [7–9], but in itself it does not lead to any consistency condition. It is another

story if one tries to gauge this 1-form N symmetry, by introducing the N gauge field

B(2)
c with a proper N flux (cfr. (1.4)) [12–14]

Z

⌃2

N B(2)
c = 2⇡k , k 2 . (1.6)

Such a gauging may encounter a topological obstruction (a ’t Hooft anomaly). If it does,

then there are new, nontrivial UV-IR matching conditions [15]- [36]. This is indeed what

was found in [7–9]. The question is whether the anomalies and their consequences discussed

there are to be trusted, in view of the fact that the argument made use of a singular external

(non-dynamical) A2 gauge field, (1.1).

The aim of the present work is to clarify the sense of the anomalies found in [7–9], by

considering an extended model with an extra Dirac pair of fermions in the fundamental

representation, which act as a sort of regulator fields. When a gauge-invariant, complex

scalar field coupled to them through a Yukawa potential term gets a nonvanishing vacuum

expectation value (VEV), v, this extended model (which we call the X-ray model) reduces,

at mass scales below v, to the previously considered  ⌘ model 3. The generalized anomalies

found in the X-ray model (which are free from the subtleties [11] encountered in the original

 ⌘ model) justify and fully confirm the conclusion of [7–9]. These discussions allow to

illuminate better the significance of the mixed 2 � ( N)2 anomaly found in the BY and

GG models [7–9], and to explain why it is present only in theories with even N .

This work is organized as follows. In Sec. 2 we introduce the X-ray model and dis-

3We take v such that v � ⇤ ⌘, where ⇤ ⌘ is the dynamical scale of the  ⌘ model.

4

Cure:   consider            model with a regulator Dirac pair          and    
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q, q̃

 a singlet scalar      w/ Yukawa     (“X - ray model”) 
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h�i = v � ⇤ ⌘

SU(N)c SU(N + 4) U(1) ⌘ U(1)V U0(1) Ũ(1)

 (·) N+4
2 0 1 N+4

2

⌘
¯ �N+2

2 0 �1 �N+2
2

q (·) 0 1 1 N+2
2

q̃
¯

(·) 0 �1 1 �N+2
2

� (·) (·) 0 0 �2 0

Table 1: The fields and charges of the X-ray model with respect to the nonanomalous symmetries.

of which three of the U(1) symmetries are independent, see Table 1. Only three out of the

four U(1)’s listed are actually independent.

The Yukawa coupling breaks explicitly part of the global symmetry of the original

model, (2.1), (2.2). The implications of the conventional ’t Hooft anomaly matching con-

ditions, with respect to the unbroken global symmetry, therefore remain the same as in

the original generalized Bars-Yankielowicz model, (2.1),(2.2): they allow both dynamical

Higgs phase (with bifermion condensates) and confining, chirally symmetric phase (with

no condensate formation). See App. A.

We assume that the potential for the � field is such that it acquires a nonvanishing vev,

h�i = v � ⇤ ⌘ . (2.7)

The system at mass scales µ below v

h�i � µ (2.8)

reduces exactly to the  ⌘ model, studied in [7] - [9], as the fermions q and q̃ get mass and

decouple. The global U(1) symmetries indeed reduce as

Ũ(1) ! U(1) ⌘ ; U0(1) ! 2 ; UV ! , (2.9)

where 2 acts as

 ! � , ⌘ ! �⌘ . (2.10)

We refer to this model as the X-ray theory.

As U0(1) and Ũ(1) symmetries are free of (strong) anomalies, one may introduce exter-

nal regular gauge fields, A0 and Ã, respectively.

2.1 Color-flavor locked 1-form N symmetry

As the idea of color-flavor locked N 1-form symmetry is central below, let us briefly review

it. Let us consider an SU(N) gauge theory with a set of the massless matter Weyl fermions

{ k}. In general, the color center N symmetry is broken by the fermions (unless the

6

 ⌘ q q̃

N ⇢ SU(N) 4⇡
N �2⇡

N
2⇡
N �2⇡

N

Ũ(1) N+4
2 � �N+2

2 � N+2
2 � �N+2

2 �
U0(1) � �� � �

Table 2: The choice � = 2⇡
N and � = ±⇡ reproduces indeed N .

3 Gauging 1-form N symmetry: mixed anomalies

We consider now the gauging of the 1-form N symmetry in the X-ray model, lying in the

intersection (see Table 2)

N = SU(N)c \ (Ũ(1)⇥ U0(1)) (3.1)

where Ũ(1) and U0(1) are defined in Table 1 7. In other words, our theory is described by

the connection
SU(N)c ⇥ Ũ(1)⇥ U0(1)

N
, (3.3)

rather than by the simple product principal bundle

SU(N)⇥ Ũ(1)⇥ U0(1) . (3.4)

Accordingly, we introduce the gauge fields

1. Ã: Ũ(1) 1-form gauge field,

2. A0: U0(1) 1-form gauge field,

3. B(2)
c : N 2-form gauge field,

in addition to the dynamical color gauge SU(N) field, a.

The gauging of 1-form discrete ZN symmetry proceeds by introducing a pair of 2-form

and 1-form gauge fields [15]- [36] �
B(2)

c , B(1)
c

�
(3.5)

satisfying

NB(2)
c = dB(1)

c , (3.6)

and coupling to them the SU(N) gauge fields a and Ũ(1)⇥U0(1) gauge fields, Ã and A(1)
0 ,

appropriately. For the SU(N) gauge field a, this is done by embedding it into a U(N)

7Also, as

U(1) ⌘ ⌦ UV (1) = Ũ(1) ; Q ⌘ +
N + 2

2
QV = Q̃ (3.2)

it is possible to gauge the 1-form N symmetry together with U(1) ⌘, UV (1) and U0(1). Here we choose
to proceed with gauging N lying in the intersection (3.1).
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four lines of (3.21) only:

A6D =
1

24⇡2

Z

⌃6

�N(N + 1)

2
[
N + 4

2
(dÃ+B(2)

c ) + dA0 �
N

2
B(2)

c ]3

+(N + 4)N [�N + 2

2
(dÃ+B(2)

c )� (dA0 �
N

2
B(2)

c )]3

+N [
N + 2

2
(dÃ+B(2)

c ) + (dA0 �
N

2
B(2)

c )]3

+N [�N + 2

2
(dÃ+B(2)

c ) + (dA0 �
N

2
B(2)

c )]3
 
. (3.22)

Below we are going to extract the mixed anomalies, involving the U(1)0 or Ũ(1) gauge

fields, A0, Ã, together with the 1-form N gauge field, (B(2)
c , B(1)

c ). We recall again that

without the latter, UV anomalies simply expresses the conventional ’t Hooft anomaly

triangles involving the U(1)0 ⇥ Ũ(1) background fields, and by construction those are

matched by the assumed set of the massless baryons of a candidate IR theory such as

the one discussed in Appendix B. What we shall exhibit below is only the new, stronger

anomalies introduced by the gauging of the 1-form N symmetry. As will be discussed

below (Sec. 3.3) the consequence of these is that the confining, symmetric vacuum is not

consistent.

3.1 Ã� (B(2)
c )2 anomaly

To calculate the anomaly in Ũ(1) caused by the introduction of the 1-form N gauge fields,

let us briefly recall the procedure for calculating the anomalies in 4D theory according to

the Stora-Zumino descent procedure [37–39], starting from the 6D anomaly functional,

(3.22), in our case 8. One collects the terms of the form, (B(2)
c )2dÃ, integrate to get a 5D

functional of the form,

/
Z

⌃5

(B(2)
c )2Ã . (3.23)

Now the variation Ã ! Ã + � Ã

�Ã = d �↵ (3.24)

yields, by anomaly inflow, the anomalous variation in the (boundary) 4D theory

�S�↵ =
C̃

8⇡2

Z

⌃4

(B(2)
c )2 �↵ . (3.25)

By collecting terms we find

C̃ = �N3(N + 3)

2
6= 0 . (3.26)

8As emphasized in [7] all the calculations can be done staying in 4D, à la Fujikawa. That approach will
give directly (3.25), for instance, from the functional Jacobian.
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four lines of (3.21) only:

A6D =
1

24⇡2

Z

⌃6

�N(N + 1)

2
[
N + 4

2
(dÃ+B(2)

c ) + dA0 �
N

2
B(2)

c ]3

+(N + 4)N [�N + 2

2
(dÃ+B(2)

c )� (dA0 �
N

2
B(2)

c )]3

+N [
N + 2

2
(dÃ+B(2)

c ) + (dA0 �
N

2
B(2)

c )]3

+N [�N + 2

2
(dÃ+B(2)

c ) + (dA0 �
N

2
B(2)

c )]3
 
. (3.22)

Below we are going to extract the mixed anomalies, involving the U(1)0 or Ũ(1) gauge

fields, A0, Ã, together with the 1-form N gauge field, (B(2)
c , B(1)

c ). We recall again that

without the latter, UV anomalies simply expresses the conventional ’t Hooft anomaly

triangles involving the U(1)0 ⇥ Ũ(1) background fields, and by construction those are

matched by the assumed set of the massless baryons of a candidate IR theory such as

the one discussed in Appendix B. What we shall exhibit below is only the new, stronger

anomalies introduced by the gauging of the 1-form N symmetry. As will be discussed

below (Sec. 3.3) the consequence of these is that the confining, symmetric vacuum is not

consistent.

3.1 Ã� (B(2)
c )2 anomaly

To calculate the anomaly in Ũ(1) caused by the introduction of the 1-form N gauge fields,

let us briefly recall the procedure for calculating the anomalies in 4D theory according to

the Stora-Zumino descent procedure [37–39], starting from the 6D anomaly functional,

(3.22), in our case 8. One collects the terms of the form, (B(2)
c )2dÃ, integrate to get a 5D

functional of the form,

/
Z

⌃5

(B(2)
c )2Ã . (3.23)

Now the variation Ã ! Ã + � Ã

�Ã = d �↵ (3.24)

yields, by anomaly inflow, the anomalous variation in the (boundary) 4D theory

�S�↵ =
C̃

8⇡2

Z

⌃4

(B(2)
c )2 �↵ . (3.25)

By collecting terms we find

C̃ = �N3(N + 3)

2
6= 0 . (3.26)

8As emphasized in [7] all the calculations can be done staying in 4D, à la Fujikawa. That approach will
give directly (3.25), for instance, from the functional Jacobian.
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The Ũ(1) symmetry is broken (i.e., gets anomalous) by the generalized 1-form gauging of

the N .

3.2 A0 � (B(2)
c )2 anomaly

An analogous calculation leads to the U0(1) anomaly due to the 1-form gauging of the N

symmetry,

�S�↵0 =
C0

8⇡2

Z

⌃4

(B(2)
c )2 �↵0 , C0 = N2(N + 3) . (3.27)

This appears to imply that the U0(1) symmetry is also broken by the 1-form gauging of

the N symmetry.

However, the scalar VEV h�i = v breaks spontaneously the U0(1) symmetry to 2. It

means that, in contrast to (3.25), (3.26), the variation (3.27) cannot be used to examine

the generalized UV-IR anomaly matching check. For that purpose, we can use only the

nonanomalous 9 and unbroken symmetry operation, i.e., variations corresponding to a

nontrivial 2 trasformation �↵0 = ±⇡. Taking into account the nontrivial ’t Hooft flux

(3.11),
1

8⇡2

Z

⌃4

(B(2)
c )2 =

n

N2
, n 2 , (3.28)

and the crucial coe�cient of the anomaly, C0 = N2(N + 3), it is seen that the partition

function changes sign for even N . We reproduce exactly the 2 anomaly found in [7].

3.2.1 Remark

As in our earlier work [7–9], the nontrivial ’t Hooft N flux (1.6), (3.11), (3.28), mean that

one is considering the 4D spacetime compactified in e.g., bi-torus, T 2 ⇥ T 2. See Sec. 4

below for more remarks on 2 vortices in such a spacetime, implied by (3.13).

3.3 Chirally symmetric vacuum versus dynamical Higgs phase

Now what is the implication of the mixed anomalies found in the X-ray model, (3.25),

(3.28) to the physics in the infrared, that is, the phase of the  ⌘ model? We consider

here two, particularly interesting dynamical possibilities, a confining, chirally symmetric

vacuum and a dynamical Higgs phase, which are both known to be compatible with the

conventional ’t Hooft anomaly-matching constraints.

If we assume that the infrared system were confining, chirally symmetric one, with

no bifermion condensates forming, then the conventional ’t Hooft algorithm would tell us

that the low-energy degrees of freedom is the color-singlet massless composite fermion,

the baryon, B11 ⇠  ⌘⌘ (see Appendix B). Knowing its quantum numbers, there are no

di�culties in constructing the infrared anomaly functional, following the same procedure

9In the sense of the standard strong anomaly.
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The situation is analogous in a large class of chiral gauge theories, to be discussed in

Sec. 4 below. Clearly, the conventional ’t Hooft anomaly matching requirement is not

powerful enough to discriminate among possible (confining or dynamical Higgs) vacua.

To go beyond the conventional (perturbative) ’t Hooft anomaly analyses, it is necessary

to consider the global properties of the symmetry groups, not only the algebra. For even

N the true symmetry group of the model is found to be [69]:

SU(N)color ⇥Gf , Gf =
SU(N + 4)⇥ U(1) ⌘ ⇥ (Z2)F

ZN ⇥ ZN+4
, (2.21)

and not (2.20), where (Z2)F is the fermion parity,  , ⌘ ! � ,�⌘.

Indeed, as promised, there is a subgroup of SU(N)c ⇥ SU(N + 4)⇥ U(1) ⌘ ⇥ ( 2)F ,

N = SU(N) \ {U(1) ⌘ ⇥ (Z2)F} , (2.22)

which leaves the matter fields invariant.6 The gauge transformation with e
2⇡i
N 2 ZN ⇢

SU(N),

 ! e
4⇡i
N  , ⌘ ! e�

2⇡i
N ⌘ , (2.23)

can be undone by the following (Z2)F ⇥ U(1) ⌘ transformation:

 ! (�1) ei
N+4

2
2⇡
N  = e�iN2

2⇡
N ei

N+4
2

2⇡
N  , ⌘ ! (�1) e�iN+2

2
2⇡
N ⌘ = ei

N
2

2⇡
N e�iN+2

2
2⇡
N ⌘ .

(2.24)

A relevant fact is that the odd elements of ZN belong to the disconnected component

of U(1) ⌘ ⇥ (Z2)F whereas the even elements belong to the connected component of the

identity.

The presence of a subgroup which acts trivially means that there is a 1-form global sym-

metry. Again, in the discrete language introduced before, it acts on transition functions.

In particular, if gcij, uij and qij are the transition functions for SU(N), U(1) ⌘ and ( 2)F ,

one may introduce some N transitions functions (a N gauge field), zij, and transform

gij ! zijgij , uij ! (zij)
�1uij , and qij ! (zij)

�N
2 qij . (2.25)

If one drops the cocycle condition for zij, one gauges the 1-form symmetry. In this case

one must introduce also the 2-form connection 7, described by the new data Bijk 2 N ,

which are read from the transition functions

gijgjkgki = Bijk , uijujkuki = (Bijk)
�1 , qijqjiqki = (Bijk)

�N
2 . (2.26)

6There is another independent subgroup, N+4, which does not act on matter filed, leading to another

N+4 1-form center symmetry. In [69] the e↵ects of gauging this flavor center symmetry and the resulting
mixed anomalies in the  ⌘ model have also been taken into account. None of the main results however
were found to depend on it. Here for simplicity we consider only the gauging of the color-flavor locked
center symmetry N , together with U(1) ⌘ and ( 2)F .

7Again, an element of H2(M, N ), Bijk 2 N .
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2.  (Dynamical) Higgs phase

Color-flavor locked VEV

in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [36, 37]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [14, 15], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [12]. The first coefficient of the

2
A careful exposition of these ideas can be found e.g., in [30].

3
In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [34].
4
A recent application of this class of chiral gauge theories is found in [35].

– 3 –
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“ ⌘”model

The (continuous) symmetry of this model is

SU(N)c ⇥ SU(N + 4)f ⇥ U(1) , (4.3)

where U(1) is an anomaly-free combination of U (1) and U⌘(1), with

Q : N + 4; , Q⌘ : �(N + 2) . (4.4)

The discrete group is 2 if N is even; none if N is odd.

4.1 Chirally symmetric phase of (N , N�) = (1, 0) model

Let us first examine the possibility that no condensates form, the system confines and the

flavor symmetry is unbroken. The candidate massless baryons are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (4.5)

antisymmetric in AB. All the SU(N + 4)f ⇥ U(1) anomalies are saturated by those by

B[AB], as shown by Appelquist-Duan-Sannino, and as can be seen by inspection of the

Table 4.

fields SU(N)c SU(N + 4) Ũ(1)

 N(N+1)
2 · (·) N(N+1)

2 · (N + 4)

⌘A (N + 4) · ¯
N · N(N + 4) · (�(N + 2))

B[AB] (N+4)(N+3)
2 · (·) (N+4)(N+3)

2 · (�N)

Table 4: Chirally symmetric phase of the (1, 0) model

4.2 Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase appears, with

h {ij⌘Bi i = C �jB , j, B = 1, 2, . . . N , (4.6)

in which the symmetry is reduced to

SU(N)cf ⇥ SU(4)f ⇥ U 0(1) . (4.7)

As this forms a subgroup of the full symmetry group, (4.3), it is quite easily seen, by

making the decomposition of the fields in the subgroup, that a subset of the same baryons

saturate all of the triangles associated with the reduced symmetry group. See Table 5.
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The conventional anomaly matching manifest

fields SU(N)cf SU(4)f U 0(1)

 N(N+1)
2 · (·) N(N+1)

2 · (1)

⌘A1
¯ �

¯

N2 · (·) N2 · (�1)

⌘A2 4 · ¯
N · 4N · (�1

2)

B[A1B1]

¯

N(N�1)
2 · (·) N(N�1)

2 · (�1)

B[A1B2] 4 · ¯
N · 4N · (�1

2)

Table 5: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 4.2. A1 or
B1 stand for A,B = 1, 2, . . . , N . A2 or B2 the rest of the flavor indices.

It is not known which of the possibilities, 4.1 or 4.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N + 1 Nambu-Goldstone bosons, in the latter.

Let us check the a theorem and the ACS criterion for both.

fUV = 2(N2 � 1) +
7

4

✓
N(N + 1)

2
+ (N + 4)N

◆
=

1

8
(37N2 + 63N � 16) . (4.8)

In the infrared, for the unbroken-symmetry Subsection 4.1 :

fIR =
7

4

(N + 4)(N + 3)

2
=

7

8
(N2 + 7N + 12) (4.9)

So

fUV � fIR =
1

4
(15N2 + 7N � 50) � 0 , N � 2 . (4.10)

For the color-flavor locking scenario Subsection 4.2 with partially broken symmetries:

fIR =
7

4

✓
N(N � 1)

2
+ 4N

◆
+ 8N + 1 =

1

8
(7N2 + 113N + 8) (4.11)

so that

fUV � fIR =
1

4
(15N2 � 25N � 12) � 0 , N � 3 . (4.12)

These results are already discussed in the papers ACSS and ADS, where it was noted that

the symmetric phase 4.1 has a lower fIR.
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Massless baryons and (NG) bosons in L.E.

fields SU(N)cf SU(4)f U
0(1)

UV  
N(N+1)

2 · (·) 1

⌘
A1

¯ �

¯

N
2 · (·) �1

⌘
A2 4 · ¯

N · �1
2

IR B
[A1B1]

¯

N(N�1)
2 · (·) �1

B
[A1B2] 4 · ¯

N · �1
2

Table 6: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 3.2. A1 or B1 stand for

A,B = 1, 2, . . . , N , A2 or B2 the rest of the flavor indices.

The discrete anomaly  is broken by the condensate  ⌘. There is (for generic N)

no combination between  and ⌘ which survives, therefore there is no discrete anomaly

matching condition.

It is not known which of the possibilities, 3.1 or 3.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N+1 Nambu-Goldstone bosons, in the latter. Thus

the complementarity [18], as noted in [1], does not work here even though the (dynamical)

Higgs scalars  ⌘ are in the fundamental representation of color.

4 (N , N�) = (2, 0)

This is a straightforward generalization of the  ⌘ model above. The matter fermions are

 
{ij,m}

, ⌘
B
i , m = 1, 2 , B = 1, 2, . . . , 2(N + 4) , (4.1)

or

2 + 2(N + 4)
¯

. (4.2)

The (continuous) symmetry of this model is

SU(N)c ⇥ SU(2)f ⇥ SU(2N + 8)f ⇥ U(1) , (4.3)

where U(1) is an anomaly-free combination of U (1) and U⌘(1),

U(1) :  ! e
i↵/2(N+2)

 , ⌘ ! e
�i↵/2(N+4)

⌘ . (4.4)

The first coe�cient of the beta function is

b0 =
1

3
[11N � 2(N + 2)� 2(N + 4)] =

7N � 12

3
, (4.5)
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3.    Strong anomaly and phases

♦ QCD  (Nf =2)  and the UA(1)  problem 

remains unbroken:

[2Q�⌘ �Qc,�
k`
⌘
n
` ] = 0 . (2.55)

Unlike in the  ⌘ model, therefore, no physical massless NG bosons appear in the �⌘ model,

as the potential NG boson is eaten up by the U(1)c ⇢ SU(N) color gauge boson by the

Englert-Brout-Higgs mechanism.

As in the  ⌘ model, there is actually another U(1) symmetry (any combination of

U(1)� and U(1)⌘, other than U(1)�⌘). This U(1) is also spontaneously broken by the

condensates, (2.44), but the associated pseudo-NG boson gets mass by strong anomaly, as

in the U(1)A NG boson of QCD. The fact that there are no physical, massless NG bosons

in the �⌘ model does not mean that this anomalous U(1) symmetry is unimportant for the

discussion of the infrared dynamics, see the next section.

A closely related question is what is eventually the gauge-invariant form of the conden-

sate, (2.44). A natural choice for the �⌘ model is ((�⌘)im ⌘ �
ij
⌘
m
j )

U = ✏i1i2...iN ✏m1m2...mN�4(�⌘)
i1m1(�⌘)i2m2 . . . (�⌘)iN�4mN�4�

iN�3iN�2�
iN�1iN

⇠ ✏ (�⌘)N�4
�� . (2.56)

3 Strong anomaly and e↵ective Lagrangian

In this section, we first review the well-known strong-anomaly e↵ective action in QCD and

then, following the same steps, write down the analogous e↵ective action for chiral gauge

theories.

3.1 Strong anomaly, U(1) problem and the ✓ dependence in QCD

In the discussion of the dynamics of QCD the consideration of the anomalous axial U(1)A
symmetry has been quite important, in relation to the so-called U(1) problem and its

solution [18, 19]. Even though the NG boson(s) associated with the anomalous U(1)A
(⌘, ⌘0) 5 get mass by the strong interaction dynamics (m⌘ � m⇡, m⌘0 � mK) the presence

of the anomalous U(1) symmetry has a deep implication on the spontaneous breaking of

the nonanomalous chiral symmetries,

SU(Nf)L ⇥ SU(Nf)R ! SU(Nf)V , (3.1)

which generates physical lightest NG bosons, the pions.

Such a logical connection is best seen in the e↵ective Lagrangian approach for QCD in

5Here ⌘, ⌘0 are the singlet pseudoscalar mesons of the real world, as in the Particle Data Booklet. The
attentive reader will not confuse them with the Weyl fermion in the chiral  ⌘ or �⌘ models being studied
in the present work.
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(UA(1)  vs  SUA(2) NG bosons)

the large N limit. Generalizing the standard sigma model Lagrangian to include the e↵ect

of strong anomaly, the authors of [20]-[24] write

L = L0 + L̂ , (3.2)

where L0 is the standard sigma model e↵ective Lagrangian

L0 =
F

2
⇡

2
Tr @µU@

µ
U

† + TrM U + h.c.+ . . . ; U ⌘  ̄R L , (3.3)

and L̂ represents the strong anomaly

L̂ =
i

2
q(x) log detU/U † +

N

a0F
2
⇡

q
2(x)� ✓ q(x) , (3.4)

q(x) is the topological density

q(x) =
g
2

32⇡2
F

a
µ⌫F̃

a,µ⌫
, (3.5)

a0 is a constant of the order of unity, F⇡ the pion decay constant, and ✓ is the QCD vacuum

parameter. The U(1)A anomaly under

�S = 2Nf↵

Z
d
4
x

g
2

32⇡2
F

a
µ⌫F̃

a,µ⌫
,  L ! e

i↵
 L ,  R ! e

�i↵
 R , (3.6)

is reproduced by the log detU/U † term of the e↵ective action.

Treating q(x) as an auxiliary field, and integrating, one gets another form of the anomaly

term [20]-[24]

L̂ = �F
2
⇡ a0

4N

⇣
✓ � i

2
log detU/U †

⌘2

. (3.7)

It has been noted that a multi-valued e↵ective Lagrangian involving log detU/U † is

only well defined because

hUi / 1 6= 0 : (3.8)

the e↵ective potential is defined as its expansion around its VEV 6,

U / e
i
⇡ata

F⇡
+i

⌘ t0

F
(0)
⇡ = 1+ i

⇡
a
t
a

F⇡
+ i

⌘ t
0

F
(0)
⇡

+ . . . (3.9)

Inverting the logics, one might actually argue that the presence of such an e↵ec-

tive action reproducing the strong anomaly implies a nonvanishing condensate, hUi =

h ̄R Li 6= 0, and hence indirectly the spontaneous breaking of nonanomalous chiral sym-

6We indicated the U(1)A NG boson as ⌘ here, as the real-world pseudoscalar mesons ⌘ or ⌘0. The
attentive reader will not confuse it with the ⌘ field in the  ⌘ model under consideration.
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remains unbroken:

[2Q�⌘ �Qc,�
k`
⌘
n
` ] = 0 . (2.55)

Unlike in the  ⌘ model, therefore, no physical massless NG bosons appear in the �⌘ model,

as the potential NG boson is eaten up by the U(1)c ⇢ SU(N) color gauge boson by the

Englert-Brout-Higgs mechanism.

As in the  ⌘ model, there is actually another U(1) symmetry (any combination of

U(1)� and U(1)⌘, other than U(1)�⌘). This U(1) is also spontaneously broken by the

condensates, (2.44), but the associated pseudo-NG boson gets mass by strong anomaly, as

in the U(1)A NG boson of QCD. The fact that there are no physical, massless NG bosons

in the �⌘ model does not mean that this anomalous U(1) symmetry is unimportant for the

discussion of the infrared dynamics, see the next section.

A closely related question is what is eventually the gauge-invariant form of the conden-

sate, (2.44). A natural choice for the �⌘ model is ((�⌘)im ⌘ �
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i1m1(�⌘)i2m2 . . . (�⌘)iN�4mN�4�

iN�3iN�2�
iN�1iN
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�� . (2.56)

3 Strong anomaly and e↵ective Lagrangian

In this section, we first review the well-known strong-anomaly e↵ective action in QCD and

then, following the same steps, write down the analogous e↵ective action for chiral gauge

theories.

3.1 Strong anomaly, U(1) problem and the ✓ dependence in QCD

In the discussion of the dynamics of QCD the consideration of the anomalous axial U(1)A
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which generates physical lightest NG bosons, the pions.

Such a logical connection is best seen in the e↵ective Lagrangian approach for QCD in

5Here ⌘, ⌘0 are the singlet pseudoscalar mesons of the real world, as in the Particle Data Booklet. The
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Q: Does (a multi-valued)                         make sense?  

!
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U = hUi ei
ta⇡a+t0⌘

F⇡ = const. [1+ i
F⇡

(ta⇡a + t0⌘) + . . .]

Invert the logic:     Leff  with the strong-anomaly log term implies
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a0 is a constant of the order of unity, F⇡ the pion decay constant, and ✓ is the QCD vacuum

parameter. The U(1)A anomaly under

�S = 2Nf↵
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d
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x

g
2

32⇡2
F

a
µ⌫F̃

a,µ⌫
,  L ! e

i↵
 L ,  R ! e

�i↵
 R , (3.6)

is reproduced by the log detU/U † term of the e↵ective action.

Treating q(x) as an auxiliary field, and integrating, one gets another form of the anomaly

term [20]-[24]

L̂ = �F
2
⇡ a0

4N

⇣
✓ � i

2
log detU/U †

⌘2

. (3.7)

It has been noted that a multi-valued e↵ective Lagrangian involving log detU/U † is

only well defined because

hUi / 1 6= 0 : (3.8)

the e↵ective potential is defined as its expansion around its VEV 6,

U / e
i
⇡ata

F⇡
+i

⌘ t0

F
(0)
⇡ = 1+ i

⇡
a
t
a

F⇡
+ i

⌘ t
0

F
(0)
⇡

+ . . . (3.9)

Inverting the logics, one might actually argue that the presence of such an e↵ec-

tive action reproducing the strong anomaly implies a nonvanishing condensate, hUi =

h ̄R Li 6= 0, and hence indirectly the spontaneous breaking of nonanomalous chiral sym-

6We indicated the U(1)A NG boson as ⌘ here, as the real-world pseudoscalar mesons ⌘ or ⌘0. The
attentive reader will not confuse it with the ⌘ field in the  ⌘ model under consideration.
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i.e.,   XSB  with massless pions
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U(2)L ⇥ U(2)R
! SU(2)V

⇥ U(1)V
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@µJ
µ
A = Nf

g2

32⇡2
Fµ⌫ F̃

µ⌫ ;

Z
d4x

g2

32⇡2
Fµ⌫ F̃

µ⌫ = Z
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Apply the same logic in chiral gauge theories

Demand that the low-energy effective degrees of freedom 
(i.e. the phase) be such that Leff   with the strong-anomaly term

🔵

can be written in terms of them

Bolognesi, KK, Luzio,  JHEP ’20

♦ e.g.  the            model  : an SU(N) theory with fermions
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“�⌘”

phase is more plausible than others.

The models we will discuss in some details are the so-called Bars-Yankielowicz (BY)

and generalized Georgi-Glashow (GG) models. In particular, our discussions will be set

up first by using two simplest classes of models. One is an SU(N) gauge theory with

left-handed fermions in the reducible, complex representation,

� (N + 4)
¯

(1.1)

that is,

 
{ij}

, ⌘
B
i , i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4 , (1.2)

which is the simplest of the so-called Bars-Yankielowicz models [4]. This model will be

called “ ⌘” model below, for short.1 The global symmetry group (actually the local prop-

erty of the symmetry group) is

Gf = SU(N + 4)⇥ U(1) ⌘ , (1.3)

where U(1) ⌘ indicates the anomaly-free combination of U(1) and U(1)⌘, associated with

the two types of matter Weyl fermions of the theory. Another model we consider is an

SU(N) gauge theory with fermions

� (N � 4)
¯

(1.4)

that is,

�
[ij]

, ⌘
B
i , i, j = 1, 2, . . . , N , B = 1, 2, . . . , N � 4 , (1.5)

(the simplest Georgi-Glashow model). We will refer to it as “�⌘” model below. The global

symmetry group of the �⌘ model is

Gf = SU(N � 4)⇥ U(1)�⌘ . (1.6)

Our interest is to understand how these symmetries are realized in the infrared.

More general Bars-Yankielowicz and Georgi-Glasow models, which are similar to the

above two models but with p additional pairs of fermions in the fundamental and antifun-

damental representations, will also be considered.

In all these models the conventional ’t Hooft anomaly matching discussion apparently

allows a confining phase, with no condensates and with full unbroken global symmetry, with

some simple set of massless composite fermions saturating the anomaly matching equations.

1In some earlier literature these fields were denoted by S (the symmetric tensor  ), A (the antisymmetric
tensor �), and F̄ (the antifundamental, ⌘).
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Georgi-G
lash
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and with symmetry breaking

SU(N)c ⇥ SU(N + 4 + p)⌘ ⇥ SU(p)⇠ ⇥ U(1) ⌘ ⇥ U(1) ⇠
h⇠⌘i,h ⌘i�����! SU(N)cf⌘ ⇥ SU(4)⌘ ⇥ SU(p)⌘⇠ ⇥ U(1)0 ⌘ ⇥ U(1)0 ⇠ (3.38)

turns out instead to be consistent [25].

A strong anomaly e↵ective action for these theories can be constructed in a way anal-

ogous to the  ⌘ model. Instead of (3.23), one has now

✏ B1B1 detU detV ⌘ ✏
m1,m2,...,mN+4+p✏

i1,i2,...,iN ✏
k1,k2,...,kp ⇥

⇥B
[mN+1,mN+2]
1 B

[mN+3,mN+4]
1 U

i1m1U
i2m2 . . . U

iNmNV
mN+5k1 . . . V

mN+4+pkp ,

(3.39)

where B1 are the baryons ⇠  ⌘⌘ defined in (3.36). The rest of the analysis closely follows

that of the  ⌘ model discussed in Sec. 3.2. We shall not pursue further the details of

the analysis here, except for noting that the strong anomaly e↵ective action with such a

logarithm, is perfectly consistent with (implies?) the condensates, (3.37), together with

hB1B1i 6= 0, where B1 are the baryons defined in (3.36), (F.6). Writing extensively,

hB1B1i = h✏C1C2C3C4( 
ij
⌘
C1
i ⌘

C2
j )( k`

⌘
C3
k ⌘

C4
` )i 6= 0 ,

C1 ⇠ C4 = N + 1, . . . , N + 4 : (3.40)

i.e., the system is in dynamical Higgs phase, described in Appendix F.

On the contrary, it is clearly not possible to write the strong-anomaly e↵ective action

with logarithmic argument (3.39), in terms of massless composite fermions (3.36).

3.4 Strong anomaly in the �⌘ model

Any combination of U(1)� and U(1)⌘ other than U(1)�⌘ (see Table 4) su↵ers from the strong

anomaly. It means that the low-energy e↵ective action should contain a term analogous

to (3.4) for QCD or (3.12) for the  ⌘ model. The natural choice of a gauge-invariant

condensate (2.56) suggests an e↵ective action of the form for the �⌘ model:

i

2
q(x) log(�⌘)N�4

��+ h.c. , (3.41)

(q(x) is the topological density defined in (3.5)) where

(�⌘)N�4
�� ⌘ ✏i1i2...iN ✏m1m2...mN�4 (�⌘)

i1m1(�⌘)i2m2 . . . (�⌘)iN�4mN�4�
iN�3iN�2�

iN�1iN .

(3.42)

21

Strong-anomaly effective action

the large N limit. Generalizing the standard sigma model Lagrangian to include the e↵ect
of strong anomaly, the authors of [20]-[24] write
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a0 is a constant of the order of unity, F⇡ the pion decay constant, and ✓ is the QCD vacuum
parameter. The U(1)A anomaly under
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F
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is reproduced by the log detU/U † term of the e↵ective action.
Treating q(x) as an auxiliary field, and integrating, one gets another form of the anomaly

term [20]-[24]

L̂ = �F 2
⇡ a0

4N

⇣
✓ � i
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. (3.7)

It has been noted that a multi-valued e↵ective Lagrangian involving log detU/U † is
only well defined because

hUi / 1 6= 0 : (3.8)
the e↵ective potential is defined as its expansion around its VEV 6,
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Inverting the logics, one might actually argue that the presence of such an e↵ec-
tive action reproducing the strong anomaly implies a nonvanishing condensate, hUi =
h ̄R Li 6= 0, and hence indirectly the spontaneous breaking of nonanomalous chiral sym-

6We indicated the U(1)A NG boson as ⌘ here, as the real-world pseudoscalar mesons ⌘ or ⌘0. Theattentive reader will not confuse it with the ⌘ field in the  ⌘ model under consideration.
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i.e., the system is in dynamical Higgs phase, described in Appendix F.

On the contrary, it is clearly not possible to write the strong-anomaly e↵ective action

with logarithmic argument (3.39), in terms of massless composite fermions (3.36).

3.4 Strong anomaly in the �⌘ model

Any combination of U(1)� and U(1)⌘ other than U(1)�⌘ (see Table 4) su↵ers from the strong

anomaly. It means that the low-energy e↵ective action should contain a term analogous

to (3.4) for QCD or (3.12) for the  ⌘ model. The natural choice of a gauge-invariant

condensate (2.56) suggests an e↵ective action of the form for the �⌘ model:
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2
q(x) log(�⌘)N�4

��+ h.c. , (3.41)

(q(x) is the topological density defined in (3.5)) where

(�⌘)N�4
�� ⌘ ✏i1i2...iN ✏m1m2...mN�4 (�⌘)

i1m1(�⌘)i2m2 . . . (�⌘)iN�4mN�4�
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L̂ =

The argument of the logarithmic function taken here reflects the correct number of the

fermion zeromodes in the instanton background (N� = N�2 and N⌘ = N�4); the epsilon

tensors take care of the invariance under the full (nonanomalous) symmetry of the �⌘

system,

SU(N)c ⇥ SU(N � 4)⇥ U(1)�⌘ . (3.43)

This anomaly e↵ective action agrees with the one proposed by Veneziano [5] for the special

case of SU(5) �⌘ model, and generalizes it to all SU(N) �⌘ models.

An important observation we share with [5] is that this strong anomaly e↵ective action,

which should be present in the low-energy theory to reproduce correctly the (anomalous

and nonanomalous) symmetries of the UV theory, implies nonvanishing condensates,

h�⌘i 6= 0 , h��i 6= 0 , (3.44)

i.e., the dynamical Higgs phase, Appendix D.

Another important observation here is that there is no way of writing the strong

anomaly e↵ective action (3.41) in terms of the “baryons”, B ⇠ �⌘⌘, of the assumed confin-

ing, chirally symmetric phase (Appendix C). No combination of the baryons can saturate

the correct number of the fermion zeromodes, cfr (3.42).

Even though, contrary to the  ⌘ model, the �⌘ system has no physical U(1) NG boson

(it is eaten by a color SU(N) gauge boson), the counting of the broken and unbroken U(1)

symmetries is basically similar in the two models. Of the two nonanomalous symmetries

(U(1)c and U(1)�⌘), a combination remains a manifest symmetry, and the other becomes

the longitudinal part of the Tc gauge boson. Still another, anomalous, U(1) symmetry

exists, any combination of U(1)� and U(1)⌘ other than U(1)�⌘. This symmetry is also

spontaneously broken hence must be associated with a NG boson, though it will get mass

by the strong anomaly.

By expanding the composite �⌘ and �� fields around their VEV’s,

(detU)0 = h(detU)0i+ . . . / 1+
i

F
(0)
⇡

�
0
0 + . . . ,

�� = h��i+ . . . / 1+
i

F
(1)
⇡

�
0
1 + . . . , (3.45)

where (detU)0 is defined in the N � 4 dimensional color-flavor mixed space, and

�� = ✏i1i2i3i4�
i1i2�

i3i4 , N � 3  ij  N . (3.46)

Now the strong-anomaly e↵ective action (3.41) gives mass to

�̃
0 ⌘ N⇡


1

F
(0)
⇡

�
0
0 +

1

F
(1)
⇡

�
0
1

�
, N⇡ =

F
(0)
⇡ F

(1)
⇡q�

F
(0)
⇡

�2
+
�
F

(1)
⇡

�2 , (3.47)
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: dynamical Higgs phase! 

Cfr. confining chirally symmetric vacuum with massless baryons
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B ⇠ �⌘⌘ (                  )  only,  fails
Fermion zero-mode counting

N=5

Venezian
o  ‘81

♦ Dynamical Higgs phase favored also in the            model 
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as well as in all generalized BY and GG models N even or odd

($)
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4.    Dynamical Abelianization 

♦                model:    SU(N) theory with Weyl fermions
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” �⌘”

linear combination of the above two, su↵ers from the strong anomaly. As is well known,

the consideration of such an anomalous symmetry also provides us with an important

information about the infrared physics. The famous UA(1) problem and its solution [45]-

[51] are an example of this. For related considerations in the context of chiral gauge

theories, see [4, 38]. For the present model, we will take

U(1)an :  ! e
i�
 , �! e

�i�
� , ⌘ ! ⌘ . (2.7)

A nonvanishing instanton amplitude

h  . . . | {z }
N+2

�� . . .�| {z }
N�2

⌘...⌘|{z}
8

i 6= 0 (2.8)

involving N + 2  ’s, N � 2 �’s and 8 ⌘’s, is indeed not invariant under U(1)an while it is

invariant under (2.4) and (2.5).

There are also anomaly-free discrete subgroups ( N+2) ⇥ ( N�2)�⇥ ( 8)⌘ of U(1) ⇥

U(1)� ⇥ U(1)⌘. Under these ’s the fields transform as

 ! e
2⇡i k

N+2 , k = 1, 2, . . . , N + 2 ,

�! e
�2⇡i `

N�2� , ` = 1, 2, . . . , N � 2 ,

⌘ ! e
�2⇡im8 ⌘ , m = 1, 2, . . . 8 , (2.9)

which are not broken by the instantons. However, they are not independent. It turns out,

in fact, that ( N+2) ⇥( N�2)�⇥( 8)⌘ is entirely contained inside SU(8)⇥ Ũ(1)⇥U(1) �,

as is easy to check. The global symmetry group is connected.

Furthermore, Ũ(1)⇥ U(1) � and ( 8)⌘ ⇢ SU(8) has an intersection1:

�
Ũ(1)⇥ U(1) �

�
\ ( 8)⌘ = 8/N⇤ . (2.10)

This leads to the symmetry of the  �⌘ model:

G = SU(N)⇥
U(1) � ⇥ Ũ(1)⇥ SU(8)

N ⇥ 8/N⇤
. (2.11)

The division by N is due to the fact that the color N center is shared by a subgroup of

the flavor U(1) groups. To see this, it is su�cient to choose the angles ↵ = 2⇡k
N , k 2 N , in

1This can be understood in a simple way. For ei↵ 2 Ũ(1) and ei� 2 U(1) �, the composition of the two

transformations acts only on ⌘ if and only if 2↵+ (N�2)
N⇤ � = 2⇡ and �2↵� (N+2)

N⇤ � = 2⇡ . Combining the

two equations one obtains 8
N⇤↵ = 2⇡ (here we use that (N+2)

N⇤ A �
(N�2)
N⇤ B = 1 has integer solutions for

A and B, as (N � 2)/N⇤ and (N +2)/N⇤ are co-primes). Thus ⌘ ! e2⇡i
N⇤
8 k⌘, which, for k = 1, . . . , 8/N⇤

forms the 8/N⇤ subgroup of ( 8)⌘ ⇢ SU(8).
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symmetries involved must be broken. The pattern of the symmetry breaking predicted by

the assumption of dynamical Abelianization is found to fit nicely with these expectations.

2  �⌘ model and its symmetries

The  �⌘ model was studied earlier in [5,6,12] and more recently in [15,16]. It is an SU(N)

gauge theory with left-handed fermion matter fields

 
{ij}

, �[ij] , ⌘
A
i , A = 1, 2, . . . 8 , (2.1)

a symmetric tensor, an anti-antisymmetric tensor and eight anti-fundamental multiplets of

SU(N), or

�

¯

� 8⇥
¯

. (2.2)

The model has a global SU(8) symmetry. It is asymptotically free, the first coe�cient of

the beta function being,

b0 =
1

3
[11N � (N + 2)� (N � 2)� 8] =

9N � 8

3
. (2.3)

Such a � function suggests that it is a very strongly coupled theory in the infrared: it is

unlikely that it flows into an infrared-fixed CFT. But then some very nontrivial dynamical

phenomenon must take place towards the infrared: confinement, tumbling (dynamical

gauge symmetry breaking), or something else. The option that the system confines, with

no global symmetry breaking and with some massless “baryons” saturating the ’t Hooft

anomalies, does not appear to be plausible [5, 6, 12], as it would require an order / N of

the underlying fermions to form gauge-invariant baryons. The wish to understand what

happens in the (after all, simple) systems such as the  �⌘ model, was the driving motivation

for the renewed studies on this model [15, 16]. Several possible dynamical scenarios have

been found which are all compatible with ’t Hooft’s anomaly matching conditions, but the

results of the analysis remained not quite conclusive.

The system has three U(1) symmetries, U(1) , U(1)�, U(1)⌘, of which two combinations

are anomaly-free. For convenience we will take them below as

Ũ(1) :  ! e
2i↵
 , �! e

�2i↵
� , ⌘ ! e

�i↵
⌘ , (2.4)

and

U(1) � :  ! e
iN�2

N⇤ �
 , �! e

�iN+2
N⇤ �

� , ⌘ ! ⌘ , (2.5)

where

N
⇤ = GCD(N + 2, N � 2) and ↵, � 2 (0, 2⇡) . (2.6)

Any combination of the three classical U(1) symmetries which cannot be expressed as a
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🔵 Assume : 

(2.4); it indeed reduces to the center N ⇢ SU(N) transformations of the matter fermions,

 ! e
2·2⇡iN  , �! e

�2·2⇡iN � , ⌘ ! e
�2⇡i

N ⌘ . (2.12)

3 Dynamical Abelianization

The aim of this work is to study the consistency of the assumption that bifermion conden-

sates in the adjoint representation

h 
ik
�kji = ⇤3

0

B@
c1

. . .

cN

1

CA

i

j

, h 
ij
⌘
A
j i = 0 , (3.1)

cn 2 ,

X

n

cn = 0 , cm � cn 6= 0 , m 6= n , (3.2)

(with no other particular relations among cj’s) form in the infrared, inducing dynamical

Abelianization of the system.

The condition of dynamical Abelianization must be made more precise. We require

that the condensate (3.1), (3.2) induce the symmetry breaking

SU(N) ! U(1)N�1
. (3.3)

As the e↵ective composite scalar fields � ⇠  � are in the adjoint representation, it is

convenient to describe them as a linear combination,

� ⇠  � = �
A
T

A = �
(↵)

E↵ + �
(�↵)

E�↵ + �
(i)
H

i
, (3.4)

where �A are complex fields and T
A are the Hermitian generators of SU(N) in the fun-

damental representation (A = 1, 2, . . . , N2
� 1). In (3.4) we have introduced the SU(N)

generators in the Cartan-Weyl basis. E±↵ are the raising and lowering operators associ-

ated with positive root vectors, ↵; H i (i = 1, 2, . . . N � 1) are the generators in the Cartan

subalgebra.

A field in the adjoint representation transforms under SU(N) as

�! U �U
†
, U = e

i�ATA
, (3.5)

i.e., as

�! �+ i�
A[TA

,�] + . . . . (3.6)

We recall also that the diagonal generators TA = H
i are those in the Cartan subalgebra,
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By taking into account also the full global structure of the groups, the symmetry breaking

pattern due to the (3.1) condensate is actually

SU(N)⇥
SU(8)f ⇥ Ũ(1)⇥ U(1) �

N ⇥ 8/N⇤
�!

QN�1
`=1 U(1)` ⇥ SU(8)f ⇥ Ũ(1)
QN�1

`=1 ` ⇥ N ⇥ 2

, (3.14)

where

N = U(1)N�1 \ Ũ(1) = SU(N) \ Ũ(1) . (3.15)

U(1)N�1 is generated by t
N�1 in (3.13) 2.

The condensate (3.1) leaves unbroken a discrete subgroup 4/N⇤ ⇢ U(1) �:

4/N⇤ :  ! e
i
N�2
N⇤ ↵

 ; �! e
�i

N+2
N⇤ ↵

� , (3.16)

so that

 �! e
�i

4
N⇤ ↵ � , (3.17)

with

↵ = 2⇡k
N

⇤

4
, k = 1, 2, . . .

4

N⇤ . (3.18)

Note that 4/N⇤ is always an integer, as N⇤ = GCD(N+2, N�2) can be only one of 1, 2, 4.

We however note that 4/N⇤ is a subgroup of SU(8) ⇥ Ũ(1) 3. Thus the global unbroken

symmetry group in (3.14) is still connected.

Another discrete symmetry which remains unbroken by the condensate is N⇤ ,

N⇤ :  ! e
2⇡i p

N⇤ , �! e
�2⇡i p

N⇤� , (3.19)

(p = 1, . . . , N⇤). This is a subgroup 4 of the nonanomalous, discrete ( N+2) ⇥ ( N�2)�
symmetries, both of which are broken by the condensate. N⇤ is also a subgroup of

nonanomalous, unbroken continuous SU(8)⇥ Ũ(1) 5.

The pattern of the gauge symmetry breaking is somewhat reminiscent of what happens

in the N = 2 supersymmetric gauge theories. Indeed the massive spectrum will contain ’t

Hooft-Polyakov magnetic monopoles, as well as the massive SU(N)/U(1)N�1 gauge bosons.

Note however that these monopoles are not in a semiclassical regime. The coupling constant

at the scale of symmetry breaking is not small but of order one, g2 ⇠ 1. Thus the monopole

size and its Compton length are comparable; it is a soliton in a highly quantum regime.

Our system is analogous to theN = 2 supersymmetric gauge theories in the so-called quark

vacua, where the bare quark mass is cancelled by the adjoint field VEV. In the absence

2By choosing ↵`�1 = ↵` =
2⇡
` , it is easily seen that ` = U(1)` \ U(1)`�1. Also 2 = Ũ(1) \ SU(8).

3To see this, note first that SU(8) ⇥ Ũ(1) contains a discrete subgroup 4 acting on  and � by
phases ±2⇡k/4, k = 1, . . . , 4. Depending on N , 4/N⇤ of (3.17) can be seen to be 1, 2 or 4, always in

4 ⇢ SU(8)⇥ Ũ(1).
4Just take k = pN+2

N⇤ and ` = pN�2
N⇤ in (2.9).

5This can be seen by taking ei
2⇡p
2N⇤ 2 Ũ(1) and e2⇡i

p
2N⇤ 2 8 ⇢ SU(8).
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🔵 unbroken “discrete”  symmetries

IR

U(1)1

UV

N

8

8

U(1)2 U(1)N�1

Figure 4: U(1)’s quiver model representing dynamical Abelianization for the  �⌘ model

6. Non-Abelian gauge groups in the IR

Let us now discuss generalizations of the dynamical Abelianization in (N , N�) models of type
I and II. All these models have a  � composite scalar in the adjoint representation. The
condensation of such a composte adjoint scalar field can lead to dynamical Abelianization, as
discussed in the previous section. It is, however, possible that the condensation of the adjoint
scalar h �i leads to more general types of gauge symmetry breaking. Let us now discuss the
possibility that the RG flow actually brings the system towards more general low-energy e↵ective
gauge groups, containing various nonAbelian factors.

A type (I) theory has fields

 {ij},a , �b
[ij] , ⌘ci ,

a = 1, . . . N , b = 1, . . . N� , c = 1, . . . , N (N + 4)�N�(N � 4) . (6.1)

We assume that only one of the  ’s pairs with one of the �’s condense. The  � condensate breaks
the global symmetry as

SU(N )⇥ SU(N�)⇥ SU(N (N + 4)�N�(N � 4))⇥ U(1)2

�! SU(N � 1)⇥ SU(N� � 1)⇥ SU(N (N + 4)�N�(N � 4))⇥ U(1)2 . (6.2)

We assume that the condensate can be brought in a diagonal form

h ik,1�1
kji = ⇤3

0

B@
c1

. . .

cN

1

CA

i

j

6= 0 , (6.3)

cn 2 ,
X

n

cn = 0 , (6.4)
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♦ Let us now check the D.A. against the mixed-anomalies

linear combination of the above two, su↵ers from the strong anomaly. As is well known,

the consideration of such an anomalous symmetry also provides us with an important

information about the infrared physics. The famous UA(1) problem and its solution [45]-

[51] are an example of this. For related considerations in the context of chiral gauge

theories, see [4, 38]. For the present model, we will take

U(1)an :  ! e
i�
 , �! e

�i�
� , ⌘ ! ⌘ . (2.7)

A nonvanishing instanton amplitude

h  . . . | {z }
N+2

�� . . .�| {z }
N�2

⌘...⌘|{z}
8

i 6= 0 (2.8)

involving N + 2  ’s, N � 2 �’s and 8 ⌘’s, is indeed not invariant under U(1)an while it is

invariant under (2.4) and (2.5).

There are also anomaly-free discrete subgroups ( N+2) ⇥ ( N�2)�⇥ ( 8)⌘ of U(1) ⇥

U(1)� ⇥ U(1)⌘. Under these ’s the fields transform as

 ! e
2⇡i k

N+2 , k = 1, 2, . . . , N + 2 ,

�! e
�2⇡i `

N�2� , ` = 1, 2, . . . , N � 2 ,

⌘ ! e
�2⇡im8 ⌘ , m = 1, 2, . . . 8 , (2.9)

which are not broken by the instantons. However, they are not independent. It turns out,

in fact, that ( N+2) ⇥( N�2)�⇥( 8)⌘ is entirely contained inside SU(8)⇥ Ũ(1)⇥U(1) �,

as is easy to check. The global symmetry group is connected.

Furthermore, Ũ(1)⇥ U(1) � and ( 8)⌘ ⇢ SU(8) has an intersection1:

�
Ũ(1)⇥ U(1) �

�
\ ( 8)⌘ = 8/N⇤ . (2.10)

This leads to the symmetry of the  �⌘ model:

G = SU(N)⇥
U(1) � ⇥ Ũ(1)⇥ SU(8)

N ⇥ 8/N⇤
. (2.11)

The division by N is due to the fact that the color N center is shared by a subgroup of

the flavor U(1) groups. To see this, it is su�cient to choose the angles ↵ = 2⇡k
N , k 2 N , in

1This can be understood in a simple way. For ei↵ 2 Ũ(1) and ei� 2 U(1) �, the composition of the two

transformations acts only on ⌘ if and only if 2↵+ (N�2)
N⇤ � = 2⇡ and �2↵� (N+2)

N⇤ � = 2⇡ . Combining the

two equations one obtains 8
N⇤↵ = 2⇡ (here we use that (N+2)

N⇤ A �
(N�2)
N⇤ B = 1 has integer solutions for

A and B, as (N � 2)/N⇤ and (N +2)/N⇤ are co-primes). Thus ⌘ ! e2⇡i
N⇤
8 k⌘, which, for k = 1, . . . , 8/N⇤

forms the 8/N⇤ subgroup of ( 8)⌘ ⇢ SU(8).

5

Gauge the color-flavor locked 1-form                                                  symmetry. 🔵

symmetries. Let us recapitulate the symmetry of the system,

SU(N)⇥
Ũ(1)⇥ U(1) � ⇥ SU(8)

N ⇥ 8/N⇤
, (4.1)

where

U(1) � :  ! e
i
N�2
N⇤ �

 , �! e
�i

N+2
N⇤ �

� ,

Ũ(1) :  ! e
2i�
 , �! e

�2i�
� , ⌘ ! e

�i�
⌘ , (4.2)

and

8/N⇤ = SU(8) \ (Ũ(1)⇥ U(1) �) ,

N = SU(N) \ Ũ(1) . (4.3)

We wish now to find out if new, stronger consistency conditions on the realization of

these symmetries arise by making full use of the global structure of the symmetry group,

Eq. (4.1), i.e., by gauging some 1-form center symmetries, such as N and/or 8/N⇤ . To

do so, however, it is necessary to make use of symmetries which are not broken by the

color SU(N) or the weak SU(8) gauge interactions, including the nonperturbative e↵ects

(instantons). Gauging the 1-form 8/N⇤ symmetry involves necessarily gauging the Ũ(1)

symmetry, which is already broken by the SU(8) instantons, see Eq. (4.2). It would not

be a simple task to disentangle the e↵ects of the new anomalies due to the gauging of a

discrete center symmetry, from the conventional anomalies due to the SU(8) instantons.

Such a precaution appears to be relevant, because we are here interested in possible new

mixed anomalies on continuous symmetries Ũ(1) and U(1) � or on some of their discrete

subgroups.

These considerations lead us to preclude the idea of gauging the 1-form 8/N⇤ symmetry,

and below we shall focus on the color-flavor locked 1-form N center symmetry, gauge it in

conjunction with some 0-form U(1) symmetries of the model, and examine whether such a

simultaneous gauging would su↵er from some topological obstructions (generalized ’t Hooft

anomalies).

4.1 Calculation of the mixed anomalies

The action of the color-flavor locked N symmetry on the fermions has been analysed at

the end of Sec 2: it simply acts as a subgroup of the Ũ(1).

Keeping these points in mind, we introduce the gauge fields, following the procedure

established in [20]-[37],

• ac: the SU(N) color gauge field;

• af : the SU(8) flavor gauge field;
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5 Summary and Discussion

In this work, we revisited the infrared dynamics of the chiral  �⌘ theory, assuming dy-

namical Abelianization caused by bifermion condensate in the adjoint representation of the

SU(N) gauge group. In the first part, the symmetries of the system are studied and the

working of the conventional ’t Hooft anomaly matching has been briefly reviewed, and the

possible form of the e↵ective low-energy action is studied, by taking also into account also

of the strong anomaly.

In the second part of the work, we have checked these ideas against more stringent

constraints following the mixed-anomaly involving certain 0-form U(1) symmetries and 1-

form color-flavor locked N center symmetry. The results of the analysis, summarized in

Sec. 4.2, tell us that the proposed infrared physics, characterized by dynamical Abelianiza-

tion, is consistent with the implications of the mixed anomalies and, perhaps, implied by

them. The comparison between the implications of the mixed anomalies and those expected

from the assumption of the bifermion adjoint condensate and dynamical Abelianization, is

shown in Table 3. It is seen that the pattern of the symmetry realization (breaking) in the

infrared, suggested by the mixed anomalies involving the gauged 1-form N symmetry, are

well reproduced by the dynamical Abelianization proposed in this work.

Ũ(1) U(1) � ( N+2) ( N�2)� SU(8)⌘ N⇤ 4/N⇤

Mixed Anomalies X X X X X X X
Dyn. Abel. X X X X X X X

Table 3: Dynamical Abelianization postulate of the present work is confronted with the impli-
cations of the mixed anomalies. X for a conserved symmetry, X for a broken symmetry. The
discrete N⇤ symmetry is defined in (3.19), or in (4.27)-(4.30). 4/N⇤ is defined in (3.17).

In this work we have examined the consistency of the hypothesis of dynamical Abelian-

ization, that a bifermion condensate forms in the infrared, of the form, (3.1), (3.2). It

is possible that a bifermion condensate in the adjpoint representation forms, but with a

di↵erent symmetry breaking pattern, e.g.,

h( �)iji = c

(
(N �m) �ij , i, j = 1, ...,m

�m �
i
j , i, j = m+ 1, ..., N

c ⇠ O(⇤3
0) . (5.1)

In this case, the strong gauge group would be broken as

SU(N)c ! SU(m)c ⇥ SU(N �m)c0 ⇥ U(1)e , (5.2)

where U(1)e is generated by T / diag(N �m| {z }
n

,� m|{z}
N�m

). A quick look at the massless spec-

trum expected from such a symmetry breaking shows that the system below the scale ⇤0,

is basically a pair of  �⌘ models with SU(m) and SU(N �m) gauge groups, respectively.

23

Assumption of the dynamical Abelianization is consistent  

Various mixed anomalies: (p.63) 

Bolognesi, KK, Luzio ‘22

cfr. 
Sheu, Shifman  ‘22
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5.  More general dynamical symmetry breaking  DSB
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1 General  � models

SU(N) theories with fermions in the complex representation, N�4
k  {ij}’s and N+4

k �̄[ij],

N � 4

k
� N + 4

k

¯

, (1.1)

(k being a common devisor of N � 4 and N + 4).

Quiver notation: circles with a number inside n represent a gauge group SU(n), squares

with a number m represent a global symmetry SU(m), fermions are lines connecting the

groups, arrows on the line indicate if is fundamental (ingoing) or antifundamental (out-

going), lines omitted for SU(2); little “o” or “x” within a line indicates if the end are

symmetric or anti-symmetric. See figure 1 for the basic quiver diagram of the  � models.

n

(N+4)/4

(N-4)/4

Figure 1: Diagram for  �, N, k theory

4 ! k in the square boxes?

1.1 N = 5, k = 1: SU(5) ! SU(3)⇥ SU(2)⇥ U(1)

� 9

¯

, (1.2)

Consider

h �(9)i / diag(2v, 2v, 2v,�3v,�3v) , (1.3)

breaking the gauge symmetry as

SU(5) ! SU(3)⇥ SU(2)⇥ U(1) , (1.4)

and the global symmetry as

GF = SU(9)⇥ U0(1) ! SU(8)⇥U0(1)
0 . (1.5)
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N = 6, k = 2 : No breaking w IR-free NonAbelian groups 

Non Abelian IR-free subgroup(s) 

surviving in the IR?  

fields
SU(3)

SU(3)
SU(2) U(1)

UV
 ij

(·)
(·)

 iJ

(·)

 JK
(·)

(·)

 i↵

(·)

 I↵

�1

 ↵�
(·)

(·)

�Aij

¯

=
(·)

(·)
10

�AiJ

¯
¯ (·)

�AJK
(·)

¯

=
(·)

�Ai↵

¯ (·)
¯

�AI↵
(·)

¯
¯

�A↵�
(·)

(·)
(·)

Table
9:  � model

, N = 8, k = 4. A = 1, . . . ,
3. i, j

= 1, 2, 3;
I, J = 1, 2, 3;

↵,� = 1, 2

fields
SU(3)

SU(3)
SU(2) U(1)

UV
 ij

(·)
(·)

 JK
(·)

(·)

 ↵�
(·)

(·)

�Aij

¯

=
(·)

(·)

�BiJ

¯
¯ (·)

�AJK
(·)

¯

=
(·)

�Bi↵

¯ (·)
¯

�BI↵
(·)

¯
¯

�A↵�
(·)

(·)
(·)

Table
10:  �

model
, N = 8, k = 4. A = 1, . . . ,

3. i, j
= 1, 2, 3;

I, J = 1, 2, 3;
↵,� = 1, 2

1.7 Scann
ing all po

ssibili
ties

In genera
l if we

have

SU(N) ! SU(n)⇥ . . .

(1.39)

10

🔵

as in the dynamical-Abelianization case, but this time we allow the possibility for some degeneracy
among c’s. Let us assume for instance that there a block of n coe�cients which are degenerate:

c1 = c2 = · · · = cn . (6.5)

This leaves a non-Abelian unbroken gauge group

SU(N) �! SU(n)⇥ . . . . (6.6)

The first coe�cient of the beta function for SU(n) is

b0[SU(n)] = (11� 2N )n� 6N � 2N� � (N +N� � 2)(N � n)

= (9�N +N�)n� (6 +N)N � (2 +N)N� + 2N (6.7)

when n = N this is exactly the b0 of the original SU(N) theory that we choose positive (??). For
the  �⌘ model where (N , N�) = (1, 1) this is always the same  �⌘ model reduced to SU(n),
and b0 > 0. Where any of N or N� is greater than 1 we can have a sign flip for certain values
of n. For a certain value n⇤ we have a zero of (6.7). The change of sign for (6.7) happens at

n⇤ =
(N +N� � 2)N + 6N + 2N�

9�N +N�
. (6.8)

We take [n⇤] the biggest integer smaller than n⇤. If we than n in (6.5),(6.6) to be [n⇤] we have
the biggest possible non-Abelian IR free sub-group. We can see that when N or N� is greater

than 1 we have [n⇤] '
(N +N��2)
9�N +N�

N which is greater than one and a fraction of N .

Example of type (I) is (N , N�) = (2, 1):

2 �

¯

� (N + 12)
¯

. (6.9)

This is the  ⌘ model combined with the  �⌘ model. We have

b0[SU(N)] = 7N � 14 (6.10)

N � 3, and the first coe�cient of the beta function for SU(n)

b0[SU(n)] = 7n� 14� (N � n) = 8n�N � 14 . (6.11)

The change of sign happens at

n⇤ =
N + 14

8
. (6.12)

SU(N) theory  with

N [n⇤] SU(N) ! · · ·

3 2 SU(3) ! SU(2)⇥ U(1)
4 2 SU(4) ! SU(2)⇥ SU(2)⇥ U(1)
5 2 SU(5) ! SU(2)⇥ SU(2)⇥ U(1)2

6 2 SU(6) ! SU(2)⇥ SU(2)⇥ SU(2)⇥ U(1)2

...
...

...
N ! 1 [n⇤] SU(N) !

Q7
1 SU([n⇤])⇥ SU(N � 7[n⇤])⇥ U(1)7

(6.13)

In Figure 5 the quiver diagrams showing the RG flow from UV to IR are shown.

IR

[n⇤]

UV

N

N + 12

[n⇤] [n⇤]

N + 12

Figure 5: Example of type (I) is (N , N�) = (2, 1).

Another example of type (I) is (N , N�) = (2, 2):

2 � 2

¯

� 16
¯

, (6.14)

This is two-family version of the  �⌘ model.

b0[SU(N)] = 7N � 16 (6.15)

N � 3. For (2, 2) the beta function of SU(n) is

b0[SU(N)] = 7n� 16� 2(N � n) = 9n� 2N � 16 (6.16)

The change of sign happens at

n⇤ =
2N + 16

9
. (6.17)

Bolognesi, KK, Luzio ‘23
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¯
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b0[SU(N)] = 7N � 16 (6.15)

N � 3. For (2, 2) the beta function of SU(n) is

b0[SU(N)] = 7n� 16� 2(N � n) = 9n� 2N � 16 (6.16)

The change of sign happens at

n⇤ =
2N + 16

9
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SU(5) model with 

1 General  � models

SU(N) theories with fermions in the complex representation, N�4
k  {ij}’s and N+4

k �̄[ij],

N � 4

k
� N + 4

k

¯

, (1.1)

(k being a common devisor of N � 4 and N + 4).

Quiver notation: circles with a number inside n represent a gauge group SU(n), squares

with a number m represent a global symmetry SU(m), fermions are lines connecting the

groups, arrows on the line indicate if is fundamental (ingoing) or antifundamental (out-

going), lines omitted for SU(2); little “o” or “x” within a line indicates if the end are

symmetric or anti-symmetric. See figure 1 for the basic quiver diagram of the  � models.

n

(N+4)/4

(N-4)/4

Figure 1: Diagram for  �, N, k theory

4 ! k in the square boxes?

1.1 N = 5, k = 1: SU(5) ! SU(3)⇥ SU(2)⇥ U(1)

� 9

¯

, (1.2)

Consider

h �(9)i / diag(2v, 2v, 2v,�3v,�3v) , (1.3)

breaking the gauge symmetry as

GC = SU(5) ! SU(3)⇥ SU(2)⇥ U(1) , (1.4)

and the global symmetry as

GF = SU(9)⇥ U0(1) ! SU(8)⇥ U0(1)
0 . (1.5)

3

U0(1)0 is a combination of

e

i↵

0

@ �18 0

0 8

1

A

e
i�Q0 (1.6)

that is, with

↵ + �(
9

N + 2
� 1

N � 2
) = 0 , ↵ = 4

2N � 5

N2 � 4
� . (1.7)

There are

92 � 82 = 17 (1.8)

NG bosons. It is seen that the condensates (1.3) is formed by the pair,  iJ
�
9
Ji. The broken

SU(9) acts on the condensate as

 
iJ
�Ji ! (eiT

a↵a
 

iJ
�Ji) , T

a 2 su(9), T
a 62 su(8) . (1.9)

Tha NG bosons are thus

�
B = <( iJ

�
B
Ji) , ⇡

B = =( iJ
�
B
Ji) , B = 1, 2, . . . , 8 , and ⇡

9 = =( iJ
�
9
Ji) (1.10)

The unbroken U(1) has charges

Q / diag(2, 2, 2,�3,�3) . (1.11)

fields SU(3) SU(2) U(1) SU(9) U0(1)

UV  
ij (·) 4 (·) 9

N+2

 
iJ �1 (·) 9

N+2

 
JK (·) �6 (·) 9

N+2

�
A
ij

¯

= (·) �4 � 1
N�2

�
A
iJ

¯
1 � 1

N�2

�
A
JK (·) (·) 6 � 1

N�2

Table 1:  � model, N = 5, k = 1. A = 1, 2, . . . , 9, i, j = 1, 2, 3; J,K = 4, 5.

The fermions participating in the condensate,  iJ
�
9
Ji, become massive, and leave the

massless fermions in the next table,

�SU(3) = 11 · 3� 5� 9 · 1� 8 · 1 · 2 > 0 , (1.12)

�SU(2) = 11 · 2� 4� 8 · 3 · 1 < 0 . (1.13)

SU(2) is infrared-free, whereas SU(3) is asymptotically free.

4

fields SU(3) SU(2) U(1) SU(8) U0(1)0

IR  
ij (·) 4 (·)

 
JK (·) �6 (·)

�
9
ij

¯

= (·) �4 (·)

�
B
ij

¯

= (·) �4

�
B
iJ

¯
1

�
9
JK (·) (·) 6 (·)
�
B
JK (·) (·) 6

�
B ⇠ <( iJ

�
B
Ji) (·) (·) (·)

⇡
B ⇠ =( iJ

�
B
Ji) (·) (·) (·)

⇡
9 ⇠ =( iJ

�
9
Ji) (·) (·) (·) (·)

Table 2: N = 5, k = 1,  � model: massless fermions. B = 1, 2, . . . , 8.

This could be interesting, in principle. After all, the standard model SU(3)⇥ SU(2)⇥
U(1) contains also partially asymptotically-free SU(3) and the infrared-free part SU(2)⇥
U(1). Unfortunately the matter content is di↵erent.

The problem is to find out how the NG bosons and the massless fermions and gauge

bosons interact. The interaction Lagrangian must be invariant under the full local and

global symmetry groups. It seems that no Yukawa interaction term can be constructed

(no pair of the massless fermions in the Table 2 is singlet of SU(3)⇥ SU(2)⇥ U(1)). The

problem, seen in difefrent way, is that none of the NG bosons carry charges with respect

to SU(2)⇥ U(1).

Problema: trovare un sistema che dinamicamente dà luogo alla struttura del modello

standard, Sec. 2.1. Il fatto che il NG porta la carica di SU(2) ⇥ U(1) significa che DSB

avviene con piu’ condensati.

1.1.1 Global symmetry

What happens to SU(9)⇥ U(1) global symmetry?

1.2 N = 6, k = 2: SU(6) ! SU(3)⇥ SU(3)⇥ U(1)

� 5

¯

, (1.14)

Consider

h �(5)i / diag(v, v, v,�v,�v,�v) , (1.15)
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???

• k = 8,N = 44 n
⇤ = 42

�(SU(42)) = 0 (1.69)

Here there are variousIR free possibilities below n = 42.

SU(44) ! SU(41)⇥ SU(3)⇥ U(1)2 (1.70)

and more.

2 Another class of theories

2.1 What we want

�-⌘ model with SU(5) (Georgi-Glashow).

10� 5⇤ = � ¯
(2.1)

SU(5) ! SU(3)⇥ SU(2)⇥ UY (1) , UY (1) =
1

3

✓
�213 0

0 312

◆
(2.2)

fields SU(3) SU(2) UY (1) SU(3)

IR u
c
R (·) �4

3

qL
1
3

e
c
R (·) (·) 2

d
c
R

¯
(·) 2

3

 L (·) �1

⌫
c
R (·) (·) 0

� (·) 1 (·)

Table 13: Quarks and leptons; Q = T3 +
Y
2 .

2.2 SO(10)

Consider SO(10) with fermions, (see LieART)

3 · 16� 2 · 1̄6 . (2.3)

GF = SU(3)⇥ SU(2)⇥ U(1) . (2.4)

The theory is anomaly free.
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 Part 3:  Criteria for confinement and 
              other phases  



🔵 In chiral BY and GG models, a putative  confinement phase  with fully unbroken  
global symmetries (no condensates forming) is inconsistent.

🔵  BY and GG models are (likely) in color-flavor locked dynamical Higgs phase; 

🔵 In QCD  (vector-like)  the SU(3) color is confined. 

🔵

<latexit sha1_base64="CAWxKZFaM0YsOCFU8wlplN1GjMI=">AAACAHicbVC7TsNAEDyHVwivACXNKRESVWQjBJQRNJRBIg8pDtH6sklOOT90t0aKojR8BS1UdIiWP6HgX7CNC0iYajSzq50dL1LSkG1/WoWV1bX1jeJmaWt7Z3evvH/QMmGsBTZFqELd8cCgkgE2SZLCTqQRfE9h25tcp377AbWRYXBH0wh7PowCOZQCKJHuK25kpCvG0kWCSr9ctWt2Br5MnJxUWY5Gv/zlDkIR+xiQUGBM17Ej6s1AkxQK5yU3NhiBmMAIuwkNwEfTm2Wp5/w4NkAhj1BzqXgm4u+NGfjGTH0vmfSBxmbRS8X/vG5Mw8veTAZRTBiI9BBJhdkhI7RM6kA+kBqJIE2OXAZcgAYi1JKDEIkYJ/2Ukj6cxe+XSeu05pzXzm7PqvWrvJkiO2IVdsIcdsHq7IY1WJMJptkTe2Yv1qP1ar1Z7z+jBSvfOWR/YH18A7fGlqY=</latexit>

” �⌘”In                 and other models with                  in adj repr.  
<latexit sha1_base64="MZCi+3wXQoqbVpHwYdbuW7PIDdE=">AAACFHicbVC7TgMxEPTxDOEVoKSxiJCoojvEq0TQUAaJPKRcFO05m2Dh853sPaQoouUT+ApaqOgQLT0F/4IvSQEJU1ijmV2tZ6JUSUu+/+XNzS8sLi0XVoqra+sbm6Wt7bpNMiOwJhKVmGYEFpXUWCNJCpupQYgjhY3o7jL3G/dorEz0DQ1SbMfQ17InBZCTOiUeKtB9hTxMreShuHWPGSs81Mj9TqnsV/wR+CwJJqTMJqh2St9hNxFZjJqEAmtbgZ9SewiGpFD4UAwziymIO+hjy1ENMdr2cJTkge9nFijhKRouFR+J+HtjCLG1gzhykzHQrZ32cvE/r5VR76w9lDrNCLXID5F0GfNDVhjpKkLelQaJIP85cqm5AANEaCQHIZyYuc6Kro9gOv0sqR9WgpPK8fVR+fxi0kyB7bI9dsACdsrO2RWrshoT7JE9sxf26j15b9679zEenfMmOzvsD7zPH5kJnXU=</latexit>

h �i 6= 0

Dynamical Abelianization (Coulomb phase)
More general DSB   (nonAbelian IR gauge group)

What is confinement ? 
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 Color confinement ?

Particles with color (e.g., quarks) cannot be freely propagating,
i.e.,  “confined” inside color-singlet hadrons (mesons and baryons).   

Def. A

Wilson-loop,  Polyakov-loop  criteria

Center symmetry

♦
<latexit sha1_base64="jfTOW+PNlfhUZKgaNfT9Xd5qPrk="></latexit>

W (�) = Tr{P ei
H
� Aµdx

µ

}

♦

<latexit sha1_base64="70BYAsH0XA0koT9XamKOGVneD9Y="></latexit>

lim
�!1

hW (�)i =
(
e�A

confinement

e�L
Higgs

<latexit sha1_base64="qMzrW5YhLgqC8L11H6AblVJbQIk=">AAACVHicbVDBahRBEO2dGBNXTVY9eilchARkmQlBcxFivHiSFXaTwPZmrOmtTZr09AzdNUJo5vf8hIAH/8CrnjzYu66gie/0eK9eV/UraqM9p+mXTrJ2Z/3uxua97v0HD7e2e48eH/uqcYrGqjKVOy3Qk9GWxqzZ0GntCMvC0Elx+Xbhn3wi53VlR3xV07TEc6vnWiFHKe99HO4EWczBtbuvAUDOHaqQteF9CyMnX4AMAEEqNDBqAegsaJDacp6exRgxRnEmGRuAN3n656kYi9Ju9GSb9/rpIF0CbpNsRfpihWHe+ypnlWpKsqwMej/J0pqnAR1rZajtysZTjeoSz2kSqcWS/DQsm2jheeORK6jJgTawFOnvRMDS+6uyiJMl8oW/6S3E/3mThucH06Bt3TBZtVjE2tBykVdOx4oJZtoRMy4uJ9AWFDpkJqcBlYpiEzvvxj6ym7+/TY73BtnLwf6H/f7h0aqZTfFUPBM7IhOvxKF4J4ZiLJT4LL6J7+JH57rzM1lL1n+PJp1V5on4B8nWL5V9sVg=</latexit>

P (r) =
1

N
Tr {T ei

R �
0 d⌧A0(r,⌧)}

<latexit sha1_base64="YiYIiUbpPk764DCLMvoyi99lTn0=">AAACHHicbVDLSsNAFJ3UV62vqks3g0Wom5JIUZdFN66kgn1gE8pkeluHTh7M3Agl9Bf8BL/Cra7ciVvBhf9iEgNq61kdzrmXe+5xQyk0muaHUVhYXFpeKa6W1tY3NrfK2zttHUSKQ4sHMlBdl2mQwocWCpTQDRUwz5XQccfnqd+5A6VF4F/jJATHYyNfDAVnmEj9crVZjW13SNX00MaA0tj2GN66Lr2Z9i8p/XH75YpZMzPQeWLlpEJyNPvlT3sQ8MgDH7lkWvcsM0QnZgoFlzAt2ZGGkPExG0EvoT7zQDtx9tGUHkSaJXFCUFRImonweyNmntYTz00m07x61kvF/7xehMNTJxZ+GCH4PD2EQkJ2SHMlkqqADoQCRJYmByp8ypliiKAEZZwnYpR0V0r6sGa/nyfto5p1XKtf1SuNs7yZItkj+6RKLHJCGuSCNEmLcHJPHskTeTYejBfj1Xj7Hi0Y+c4u+QPj/QupCaAP</latexit>

P (r) ! ZNP (r)
<latexit sha1_base64="6Kd7PGeY9bJhAoeWYv3f62CB1/E="></latexit>

lim
�!1

|hP (r)i| = 0
Center sy

mmetry u
nbroken

(Confinement)

Def. B
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hP (r
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ZQ
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��F
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lim
T�R

|hW (R,
T )i|

⇠ e
�TV (R)

<latexit sha1_base64="+mhtFDLCVfmCwovi9H+hbL+QbHo="></latexit>

Aµ
= taA

a
µ
dx

µ

area law

perimeter law

♦ Lattice simulation               SU(N) YM is in confinement phase!

♦ But  there is nothing to confine in  YM theory  !!
🔵 massless quarks               no center symmetry;  the string splits, area law lost  
🔵 what distinguish Confinement and Higgs phase (both  perimeter law) ?  
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♦ Def. A  is also problematic.  Gauge non-invariant (colored) operators/states  
       as gauge invariant ones,  in a given gauge.

🔵 e.g., Weinberg-Salam  SU(2)xU(1) theory 

Higgs VEV                                               really means

potential,

h
2X

i=1

�
i ⇤
�
ii 6= 0 . (6.8)

This is taken to mean a nonvanishing Higgs VEV, in an appropriate gauge,

h�i =
✓

v

0

◆
, v 6= 0 . (6.9)

Our deduction (6.1) $ (6.2) is analogous to this, even though here we have a dy-

namical, composite “Higgs” scalars. One can argue against the use of this analogy,

on the basis that the Weinberg-Salam model is a weakly coupled theory, while here

we have a strongly coupled one. We believe that this di↵erence (the former described

by a potential, the latter not) is not essential. What excludes the conclusion that

the Weinberg-Salam model with (6.8) is in confinement phase with

h
2X

1

�
i ⇤
�
ii 6= 0 , h�i = 0 , (6.10)

is the mass spectrum (W , Z, �, etc). The attempt to rewrite the whole Weinberg-

Salam model as a confining theory [41] fails to reproduce exactly the mass spectra

(though it does almost) of the standard Higgs phase description.

Our observation here is similar: even though the global symmetry may look the same

in two “complementary” descriptions of the �⌘ model 14, the exact mass spectra are

probably di↵erent, as we pointed out in Sec. 4.

(c) Consistency:

A more indirect, consistency argument is the following. Let us assume the multifield

condensate (6.1) forms but with

h�⌘i = h��i = 0 , (6.11)

and with the full (nonanomalous) symmetry of the �⌘ system,

SU(N)c ⇥ SU(N � 4)⇥ U(1)�⌘ (6.12)

intact. The low-energy system is then described, as the conventional ’t Hooft anomaly

argument suggests, by the set of massless baryons (C.1). But as there is no way

to describe the mutifermion condensate (6.1) in terms of these massless fields, we

conclude that the assumption (6.11) is inconsistent.

14Remember that the “complementarity” aspect is specific to the �⌘ model, not shared by any other
GG or BY models.
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potential,

h
2X

i=1

�
i ⇤
�
ii 6= 0 . (6.8)

This is taken to mean a nonvanishing Higgs VEV, in an appropriate gauge,

h�i =
✓

v

0

◆
, v 6= 0 . (6.9)

Our deduction (6.1) $ (6.2) is analogous to this, even though here we have a dy-

namical, composite “Higgs” scalars. One can argue against the use of this analogy,

on the basis that the Weinberg-Salam model is a weakly coupled theory, while here

we have a strongly coupled one. We believe that this di↵erence (the former described

by a potential, the latter not) is not essential. What excludes the conclusion that

the Weinberg-Salam model with (6.8) is in confinement phase with

h
2X

1

�
i ⇤
�
ii 6= 0 , h�i = 0 , (6.10)

is the mass spectrum (W , Z, �, etc). The attempt to rewrite the whole Weinberg-

Salam model as a confining theory [41] fails to reproduce exactly the mass spectra

(though it does almost) of the standard Higgs phase description.

Our observation here is similar: even though the global symmetry may look the same

in two “complementary” descriptions of the �⌘ model 14, the exact mass spectra are

probably di↵erent, as we pointed out in Sec. 4.

(c) Consistency:

A more indirect, consistency argument is the following. Let us assume the multifield

condensate (6.1) forms but with

h�⌘i = h��i = 0 , (6.11)

and with the full (nonanomalous) symmetry of the �⌘ system,

SU(N)c ⇥ SU(N � 4)⇥ U(1)�⌘ (6.12)

intact. The low-energy system is then described, as the conventional ’t Hooft anomaly

argument suggests, by the set of massless baryons (C.1). But as there is no way

to describe the mutifermion condensate (6.1) in terms of these massless fields, we

conclude that the assumption (6.11) is inconsistent.

14Remember that the “complementarity” aspect is specific to the �⌘ model, not shared by any other
GG or BY models.
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Also,  the neutrino and electron in                          :
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⌫L ⇠ �† ·  L , eL ⇠ ✏↵�  
↵
L�

�

mixed anomaly.

Let us pause briefly to make a few comments on dynamically induced Higgs phase. As in

any system where the Higgs mechanism is at work, some (elementary or composite) scalar

field gets a nonvanishing, gauge noninvariant (and gauge dependent) vacuum expectation

value (VEV). In a weakly coupled Higgs type model, there is a potential having degenerate

minima, and the vacuum, which necessarily breaks the gauge invariance, induces the Higgs

phase, with some gauge bosons becoming massive. Also, in such a model, apparently

gauge-dependent phenomena can be naturally re-interpreted in a gauge-invariant fashion
11.

Here the situation is basically the same. One is indeed assuming that an e↵ective

composite scalar ⇠   forms by strong interactions, which then condenses. It corresponds

to the non-gauge-invariant VEV of a scalar field in a potential model. In contrast to

a weakly coupled Higgs models, however, the e↵ective scalar composite particle is still

strongly coupled and is not described by a simple potential. Therefore, a gauge-invariant

rephrasing of the phenomenon may not be straightforward. Apart from this, there is

nothing unphysical about assuming gauge non-invariant bifermion condensate 12: it is

analogue of the Higgs VEV h�i in the standard electroweak theory.

As a final remark, it may help to remember also that the Higgs mechanism itself was

first discovered in the context of superconductivity ([27, 28], see also [29]): the Cooper

pair condenses due to the interactions between the electrons and the lattice phonons. The

Cooper pair, having charge 2, is not a gauge invariant object. It is the first example in a

physical theory of what we call dynamical Higgs mechanism, in the sense that the e↵ective

Higgs scalar (the Cooper pair) is a composite, gauge noninvariant field 13.

The infrared system depends also on the kind of bi-fermion   condensates which

actually form. The “MAC” (most attractive channel) criterion [24] suggests condensation

of a   composite scalar in the adjoint representation. It is then possible that the infrared

physics is described by full dynamical Abelianization [25, 26]: the low-energy theory is

an Abelian U(1)5 theory. Although the infrared theory looks trivial, the only massless

infrared degrees of freedom being five types of non-interacting photons, the system might

11For instance, the Higgs VEV of the form h�i =
✓

0
v/

p
2

◆
found in any textbook about the standard

electroweak theory, is just a gauge dependent way of describing a minimum of the potential V (�†�), so is

the statement such as the left hand fermion being equal to  L =

✓
⌫L
eL

◆
. A similar reinterpretation of

the W and Z bosons is also straightforward.
12In this respect we di↵er from the interpretation given in [18]. Indeed there is a long history of studies

in strongly interacting chiral gauge theories based on such ideas, starting from [24]. See also [25, 26] and
references cited therein.

13This brief comment is meant only to remind the reader that there is nothing unusual in having a
composite, gauge noninvariant field getting a VEV, to break the gauge (and/or flavor) symmetry of a
given system. Of course, conventional superconductivity is not a good model for strongly interacting
gauge theories as the ones we are interested in here.
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really mean 
’t Hooft 

♦ Does it mean that there are no distinctions  (Higgs and confinement)?  

No,  There are differences in the spectrum

pote
ntial

,
h
2X

i=1

�
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i i 6= 0 .

(6.8)
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Abbott, Farhi ‘81

Brout-Englert-Higgs ‘64

CMS, Atlas  ‘12

🔵 In         model, the NG boson  

[Qf , 
k`
⌘
n
` ] =

(
4 k`

⌘
n
` for n  N ;

�N 
k`
⌘
n
` for n > N .

(2.36)

The same condensate (2.32) breaks also Qf , as

h[Qf , 
k`
⌘
n
` ]i 6= 0 , k = n = 1, 2, . . . , N . (2.37)

But the combination U(1)0 generated by

Q
0 = 2Q ⌘ +Qf (2.38)

remains unbroken:

h[2Q ⌘ +Qf , 
k`
⌘
n
` ]i = 0 (8k, 8n) . (2.39)

Any other combination of Qf and Q ⌘ is spontaneously broken, see Eqs. (2.31), (2.36),

so there is one physical U(1) NG boson in this model. A natural choice for the interpolating

field for this physical U(1) NG boson would be

NX

n,j

 
nj
⌘
n
j = Tr( ⌘) / 1+

i

F
(0)
⇡

�0 + . . . , (2.40)

where the field are appropriately normalized and F
(0)
⇡ is a constant with a mass dimension.

This is an analogue of  ̄R L = ūRuL + d̄RdL + . . . in QCD, and also analogous to the

nonAbelian NG bosons, (2.24).

Unlike  ̄R L in QCD, (2.40) is not gauge-invariant. However, it is not di�cult to find

a natural gauge-invariant form for the interpolating field for the same NG boson: it could

be written as

detU , U
k` =  

kj
⌘
`
j , (2.41)

by using the first N flavors, ⌘aj , a = 1, 2, . . . , N . Note that this composite field is a singlet

of the surviving symmetry of the  ⌘ system, (2.10). This will play an important role in

the discussion of the strong anomaly below.

Expanding around the VEV, (2.32), (2.40) and (2.41) give the same physical field,

⇠ const +
NX

k,j

�
 

kj
⌘
k
j

�{q}
, (2.42)

where
�
 

kj
⌘
k
j

�{q}
indicates the fluctuation part of the composite field,  kj

⌘
k
j .

So far, we considered two nonanomalous U(1) symmetries, U(1) ⌘ and a Uf (1) ⇢
SU(N + 4), and found that one combination remains a manifest symmetry, call it U(1)0,

while the other (let us indicate as U(1)NG) gets broken and generates an associated, physical

11
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 ⌘

~    gauge-invariant  

metry, SU(Nf)L ⇥ SU(Nf)R ! SU(Nf)V , a↵ecting the low-energy physics.

3.1.1 Veneziano -Yankielowicz and A✏eck-Dine-Seiberg superpotentials

In the context of N = 1 supersymmetric gauge theories, the strong-anomaly e↵ective

action is expressed by the so-called Veneziano-Yankielowicz (VY) and A✏eck-Dine-Seiberg

superpotentials [27], [29]. They correctly reproduce in the infrared e↵ective theory the

e↵ects of instantons, supersymmetric Ward-Takahashi identities, and the anomaly of [30,

31]. The VY and ADS superpotentials are crucial in determinig the infrared dynamics and

phases of the N = 1 supersymmetric gauge theories (see [32] for a review).

3.2 Strong anomaly and e↵ective action in the  ⌘ model

Unlike  ̄R L in QCD, �̃ =
PN

n,j  
nj
⌘
n
j is not gauge invariant. This is not a problem if the

system is assumed to be in dynamical Higgs phase of the  ⌘ model, in which the low-energy

symmetry is

SU(N)
cf
⇥ SU(4)⇥ U(1)0 , (3.10)

(Appendix B). A gauge invariant form of the condensate, consistent with such a symmetry

is:

detU , U
k` ⌘  

kj
⌘
`
j . (3.11)

In terms of this composite field, one may write the low-energy e↵ective Lagrangian describ-

ing the strong anomaly,

L̂ =
i

2
q(x) log detU/U †

, q(x) =
g
2

32⇡2
F

a
µ⌫F̃

a,µ⌫
, (3.12)

which looks very much in analogy with the strong-anomaly e↵ective action of QCD, (3.4).7

The multivalued, logarithmic potential is well defined, as we are in the dynamical Higgs

phase, hUi / . As in QCD, one may actually reverse the logics and argue that the

strong anomaly e↵ective action, which should be present in the low-energy e↵ective theory

for faithfully representing all the symmetries of the UV theory, implies the nonvanishing

condensates, hdetUi 6= 0, which means the global symmetry breaking as in (3.10), i.e., the

system is in Higgs phase.

Though (3.12) appears to be a natural choice in the broken phase, it has a defect of

not being invariant under the full symmetry of the underlying theory,

SU(N)⇥ SU(N + 4)⇥ U(1) ⌘ . (3.13)

A correct low-energy e↵ective action should be invariant under the full symmetry, and must

describe (at least, be consistent with) the breaking from (3.13) to (3.10). This observation

7✓ parameter is absent in chiral gauge theories.
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detU, Dynamical Higgs phase

but the “confining” system,                                            has a different symmetry.     
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hdetUi 6= 0, h ⌘i = 0,

🔵 Dynamical Higgs phase and Elitzur’s theorem 
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Def. C Confinement =  dual superconductivity (dual Meissner effect) ’t Hooft  ’81 

Seiberg, Witten  ‘94

 A particle has el. and mag.   q. numbers   

Def. C  is also problematic: ♦
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U(1)2 ⇢ SU(3)color
<latexit sha1_base64="BT6krH/99ZYLvYAG3y89Xdva5pA=">AAACD3icbVC7SgNBFJ2NrxhfUcs0g0FQkLAbfEGaoI1lBPOAZFlmJ9c4ODO7zNwVJFj4CX6FrVZ2YusnWPgv7sYt1Hiqwzn3cu85YSyFRdf9cAozs3PzC8XF0tLyyupaeX2jY6PEcGjzSEamFzILUmhoo0AJvdgAU6GEbnh9mvndGzBWRPoCb2PwFRtpcSk4w1QKypUdHXh7VAf1BlUZU0F9lw4ae5TSoFx1a+4EdJp4OamSHK2g/DkYRjxRoJFLZm3fc2P0x8yg4BLuSoPEQsz4NRtBP6WaKbD+eBLijm4nlmFEYzBUSDoR4efGmClrb1WYTiqGV/avl4n/ef0EL4/9sdBxgqB5dgiFhMkhy41I2wE6FAYQWfY5UKEpZ4YhghGUcZ6KSVpXKe3D+5t+mnTqNe+wdnC+X22e5M0USYVskR3ikSPSJGekRdqEk3vySJ7Is/PgvDivztv3aMHJdzbJLzjvX4iRmMc=</latexit>

(n1, n2;m1,m2) , U(1)1 e m charges =   
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n1e1,m1g1, e1g1 = n/2Def.   Dirac unit  between two particles
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D ⌘
X

i

(n(1)
i m(2)

i � n(2)
i m(1)

i )

Criterion    .  <latexit sha1_base64="W2jMTkXRdklRxO/pTrEabeyQL0Y="></latexit>

hM (1)i 6= 0 Particles (2) with                                    are confined

e.g.
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hM(0,0;1;0)i 6= 0,
(magnetic monopole condensation)
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Quark(1,0;0;0) is confined!

(Dirac)

🔵 The idea involves Abelian monopoles

🔵

<latexit sha1_base64="YuLKQ4XutSTs+67aa4pLCIMOPWw="></latexit>

hMa
b i = �ab⇤ 6= 0 ! Confinement XSB ! SU(Nf )V

But   too many NG bosons;  also doubling of the Regge trajectories

 Confinement = NonAblelian dual Meissner effect ? ☞

<latexit sha1_base64="VrJ+jPoogeT6Q70WU/E30UnSRYY="></latexit>

D 6= 0 Mod 3

Condensation of (strongly-coupled) NonAbelian monoples ? 20/30

Yung



♦

(Tentative)

The phase of an SU(N) gauge theory NOT determined by the underlying 
 pure SU(N) YM theory (in the “confinement phase”),

♦ BUT by  elementary (scalar), composite (bifermion), or solitonic 
condensates and by the type of NG  bosons they produce:

🔵 No colored NG bosons Confinement (e.g., YM, QCD, Susy QCD/YM)

🔵 N2 -1 colored NG bosons   Higgs phase (e.g., BY and GG models, GWS)

🔵 N (N -1)  colored NG bosons Dynamical Abelianization (        ,              Susy )

🔵 Other groups of colored NG bosons Partial Higgs/confinement/Coulomb 
 (being explored..)

<latexit sha1_base64="1+/8aCUKwKKA3mS3rpBtSruku6k=">AAAB/nicbVA9SwNBEN2LXzF+RS1tFoNgFe5E1DJoYxnBfEDuCHObSbJk727ZnRNCCPgrbLWyE1v/ioX/xbuYQhNf9XhvhnnzQq2kJdf9dAorq2vrG8XN0tb2zu5eef+gaZPUCGyIRCWmHYJFJWNskCSFbW0QolBhKxzd5H7rAY2VSXxPY41BBINY9qUAyiTf11b6Yih9JOiWK27VnYEvE29OKmyOerf85fcSkUYYk1BgbcdzNQUTMCSFwmnJTy1qECMYYCejMURog8ks85SfpBYo4RoNl4rPRPy9MYHI2nEUZpMR0NAuern4n9dJqX8VTGSsU8JY5IdIKpwdssLIrAzkPWmQCPLkyGXMBRggQiM5CJGJadZOKevDW/x+mTTPqt5F9fzuvFK7njdTZEfsmJ0yj12yGrtlddZggmn2xJ7Zi/PovDpvzvvPaMGZ7xyyP3A+vgH9J5ZO</latexit>

 �⌘

New criteria 

(Coulomb phase, or  dual Higgs)

<latexit sha1_base64="1IJ0fzL6+P23Kl/LfDad5uO6noA=">AAAB/HicbVDLTgJBEJzFF+IL9ehlIjHxRHaJr4sJ0Ysng4k8IhDSOzQ4YXZ2M9NrQjb4FV715M149V88+C8uyEHBOlWqutPV5UdKWnLdTyezsLi0vJJdza2tb2xu5bd3ajaMjcCqCFVoGj5YVFJjlSQpbEQGIfAV1v3B5divP6CxMtS3NIywHUBfy54UQKl0l7QEKH49Oi918gW36E7A54k3JQU2RaWT/2p1QxEHqEkosLbpuRG1EzAkhcJRrhVbjEAMoI/NlGoI0LaTSeIRP4gtUMgjNFwqPhHx90YCgbXDwE8nA6B7O+uNxf+8Zky9s3YidRQTajE+RFLh5JAVRqZVIO9Kg0QwTo5cai7AABEayUGIVIzTbnJpH97s9/OkVip6J8Xjm6NC+WLaTJbtsX12yDx2ysrsilVYlQmm2RN7Zi/Oo/PqvDnvP6MZZ7qzy/7A+fgGcOSUzg==</latexit>

N = 2

21/30



 Part 4:       Supersymmetry and   
        strongly-coupled gauge theories            

Montonen-Olive duality 
Susy instanton calculus, 
Veneziano-Yankielovicz, 
Seiberg’s duality in SQCD, 
Seiberg-Witten, 
Witten-Olive,   Witten 
Generalized KK anomaly, 
Argyres-Douglas, SCFT, EHIY 
Argyres-Plesser-Seiberg-Witten   
GST duality,  
SCFT and confinement 
(Susy-inspired) results on 
NonAbelian vortices and monopoles

’80 - ’22”SUSY 40”

Some reflections
22/30



 Part 4:       Supersymmetry and   
        strongly-coupled gauge theories            

Montonen-Olive duality 
Susy instanton calculus, 
Veneziano-Yankielovicz, 
Seiberg’s duality in SQCD, 
Seiberg-Witten, 
Witten-Olive,   Witten 
Generalized Konishi anomaly, 
Argyres-Douglas, SCFT, EHIY 
Argyres-Plesser-Seiberg-Witten   
GST duality,  
SCFT and confinement 
(Susy-inspired) results on 
NonAbelian vortices and monopoles

’80 - ’22

Some reflections
22/30



🔵

<latexit sha1_base64="e2QtGsmQcgMuPHFxrrjtvjCV3+8=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRRTbi1SBF0FChIJGHSKJofdmEU85n626NFFnhK2ihokO0/AsF/4IdUkDCVKOZXe3s+JGSllz305mbX1hcWs6t5FfX1jc2C1vbNRvGRmBVhCo0DR8sKqmxSpIUNiKDEPgK6/7gMvPrD2isDPUtDSNsB9DXsicFUCrdJS0Bil+Pzr1OoeiW3DH4LPEmpMgmqHQKX61uKOIANQkF1jY9N6J2AoakUDjKt2KLEYgB9LGZUg0B2nYyTjzi+7EFCnmEhkvFxyL+3kggsHYY+OlkAHRvp71M/M9rxtQ7aydSRzGhFtkhkgrHh6wwMq0CeVcaJIIsOXKpuQADRGgkByFSMU67yad9eNPfz5LaYck7KR3fHBXLF5NmcmyX7bED5rFTVmZXrMKqTDDNntgze3EenVfnzXn/GZ1zJjs77A+cj29vVZTN</latexit>

N = 1 SQCD

♦
<latexit sha1_base64="gAQQCf1vCw5746OPEzlrtcA2KGQ=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESFRRTbiVUbQUAaJPKTYis6XTTjl7mzu1kiRlYKvoIWKDtHyKRT8C45xAQlTjWZ2tbMTxlJYdN1PZ2FxaXlltbRWXt/Y3Nqu7Oy2bJQYDk0eych0QmZBCg1NFCihExtgKpTQDkdXU7/9AMaKSN/iOIZAsaEWA8EZZlLg9wGpor4G6tJeperW3Bx0nngFqZICjV7ly+9HPFGgkUtmbddzYwxSZlBwCZOyn1iIGR+xIXQzqpkCG6R56Ak9TCzDiMZgqJA0F+H3RsqUtWMVZpOK4Z2d9abif143wcFFkAodJwiaTw+hkJAfstyIrA2gfWEAkU2TAxWacmYYIhhBGeeZmGT1lLM+vNnv50nruOad1U5vTqr1y6KZEtknB+SIeOSc1Mk1aZAm4eSePJFn8uI8Oq/Om/P+M7rgFDt75A+cj2+3TZVw</latexit>

detm 6= 0

♦

Seiberg’s EM duality, phases, SCFT

<latexit sha1_base64="RmDZm1wexELiMQHmoeb4GEqfFcc=">AAACFnicbVA9SwNBEN3z2/h1ammzGASrcCd+NYJoY6lgNJCEMLeZxCV7e8funBBCen+Cv8JWKzuxtbXwv7gXD9Toa+bxZoaZ96JUSUtB8O5NTE5Nz8zOzZcWFpeWV/zVtSubZEZgVSQqMbUILCqpsUqSFNZSgxBHCq+j3mnev75FY2WiL6mfYjOGrpYdKYCc1PI3Gwp0VyF3NY7a8F3Nl37EW345qAQj8L8kLEiZFThv+R+NdiKyGDUJBdbWwyCl5gAMSaFwWGpkFlMQPehi3VENMdrmYORlyLcyC5TwFA2Xio9E/LkxgNjafhy5yRjoxo73cvG/Xj2jzmFzIHWaEWqRHyLp/OWHrDDShYS8LQ0SQf45cqm5AANEaCQHIZyYudRKLo9w3P1fcrVTCfcrexe75eOTIpk5tsE22TYL2QE7ZmfsnFWZYHfsgT2yJ+/ee/ZevNev0Qmv2Flnv+C9fQKNf56J</latexit>

h��i =

<latexit sha1_base64="0+tRsW1j3T+1Ba9Jef6F2PicnJg="></latexit>

hQQ̃i ! 1 , Nf < Nc (run-away vacua)

Taylor-Veneziano-Yankielowicz ‘83 

KK ’84 
Affleck-Dine-Seiberg ’84 

Amati, KK, Meurice, Rossi, Veneziano,  ’88 

<latexit sha1_base64="qhPtBlmfPYjVLJTTmMM3ZK8iTik="></latexit>

h��i , hQQ̃i ! 0 , Nf > Nc

<latexit sha1_base64="0G/xGgTjnHyFyuQBqXmXHACVSv0=">AAAB/3icdVC7SkNBFNwbXzG+opY2i0GwCnvFvLQJ2lhGMA9ILmHv5iQu2ftw91whhBR+ha1WdmLrp1j4L25iBBWdapg5hzln/FhJg4y9OamFxaXllfRqZm19Y3Mru73TMFGiBdRFpCLd8rkBJUOoo0QFrVgDD3wFTX94PvWbt6CNjMIrHMXgBXwQyr4UHK3kBbSDEWWUdk7pSTebY/lKuVgqVijLu0XmFsqWsIpbqjDq5tkMOTJHrZt97/QikQQQolDcmLbLYvTGXKMUCiaZTmIg5mLIB9C2NOQBGG88O3pCDxLDbXYMmkpFZyJ83xjzwJhR4NvJgOO1+e1Nxb+8doL9sjeWYZwghGIahFLBLMgILW0bQHtSAyKfXg5UhlRwzRFBS8qFsGJi68nYPr6epv+TxpGtKl+4PM5Vz+bNpMke2SeHxCUlUiUXpEbqRJAbck8eyKNz5zw5z87L52jKme/skh9wXj8AUAOVNA==</latexit>

m ! 0 :

<latexit sha1_base64="+Ffe7evsjINxuK7jgULB40lxhCs=">AAAB/3icdVDLSgNBEJz1GeMr6tFLYxA8hVnRPBQh6MWjgjGBZJHZsRMHZx/O9AoSPPgVXvXkTbz6KR78FycxgorWqajqpqsrTLWyxPmbNzY+MTk1nZvJz87NLywWlpZPbZIZiQ2Z6MS0QmFRqxgbpEhjKzUoolBjM7w8GPjNazRWJfEJ3aQYRKIXq66SgpwURAB7ABygsws7Z4UiL9Wq5Uq5Brzkl7m/XXWE1/xKjYNf4kMU2QhHZ4X3znkiswhjklpY2/Z5SkFfGFJS422+k1lMhbwUPWw7GosIbdAfhr6F9cwKSiBFA0rDUMTvG30RWXsThW4yEnRhf3sD8S+vnVG3GvRVnGaEsRwcIqVxeMhKo1wbCOfKIJEYJEdQMUhhBBEaBUJKJ2aunrzr4+tp+J+cbrqqStvHW8X6/qiZHFtla2yD+azC6uyQHbEGk+yK3bMH9ujdeU/es/fyOTrmjXZW2A94rx8a15Ry</latexit>

m = 0 : QMS  (flat directions)

Seiberg ’94 

Nf < Nc Nc Nc + 1  Nf < 3Nc
2

3Nc
2 < Nf  3Nc > 3Nc

Phases No vacua finite vacua Free magnetic phase SCFT Infrared free

IR Deg. freedom - M,B, B̄ M,B, B̄ Q, Q̃ or q, q̃,M Q, Q̃

1

(Exact)

23/30

SYM,  SQCD1. 



2. 
<latexit sha1_base64="rf5wxAP9jtB3hC+8v+bnnUqZKYc=">AAAB/XicbVDLSgNBEJyNrxhfUY9eBoPgKewGXxch6MWTRDAPSELonXTikNkHM71CWIJf4VVP3sSr3+LBf3F33YNG61RUddPV5YZKGrLtD6uwsLi0vFJcLa2tb2xulbd3WiaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLuTy9Rv36M2MvBvaRpi34OxL0dSACVSN+4JUPx6dl7jg3LFrtoZ+F/i5KTCcjQG5c/eMBCRhz4JBcZ0HTukfgyapFA4K/UigyGICYyxm1AfPDT9OIs84weRAQp4iJpLxTMRf27E4Bkz9dxk0gO6M/NeKv7ndSManfVj6YcRoS/SQyQVZoeM0DLpAvlQaiSCNDly6XMBGohQSw5CJGKUlFNK+nDmv/9LWrWqc1I9vjmq1C/yZopsj+2zQ+awU1ZnV6zBmkywgD2yJ/ZsPVgv1qv19j1asPKdXfYL1vsXyyaU+A==</latexit>

N = 2 SYM,  SQCD Seiberg-Witten ‘94

SCFT (superconformal th)

♦

♦

SU(3) 

NF  =4   SQCD

Argyres-Douglas ‘95SYM

SU(3) 

<latexit sha1_base64="PExgZdid5hWaz4b0aPUrWrFI5ms=">AAACNXicdVDLbhNBEJwNr2Behhy5tLCQOCBrd7N+RChSgAsHDkHCSSSvY/XOdpJRZh/M9FiKVv4ePiFfwTURh9wQV36BsTFSQNCnVlWXqquyWivLYfg1WLtx89btO+t3W/fuP3j4qP34yZ6tnJE0kpWuzEGGlrQqacSKNR3UhrDINO1np28X/P6MjFVV+ZHPapoUeFyqIyWRPTRtv07AHW7CNsQDgCZlpXOC2fwwTl+9BEg/OcyvwdswS+sCYkjfe4scvRKm7U7YjfqDXjKAsBtHm0k/8cvWsL817EHUDZfTEavZnbav0rySrqCSpUZrx1FY86RBw0pqmrdSZ6lGeYrHNPZriQXZSbOMOofnziJXUJMBpWEJ0nVFg4W1Z0XmLwvkE/s3twD/xY0dHw0njSprx1TKhZEPTUsjK43yHRLkyhAzLj4nUCVINMhMRgFK6UHnS235Pn6Hhv8ve7HvrNv7kHR23qyaWRdPxTPxQkRiIHbEO7ErRkKKz+KLuBCXwXlwFXwLvv86XQtWmg3xxwQ/fgL2b6hB</latexit>

4u3 = 27ṽ2 , ṽ = v ± 2⇤3

<latexit sha1_base64="nNxA+Mro4Jh5/V0KEXPzKU3oWxE="></latexit>

u ⌘ Trh�
2i, v ⌘ Trh�

3i, etc.

<latexit sha1_base64="XtGbW8RlU2l7AQT+m2wtbSnXrFU="></latexit>

n(1) = (1, 0; 0, 0)
<latexit sha1_base64="oeKfWTM57YSIvje05r2hgiiZ8Zo=">AAACD3icdVDLSgNBEJz1bXxFPXoZDEIEDbMxLxFB9OJRwaiQxDA7dnRwdnaZ6RVkycFP8Cu86smbePUTPPgvTmIEFa1TUdVNd1UQK2mRsTdvaHhkdGx8YjIzNT0zO5edXzi2UWIE1EWkInMacAtKaqijRAWnsQEeBgpOgqu9nn9yDcbKSB/hTQytkF9o2ZGCo5Pa2aW0GXSo7p6l+eJql27TPFtjW3TdX2Or7WyOFfxKtVyqUlYo+hulSsmRzVpls1amfoH1kSMDHLSz783zSCQhaBSKW9vwWYytlBuUQkE300wsxFxc8QtoOKp5CLaV9kN06UpiOUY0BkOlon0Rvm+kPLT2JgzcZMjx0v72euJfXiPBTq2VSh0nCFr0DqFU0D9khZGuHaDn0gAi730OVGoquOGIYCTlQjgxcXVlXB9foen/5LjoOiuUD0u5nd1BMxNkiSyTPPFJleyQfXJA6kSQW3JPHsijd+c9ec/ey+fokDfYWSQ/4L1+ANi6mZk=</latexit>

n(2) = (0, 0;�1, 0)
<latexit sha1_base64="HZbgs3pcKKuPQNhhYVcsWW6zMXs="></latexit>

n(3) = (1, 0;�1, 0)
Nonlocal U(1) SCFT 

Auzzi, Grena, KK  ’02
<latexit sha1_base64="9DhO6QVR+WQq5sxffocGqf8vfIU="></latexit>

u = 3m2 , v = 2m3

Nonlocal 
SU(2) x U(1) SCFT 

♦ Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang, Gaiotto, … … 



SCFT  points of   
<latexit sha1_base64="rf5wxAP9jtB3hC+8v+bnnUqZKYc=">AAAB/XicbVDLSgNBEJyNrxhfUY9eBoPgKewGXxch6MWTRDAPSELonXTikNkHM71CWIJf4VVP3sSr3+LBf3F33YNG61RUddPV5YZKGrLtD6uwsLi0vFJcLa2tb2xulbd3WiaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLuTy9Rv36M2MvBvaRpi34OxL0dSACVSN+4JUPx6dl7jg3LFrtoZ+F/i5KTCcjQG5c/eMBCRhz4JBcZ0HTukfgyapFA4K/UigyGICYyxm1AfPDT9OIs84weRAQp4iJpLxTMRf27E4Bkz9dxk0gO6M/NeKv7ndSManfVj6YcRoS/SQyQVZoeM0DLpAvlQaiSCNDly6XMBGohQSw5CJGKUlFNK+nDmv/9LWrWqc1I9vjmq1C/yZopsj+2zQ+awU1ZnV6zBmkywgD2yJ/ZsPVgv1qv19j1asPKdXfYL1vsXyyaU+A==</latexit>

N = 2  SQCD  with SU(N), USp(2N)

Carlino, KK, Murayama  ‘00

Di Pietro, Giacomelli ‘11
Argyres, Plesser,Seiberg  ‘96
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3.    IR CFT (conformally inv fixed points)  ~  confinement

Naively, diametrically opposite concepts♦

In systems with parameters  (NF , g, QMS),  however, 
 they may be close to each other, as the parameters are varied

 Small relevant deformation (perturbation, or produced by the system itself) 

CFT Confinement Seiberg-Witten ‘94

♦  The same degrees of freedom describing the CFT f.p. describe confinement 
vacuum nearby

♦ Interesting nonAbelian CFT’s  are strongly coupled  (cfr. Abelian dual superconductor) 

        A difficulty!

🔵

🔵

Nielsen-Froggart

26/30

☞

<latexit sha1_base64="z8d2BvKIf9YgkWoR+G56KeHPJLM=">AAACFnicdVBNSxtRFH1jq7Xxo2m77OaSUBCEYRIzzbgohFZKFy5SMCpkYrjzvJqHbz54704hpNn3J/RXdFtX7qTbbl34X5yMEbToWR3OuZd7z4kyrSx73pWz8Oz54tKL5ZeVldW19VfV12/2bZobST2Z6tQcRmhJq4R6rFjTYWYI40jTQXT2eeYffCdjVZrs8TijQYyniTpRErmQhtVauEOaEXbhI4RxDmF3pI6a8GP4BQA2R650YVite+524Ae+D57rBa3trXZBgnYzaLWh4Xol6mKO7rB6HR6nMo8pYanR2n7Dy3gwQcNKappWwtxShvIMT6lf0ARjsoNJmWUK73OLnEJGBpSGUqT7GxOMrR3HUTEZI4/s/95MfMzr53wSDCYqyXKmRM4OsdJUHrLSqKIkgmNliBlnnxOoBCQaZCajAKUsxLxorVL0cRcanib7TbfxwfW/teqdT/NmlsU7URMboiHaoiO+iq7oCSl+it/ijzh3fjkXzqXz93Z0wZnvvBUP4Py7AXJgnKY=</latexit>

�L = µ�
2 |F + h.c.deviation of the RG flow:

Banks-Zacks,

SQCD  Seiberg



Confinement and RG flow

red curves= deformations
by some relevant operators 27/30



4.    How to study strongly-coupled conformal IR fixed points   
         (and show near-by confinement)

♦

S duality in exact conformal theories (w arbitrary g) 

Argyres-Seiberg ‘07

🔵

GST  duality:  apply Argyres-Seiberg to the SCFT IR  fixed points 

<latexit sha1_base64="k4bxI8uTsiV9JC6au1242IKi7QY=">AAACLHicbZDPTttAEMbXQFualhLgyGVEVKkHFOyqtFyQEHDgSCUCSHEUjZeJGbFeW7vjoijiVXgEnoIrnLggxLXPUSf4wJ/O6dPvm9HMfElh2EsY3gdT0zPv3n+Y/dj49Hnuy3xzYfHQ56XT1NG5yd1xgp4MW+oIi6HjwhFmiaGj5Gxn7B/9Iec5twcyLKiXYWp5wBqlQv3mRroZsx3IECBejVchNjQQx+mpoHP5eU0h7e/CJkRraQU8ZxBCv9kK2+Gk4K2IatFSde33m4/xSa7LjKxog953o7CQ3gidsDZ00YhLTwXqM0ypW0mLGfneaPLhBXwtPUoOBTlgAxNIzydGmHk/zJKqM0M59a+9Mfyf1y1lsNEbsS1KIavHi4QNTRZ57biKjuCEHYng+HICtqDRoQg5BtS6gmWVZaPKI3r9/Vtx+L0d/Wyv//7R2tquk5lVy2pFfVOR+qW21J7aVx2l1aW6VjfqNrgK7oKH4PGpdSqoZ5bUiwr+/gPwoaSH</latexit>

g = 1 $ gD = 1/g ⇠ 0

Gaiotto-Seiberg-Tachikawa  ‘11

Giacomelli  ‘12

<latexit sha1_base64="A5GGQtJ3u2L45f4jqc+b1aElXtg=">AAAB/HicdVDLSgNBEJz1GeMr6tHLYBA8LbvRzeMgBL14EgWjYhKkd2x1yOzsMtMryBK/wquevIlX/8WD/+ImRlDROhVV3XR1hYmSljzvzRkbn5icmi7MFGfn5hcWS0vLxzZOjcCWiFVsTkOwqKTGFklSeJoYhChUeBL2dgf+yQ0aK2N9RLcJdiO40vJSCqBcOss6AhTf729vnZfKntuoB/VKwD3X94JKYzMnjWpQrdW473pDlNkIB+el985FLNIINQkF1rZ9L6FuBoakUNgvdlKLCYgeXGE7pxoitN1smLjP11MLFPMEDZeKD0X8vpFBZO1tFOaTEdC1/e0NxL+8dkqX9W4mdZISajE4RFLh8JAVRuZVIL+QBolgkBy51FyAASI0koMQuZjm3RTzPr6e5v+T44rrV93gcKvc3Bk1U2CrbI1tMJ/VWJPtsQPWYoJpds8e2KNz5zw5z87L5+iYM9pZYT/gvH4ABIeVMQ==</latexit>

N = 4

🔵

<latexit sha1_base64="0TEzc5ysAvaRLMwhg7GXQ8VGHQU="></latexit>

N = 2, NF = 4

GST   allows us to study  a singular SCFT,  to deform it  to get 
confinement and XSB Giacomelli, KK,   ‘12,’13

Bolognesi, Giacomelli, KK ‘16

28/30



4.    How to study strongly-coupled conformal IR fixed points   
         (and show near-by confinement)

♦

S duality in exact conformal theories (w arbitrary g) 

Argyres-Seiberg ‘07

🔵

GST  duality:  apply Argyres-Seiberg to the SCFT IR  fixed points 

<latexit sha1_base64="k4bxI8uTsiV9JC6au1242IKi7QY="></latexit>

g = 1 $ gD = 1/g ⇠ 0

Gaiotto-Seiberg-Tachikawa  ‘11

Giacomelli  ‘12

<latexit sha1_base64="A5GGQtJ3u2L45f4jqc+b1aElXtg=">AAAB/HicdVDLSgNBEJz1GeMr6tHLYBA8LbvRzeMgBL14EgWjYhKkd2x1yOzsMtMryBK/wquevIlX/8WD/+ImRlDROhVV3XR1hYmSljzvzRkbn5icmi7MFGfn5hcWS0vLxzZOjcCWiFVsTkOwqKTGFklSeJoYhChUeBL2dgf+yQ0aK2N9RLcJdiO40vJSCqBcOss6AhTf729vnZfKntuoB/VKwD3X94JKYzMnjWpQrdW473pDlNkIB+el985FLNIINQkF1rZ9L6FuBoakUNgvdlKLCYgeXGE7pxoitN1smLjP11MLFPMEDZeKD0X8vpFBZO1tFOaTEdC1/e0NxL+8dkqX9W4mdZISajE4RFLh8JAVRuZVIL+QBolgkBy51FyAASI0koMQuZjm3RTzPr6e5v+T44rrV93gcKvc3Bk1U2CrbI1tMJ/VWJPtsQPWYoJpds8e2KNz5zw5z87L5+iYM9pZYT/gvH4ABIeVMQ==</latexit>
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2
µ⌫⇢� � 4R2

µ⌫ +R
2
, (B.34)

the general result is (e.g., review by M. Duff)

c =
1

120
(NS + 6NF + 12NV ) ; a =

1

360
(NS + 11NF + 62NV ) (B.35)

where NF is the number of Dirac fermions. A check is: for a N = 2 hypermultiplet, NF = 1,
NS = 4, so

a =
1

360
(4 + 11) =

1

24
; c =

1

120
(4 + 6) =

1

12
. (B.36)

For a N = 2 vector multiplet, NV = 1, NF = 2, NS = 2, so

a =
1

360
(2 + 11 + 62) =

5

24
; c =

1

120
(2 + 6 + 12) =

1

6
. (B.37)

OK.

C a and c ”theorem” for realworld Nf flavor SU(Nc) QCD

In the UV we have free N
2
c � 1 vectors and NfNc Dirac fermions (Asymptotic freedom!) so
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20
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N
2
c � 1
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+

31

180
(N2
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whereas in the IR we have (Infrared freedom!) free pions, N2
f � 1 of them, so
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N

2
f � 1
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; aIR =

N
2
f � 1

360
. (C.39)

In general, for general Nf and Nc, no relations can be found. However, by using the AF condition,

11Nc � 2Nf > 0 , Nf <
11

2
Nc , (C.40)

one has
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1

20
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N

2
f
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<

Nf

360
· 11Nc

2
=

11NfNc

720
<

11NfNc

360
< aUV . (C.42)

This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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(ii) model

fields SU(N)cf SU(12) SU(3) Ũ(1)

 3 · 3N(N+1)
2 · (·) N(N+1)

2 · 3 1

⌘A3N 3 · ( ¯ �

¯

) 3N2 · (·) N2 · 3⇤ �1

⌘A>3N 12 · ¯
N · 12N · (·) �1

2

BA<,C> 12 · ¯
N · 12N · (·) �1

2

B[AB],m 3 ·

¯

3N(N�1)
2 · (·) N(N�1)

2 3⇤ �1

Table 7: Flavor-flavor locked SU(3) symmetric phase in the (3, 0) model, discussed in
Subsection 6.3

7 Confinement and unbroken symmetry in (N , N�) =

(0, 1) model: a review

Let us first review the (N , N�) = (0, 1) model. This model was also studied by by

Appelquist-Duan-Sannino, by Poppitz and by ourselves. The matter fermions are

�[ij] , ⌘̃B j , B = 1, 2, . . . , (N � 4) . (7.1)

The symmetry is

SU(N)c ⇥ SU(N � 4)f ⇥ U(1) , (7.2)

where the anomaly free U(1) charge is

� : N � 4 ; ⌘̃B j : �(N � 2) . (7.3)

Let us assume that the massless baryons are

B{CD} = �[ij] ⌘̃
i C ⌘̃j D , C,D = 1, 2, . . . (N � 4) , (7.4)

symmetric in CD. They have the U(1) charge:

�N . (7.5)

(i) U(1) In UV,
N(�N + 3)(N � 4)

2
(7.6)

In the IR,

�N · (N � 4)(N � 3)/2 = �N(N � 3)(N � 4)

2
. (7.7)
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where the anomaly free U(1) charge is
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Let us assume that the massless baryons are

B{CD} = �[ij] ⌘̃
i C ⌘̃j D , C,D = 1, 2, . . . (N � 4) , (7.4)

symmetric in CD. They have the U(1) charge:
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(i) U(1) In UV,
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(ii) U(1)3: In the UV,

(N � 4)3
N(N � 1)

2
� (N � 2)3 N · (N � 4) = �N3(N2 � 7N + 12)

2
. (7.8)

In IR,

(�N)3
(N � 4)(N � 3)

2
. (7.9)

OK.

(iii) SU(N � 4)3

N = N � 4 + 4 . (7.10)

(iv) U(1)SU(N � 4)2: In the UV t is

�(N � 2) ·N . (7.11)

In the IR, it is

�N · (N � 4 + 2) = �N(N � 2) . (7.12)

OK.

fields SU(N)c SU(N � 4) U(1)

�

¯

N(N�1)
2 · (·) N � 4

⌘̃A (N � 4) · N · �(N � 2)

B{AB} (N�4)(N�3)
2 · (·) �N

Table 8: Confinement and unbroken symmetry in the (0, 1) model

7.0.1 Remarks

It was pointed out that this system may develop a condensate of the form

h�[ij]⌘̃
B ji = const.⇤3�Bi ; (7.13)

The symmetry is broken as

SU(N)c ⇥ SU(N � 4)f ⇥ U(1) ! SU(N � 4)cf ⇥ U(1)0 ⇥ SU(4)c . (7.14)

The massless baryons (7.4) saturate all the anomalies associated with SU(N�4)cf ⇥U(1)0.
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(ii) U(1)3: In the UV,
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2
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In IR,
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2
. (7.9)

OK.

(iii) SU(N � 4)3

N = N � 4 + 4 . (7.10)

(iv) U(1)SU(N � 4)2: In the UV t is

�(N � 2) ·N . (7.11)

In the IR, it is

�N · (N � 4 + 2) = �N(N � 2) . (7.12)

OK.

fields SU(N)c SU(N � 4) U(1)
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2 · (·) N � 4

⌘̃A (N � 4) · N · �(N � 2)
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2 · (·) �N

Table 8: Confinement and unbroken symmetry in the (0, 1) model

7.2 Colo-flavor-locked vacuum

It was pointed out that this system may develop a condensate of the form

h�[ij]⌘̃
B ji = const.⇤3�Bi ; i, B = 1, 2, . . . , N � 4 . (7.13)

The symmetry is broken as

SU(N)c ⇥ SU(N � 4)f ⇥ U(1) ! SU(N � 4)cf ⇥ U(1)0 ⇥ SU(4)c . (7.14)

The massless baryons (7.4) saturate all the anomalies associated with SU(N�4)cf ⇥U(1)0.
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(ii) U(1)3: In the UV,

(N � 4)3
N(N � 1)

2
� (N � 2)3 N · (N � 4) = �N3(N2 � 7N + 12)

2
. (7.8)

In IR,

(�N)3
(N � 4)(N � 3)

2
. (7.9)

OK.

(iii) SU(N � 4)3

N = N � 4 + 4 . (7.10)

(iv) U(1)SU(N � 4)2: In the UV t is

�(N � 2) ·N . (7.11)

In the IR, it is

�N · (N � 4 + 2) = �N(N � 2) . (7.12)

OK.

fields SU(N)c SU(N � 4) U(1)

�

¯

N(N�1)
2 · (·) N � 4

⌘̃A (N � 4) · N · �(N � 2)

B{AB} (N�4)(N�3)
2 · (·) �N

Table 8: Confinement and unbroken symmetry in the (0, 1) model

7.2 Colo-flavor-locked vacuum

It was pointed out that this system may develop a condensate of the form

h�[ij]⌘̃
B ji = const.⇤3�Bi ; i, B = 1, 2, . . . , N � 4 . (7.13)

The symmetry is broken as

SU(N)c ⇥ SU(N � 4)f ⇥ U(1) ! SU(N � 4)cf ⇥ U(1)0 ⇥ SU(4)c . (7.14)

The massless baryons (??) saturate all the anomalies associated with SU(N �4)cf ⇥U(1)0.

As noted in [?], there remains
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The same massless baryons          do the job  

But             still around and strongly coupled

Tumbling (?):  SU(4) confined

No NG bosons;  complementarity (?) 

looks consistent

(ii) U(1)3: In the UV,

(N � 4)3
N(N � 1)

2
� (N � 2)3 N · (N � 4) = �N3(N2 � 7N + 12)

2
. (7.8)

In IR,

(�N)3
(N � 4)(N � 3)

2
. (7.9)

OK.

(iii) SU(N � 4)3

N = N � 4 + 4 . (7.10)

(iv) U(1)SU(N � 4)2: In the UV t is

�(N � 2) ·N . (7.11)

In the IR, it is

�N · (N � 4 + 2) = �N(N � 2) . (7.12)

OK.

fields SU(N)c SU(N � 4) U(1)

�

¯

N(N�1)
2 · (·) N � 4

⌘̃A (N � 4) · N · �(N � 2)

B{AB} (N�4)(N�3)
2 · (·) �N

Table 8: Confinement and unbroken symmetry in the (0, 1) model

7.2 Colo-flavor-locked vacuum

It was pointed out that this system may develop a condensate of the form

h�[ij]⌘̃
B ji = const.⇤3�Bi ; i, B = 1, 2, . . . , N � 4 , (7.13)

namely,
¯

⌦ ! ¯ � . . . . (7.14)

The symmetry is broken as

SU(N)c ⇥ SU(N � 4)f ⇥ U(1) ! SU(N � 4)cf ⇥ U(1)0 ⇥ SU(4)c . (7.15)
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The massless baryons (7.4) saturate all the anomalies associated with SU(N�4)cf ⇥U(1)0.

As noted by Appelquist, Duan, Sannino [4], there remains the �i2j2 fermions which remain

massless and strongly coupled to the SU(4)c. We may assume that SU(4)c confines, and

the condensate

h��i 6= 0 , (7.16)

in

¯

⌦

¯

!

¯

� . . . , (7.17)

forms and �i2j2 acquire dynamically mass.

fields SU(4)c SU(N � 4)cf U 0(1)

�i1j1
(N�4)(N�5)

2 · (·)

¯

N

�i1j2 (N � 4) · ¯
4 · ¯ N

2

�i2j2

¯

4·3
2 · (·) 0

⌘̃A, i1 (N � 4)2 · (·) � �N

⌘̃A, i2 (N � 4) · 4 · �N
2

B{AB} (N�4)(N�3)
2 · (·) �N

�i2j2

¯

4·3
2 · (·) 0

Table 9: Color-flavor locking in the (0, 1) model. The color index i1 or j1 runs up to N �4.
The rest is indicated by i2 or j2.

8 (N , N�) = (0, 2)

Let us now consider a generalization of the �⌘̃ model: with

�m
[ij] , ⌘̃B j , m = 1, 2, B = 1, 2, . . . , 2(N � 4) . (8.1)

or

2

¯

+ 2(N � 4) . (8.2)

b =
1

3
[11N � 2(N � 2)� 2(N � 4)] =

1

3
(7N + 12) . (8.3)
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The massless baryons (7.4) saturate all the anomalies associated with SU(N�4)cf ⇥U(1)0.

As noted by Appelquist, Duan, Sannino [4], there remains the �i2j2 fermions which remain

massless and strongly coupled to the SU(4)c. We may assume that SU(4)c confines, and

the condensate

h��i 6= 0 , (7.16)

in

¯

⌦

¯

!

¯

� . . . , (7.17)

forms and �i2j2 acquire dynamically mass.

fields SU(4)c SU(N � 4)cf U 0(1)

�i1j1
(N�4)(N�5)

2 · (·)

¯

N

�i1j2 (N � 4) · ¯
4 · ¯ N

2

�i2j2

¯

4·3
2 · (·) 0

⌘̃A, i1 (N � 4)2 · (·) � �N

⌘̃A, i2 (N � 4) · 4 · �N
2

B{AB} (N�4)(N�3)
2 · (·) �N

Table 9: Color-flavor locking in the (0, 1) model. The color index i1 or j1 runs up to N �4.
The rest is indicated by i2 or j2.

8 (N , N�) = (0, 2)

Let us now consider a generalization of the �⌘̃ model: with

�m
[ij] , ⌘̃B j , m = 1, 2, B = 1, 2, . . . , 2(N � 4) . (8.1)

or

2

¯

+ 2(N � 4) . (8.2)

b =
1

3
[11N � 2(N � 2)� 2(N � 4)] =

1

3
(7N + 12) . (8.3)
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(A)

(B)

(iii) The third line is the pure flavor U (1)3 and (U⌘(N + 4))3 anomalies. They are
there even if no 1-form gauging is done.

(iv) The fourth line, present also for B = 0, would show that, if the first two
lines were absent, U ⌘(1),  = N+2, , ⌘ = N�2 would all be unbroken as
1

8⇡2

R
trF̃ 2 2 .

(v) The second line also shows that in the presence of the external A and A⌘ fields
(which are needed in order to have the color-flavor locked center symmetry),
the 1-form gauge symmetry is broken. This is another manifestation of the
failure of the gauging of the 1-form center symmetry.

We conclude, in view of the new anomalies induced by gauging of the 1-form
color-flavor center symmetry, that the chirally symmetric confined phase of Sec. 3.3
cannot be realized in the infrared, as neither breaking of U ⌘(1) nor of Z = ZN+2

can be appropriately described, without having vacuum degeneracies/NG bosons.
Thus the color-flavor locked Higgs phase discussed in Sec. 3.4 seems to be strongly
favored as a way of dynamically realizing the symmetries in the infrared.

4 (N , N�) = (0, 1) model

This model was also studied by by Appelquist-Duan-Sannino, by Poppitz and by
ourselves. The matter fermions are

�[ij] , ⌘̃
B j

, B = 1, 2, . . . , (N � 4) , (4.1)

or
¯

+ (N � 4) . (4.2)

The symmetry is
SU(N)c ⇥ SU(N � 4)f ⇥ U(1) , (4.3)

where the anomaly free U(1) charge is

� : N � 4 ; ⌘̃
B j : �(N � 2) . (4.4)

b0 = 11N � (N � 2)� (N � 4) = 9N + 6 . (4.5)

There are also discrete symmetries

� = N�2 ⇢ U (1) , ⌘ = N�4 ⇢ U⌘(1) . (4.6)

The symmetries of the system is summarized in Table 9.
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 Theoretical laboratories :  chiral SU(N) gauge theories with Weyl fermions
For large N , N�  5 to have AF. For the third class:

type (III) , N � 0 � N� ,

N � (�N�) �
�
N (N + 4)�N�(N � 4)

� ¯
,

b0 = (11� 2(N �N�))N � 6N + 6N� . . (2.9)

For large N , N � N�  5 to have AF. Among the (N , N�) models (1, 0) correspond to

the  ⌘ model, (1, 1) corresponds to the  �⌘ model and (0, 1) corresponds to the �⌘̃ model.

These three types, plus their complex conjugate (̄I), (ĪI) ( ¯III) with N  0 are shown in

Figure 1 in the (N , N�) plane . The boundaries are set by the condition of asymptotic

freedom b0 > 0 evaluated at large N . We introduce a quiver notation whcih may be usefuld

N�

N 

 �⌘

�̃⌘

 ⌘

(I)

(II)

(III)

( ¯III)

(̄I)

(ĪI)

 ̃�̃⌘̃

 ̃⌘̃

�⌘̃

Figure 1: All the possible (N , N�) models that are AF at large N .

to visualize the theories and their di↵erences. We use the following notation for the quiver

diagram: circles with a number inside n represent a gauge group SU(n), squares with a

number m represent a global symmetry SU(m), fermions are lines connecting the groups,

arrows on the line indicate if is fundamental (ingoing) or antifundamental (outgoing), little

“o” or “x” within a line indicates if the end are symmetric or anti-symmetric. See figure 2

for the diagrams of the (N , N�) models of types (I), (II) and (III).

6

N’s   constrained 

by gauge-anomaly  

-free condition 

AF or CFT?

(battle fields?)

constraints on the possible infrared dynamics of the system, as compared with the conventional
’t Hooft anomaly matching conditions.

This work is basically a review of our previous results [1–8], but a special emphasis will be
put on an exploration of more general, new types of phases and low-energy e↵ective actions, than
those already discussed in literature or by ourselves. Keeping such an aim in mind, the discussions
on the generalized symmetries and applications of the mixed anomalies will be left to another
review work [7]. The present work is organized as follows. In Sec. 2 we discuss the classes of
models to be analyzed below. In the following sections, Sec. 3, Sec. 4, and in Sec. 5, we review the
three possible di↵erent types of phases which may be realized, depending on the matter content
of our theories, i.e., a hypothetical confining flavor-symmetric vacuum, dynamical Higgs phase,
and dynamical Abelianization, respectively. In Sec. 6 we explore other possible phases, which are
generalizations of the dynamical Higgs/Abelianization cases discussed in Sec. 4, and in Sec. 5.
The content of Sec. 6, which is the tentative study of more general IR dynamics, is mostly new.
Sec. 7 reviews the implications of the strong anomaly to possible dynamical scenarios in the IR
in some simple chiral gauge theories. Conclusive remarks are in Sec. 8.

2. Models

In this paper we shall focus on asymptotically-free SU(N) gauge theories with chiral fermions.
We restrict further our playground to the class of theories which possess a large N limit. The last
requirement imposes that the matter content is restricted to a combination of a few irreducible
representations (irreps) of SU(N), 2

N �N ̃

¯
�N�̃ �N�

¯

�N⌘̃ �N⌘
¯

�Nadj
... :

  ̃ �̃ � ⌘̃ ⌘ � (2.1)

inclusion of larger irreps will render the theory IR-free at large N.

Not all the choices of N , N ̃, N�̃, N�, N⌘̃, N⌘ are permitted: gauge anomaly cancellation
imposes that

(N �N ̃)(N + 4) + (N�̃ �N�)(N � 4) + (N⌘̃ �N⌘)N = 0 , (2.2)

which reduces our parameter spaces from seven to six integers. Asymptotic freedom3

b0 = 11N � (N +N ̃)(N + 2)� (N�̃ +N�)(N � 2)� (N⌘̃ +N⌘)� 2NNadj > 0 . (2.3)

This gives an inequality on the parameter space, thus it doesn’t reduce the ”dimensionality” of

2 All fermions are taken to be left-handed.
3 In general these theories become strongly coupled in IR, and develop a dynamically generated energy scale, ⇤.
Some of them might however flow to an interacting CFT, as can be suggested by the analysis which takes into
account the higher coe�cients of the beta function.

*** 
*** 
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 Part 4:       Supersymmetry and   
        strongly-coupled gauge theories            

Montonen-Olive duality 
Susy instanton calculus, 
Veneziano-Yankielovicz, 
Seiberg’s duality in SQCD, 
Seiberg-Witten, 
Witten-Olive,   Witten 
Generalized KK anomaly, 
Argyres-Douglas, SCFT, EHIY 
Argyres-Plesser-Seiberg-Witten   
GST duality,  
SCFT and confinement 
(Susy-inspired) results on 
NonAbelian vortices and monopoles

’80 - ’22”SUSY 40”

Some reflections
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N = 1 SYM  

KK-Ricco ‘03

adj mass 
perturbation, 
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N = 1
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Squark, gaugino condensates, K anomaly, decoupling of quarks
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KK ’84 
Affleck-Dine-Seiberg ’84 

Amati, KK, Meurice, Rossi, Veneziano,  ’88 
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m = 0 : QMS  (flat directions)

Seiberg ’94 

Nf < Nc Nc Nc + 1  Nf < 3Nc
2

3Nc
2 < Nf  3Nc > 3Nc

Phases No vacua finite vacua Free magnetic phase SCFT Infrared free

IR Deg. freedom - M,B, B̄ M,B, B̄ Q, Q̃ or q, q̃,M Q, Q̃

1

(Exact)
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2. 
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N = 2 SYM,  SQCD Seiberg-Witten ‘94

SCFT (superconformal th)

♦

♦

SU(3) 

NF  =4   SQCD

Argyres-Douglas ‘95SYM

SU(3) 
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4u3 = 27ṽ2 , ṽ = v ± 2⇤3

<latexit sha1_base64="nNxA+Mro4Jh5/V0KEXPzKU3oWxE="></latexit>

u ⌘ Trh�
2i, v ⌘ Trh�

3i, etc.

<latexit sha1_base64="XtGbW8RlU2l7AQT+m2wtbSnXrFU="></latexit>

n(1) = (1, 0; 0, 0)
<latexit sha1_base64="oeKfWTM57YSIvje05r2hgiiZ8Zo="></latexit>

n(2) = (0, 0;�1, 0)
<latexit sha1_base64="HZbgs3pcKKuPQNhhYVcsWW6zMXs="></latexit>

n(3) = (1, 0;�1, 0)
Nonlocal U(1) SCFT 

Auzzi, Grena, KK  ’02
<latexit sha1_base64="9DhO6QVR+WQq5sxffocGqf8vfIU="></latexit>

u = 3m2 , v = 2m3

Nonlocal 
SU(2) x U(1) SCFT 

♦ Argyres-Plesser-Seiberg-Witten, Eguchi-Hori-Ito-Yang, Gaiotto, … … 



SCFT  points of   
<latexit sha1_base64="rf5wxAP9jtB3hC+8v+bnnUqZKYc=">AAAB/XicbVDLSgNBEJyNrxhfUY9eBoPgKewGXxch6MWTRDAPSELonXTikNkHM71CWIJf4VVP3sSr3+LBf3F33YNG61RUddPV5YZKGrLtD6uwsLi0vFJcLa2tb2xulbd3WiaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLuTy9Rv36M2MvBvaRpi34OxL0dSACVSN+4JUPx6dl7jg3LFrtoZ+F/i5KTCcjQG5c/eMBCRhz4JBcZ0HTukfgyapFA4K/UigyGICYyxm1AfPDT9OIs84weRAQp4iJpLxTMRf27E4Bkz9dxk0gO6M/NeKv7ndSManfVj6YcRoS/SQyQVZoeM0DLpAvlQaiSCNDly6XMBGohQSw5CJGKUlFNK+nDmv/9LWrWqc1I9vjmq1C/yZopsj+2zQ+awU1ZnV6zBmkywgD2yJ/ZsPVgv1qv19j1asPKdXfYL1vsXyyaU+A==</latexit>

N = 2  SQCD  with SU(N), USp(2N)

Carlino, KK, Murayama  ‘00

Di Pietro, Giacomelli ‘11
Argyres, Plesser,Seiberg  ‘96



        IR CFT (conformally inv fixed points)  ~  confinement

Naively, diametrically opposite concepts♦

In systems with parameters  (NF , g, QMS),  however, 
 they may be close to each other, as the parameters are varied

 Small relevant deformation (perturbation, or produced by the system itself) 

CFT Confinement Seiberg-Witten ‘94

♦  The same degrees of freedom describing the CFT f.p. describe confinement 
vacuum nearby

♦ Interesting nonAbelian CFT’s  are strongly coupled  (cfr. Abelian dual superconductor) 

        A difficulty!

🔵

🔵

Nielsen-Froggart

☞

<latexit sha1_base64="z8d2BvKIf9YgkWoR+G56KeHPJLM="></latexit>

�L = µ�
2 |F + h.c.deviation of the RG flow:

Banks-Zacks,

SQCD  Seiberg



Confinement and RG flow

red curves= deformations
by some relevant operators



    How to study strongly-coupled conformal IR fixed points   
         (and show near-by confinement)

♦

S duality in exact conformal theories (w arbitrary g) 

Argyres-Seiberg ‘07

🔵

GST  duality:  apply Argyres-Seiberg to the SCFT IR  fixed points 

<latexit sha1_base64="k4bxI8uTsiV9JC6au1242IKi7QY="></latexit>

g = 1 $ gD = 1/g ⇠ 0

Gaiotto-Seiberg-Tachikawa  ‘11

Giacomelli  ‘12

<latexit sha1_base64="A5GGQtJ3u2L45f4jqc+b1aElXtg=">AAAB/HicdVDLSgNBEJz1GeMr6tHLYBA8LbvRzeMgBL14EgWjYhKkd2x1yOzsMtMryBK/wquevIlX/8WD/+ImRlDROhVV3XR1hYmSljzvzRkbn5icmi7MFGfn5hcWS0vLxzZOjcCWiFVsTkOwqKTGFklSeJoYhChUeBL2dgf+yQ0aK2N9RLcJdiO40vJSCqBcOss6AhTf729vnZfKntuoB/VKwD3X94JKYzMnjWpQrdW473pDlNkIB+el985FLNIINQkF1rZ9L6FuBoakUNgvdlKLCYgeXGE7pxoitN1smLjP11MLFPMEDZeKD0X8vpFBZO1tFOaTEdC1/e0NxL+8dkqX9W4mdZISajE4RFLh8JAVRuZVIL+QBolgkBy51FyAASI0koMQuZjm3RTzPr6e5v+T44rrV93gcKvc3Bk1U2CrbI1tMJ/VWJPtsQPWYoJpds8e2KNz5zw5z87L5+iYM9pZYT/gvH4ABIeVMQ==</latexit>

N = 4

🔵

<latexit sha1_base64="0TEzc5ysAvaRLMwhg7GXQ8VGHQU="></latexit>

N = 2, NF = 4

GST   allows us to study  a singular SCFT,  to deform it  to get 
confinement and XSB Giacomelli, KK,   ‘12,’13

Bolognesi, Giacomelli, KK ‘16



RG flows

N=2 SCFTReal-world  QCD  
N=0  SCFT
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2
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2
, (B.34)

the general result is (e.g., review by M. Duff)
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(NS + 11NF + 62NV ) (B.35)

where NF is the number of Dirac fermions. A check is: for a N = 2 hypermultiplet, NF = 1,
NS = 4, so
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1
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24
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1
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12
. (B.36)

For a N = 2 vector multiplet, NV = 1, NF = 2, NS = 2, so

a =
1
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(2 + 11 + 62) =

5
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6
. (B.37)

OK.

C a and c ”theorem” for realworld Nf flavor SU(Nc) QCD

In the UV we have free N
2
c � 1 vectors and NfNc Dirac fermions (Asymptotic freedom!) so
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N
2
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whereas in the IR we have (Infrared freedom!) free pions, N2
f � 1 of them, so
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N
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360
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In general, for general Nf and Nc, no relations can be found. However, by using the AF condition,
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.

12

(Euler) = R
2
µ⌫⇢� � 4R2

µ⌫ +R
2
, (B.34)

the general result is (e.g., review by M. Duff)

c =
1

120
(NS + 6NF + 12NV ) ; a =

1

360
(NS + 11NF + 62NV ) (B.35)

where NF is the number of Dirac fermions. A check is: for a N = 2 hypermultiplet, NF = 1,
NS = 4, so

a =
1

360
(4 + 11) =

1

24
; c =

1

120
(4 + 6) =

1

12
. (B.36)

For a N = 2 vector multiplet, NV = 1, NF = 2, NS = 2, so

a =
1

360
(2 + 11 + 62) =

5

24
; c =

1

120
(2 + 6 + 12) =

1

6
. (B.37)

OK.

C a and c ”theorem” for realworld Nf flavor SU(Nc) QCD

In the UV we have free N
2
c � 1 vectors and NfNc Dirac fermions (Asymptotic freedom!) so

cUV =
1

20
NfNc +

N
2
c � 1

10
; aUV =

11NfNc

360
+

31

180
(N2

c � 1) , (C.38)

whereas in the IR we have (Infrared freedom!) free pions, N2
f � 1 of them, so

cIR =
N

2
f � 1

120
; aIR =

N
2
f � 1

360
. (C.39)

In general, for general Nf and Nc, no relations can be found. However, by using the AF condition,

11Nc � 2Nf > 0 , Nf <
11

2
Nc , (C.40)

one has
cIR <

Nf

120
· 11Nc

2
<

1

20
NfNc < cUV ; (C.41)

and

aIR <
N

2
f

360
<

Nf

360
· 11Nc

2
=

11NfNc

720
<

11NfNc

360
< aUV . (C.42)

This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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Nf <
11

2
Nc

Bolognesi, Giacomelli, KK ‘16

in adjoint repr of GF

<latexit sha1_base64="LyGJIIh5pdtHV9Z0n7W6duAvsYs="></latexit>

ui = 0 mi = ⇤/N

Back to p.26



To sum up:    Susy gauge theories

          Deep insights and understanding on:

Quantum monopoles and dyons; Dualities
(S)CFT,  IR fixed-points

Deform                    to learn dynamics of non-Susy theories ?  No (t easy…)
<latexit sha1_base64="n/vOGTXKuiSN5pyB0ZVeSm2sy8M="></latexit>

�L(N=0)

Hint:   Confinement in QCD ~   close to nontrivial CFT  

♦ Bifermion condensates  
<latexit sha1_base64="6ouNmXVqpJx4F7HiagAHrfR7+k4="></latexit>

h ⌘i , h�⌘i , h �i , hq̄RqLi (QCD)

all vanish by supersymmetry:  Susy must be sp.ly broken

<latexit sha1_base64="k1FifWALfZGtM/mjCTr+csrKkNc=">AAAB93icdVDLSgNBEJyNrxhfUY9eBoPgadldzesgBL14jGAekCxhdtKJQ2YfzvQKIeQbvOrJm3j1czz4L+6uEVS0TkVVN11dXiSFRst6M3JLyyura/n1wsbm1vZOcXevrcNYcWjxUIaq6zENUgTQQoESupEC5nsSOt7kIvU7d6C0CINrnEbg+mwciJHgDBOp5Q9uz6xBsWSZ9VrVcSrUMh2nXD9JiW2fVOoVaptWhhJZoDkovveHIY99CJBLpnXPtiJ0Z0yh4BLmhX6sIWJ8wsbQS2jAfNDuLAs7p0exZhjSCBQVkmYifN+YMV/rqe8lkz7DG/3bS8W/vF6Mo5o7E0EUIwQ8PYRCQnZIcyWSFoAOhQJEliYHKgLKmWKIoARlnCdinNRSSPr4epr+T9qOaVfM8tVpqXG+aCZPDsghOSY2qZIGuSRN0iKcCHJPHsijMTWejGfj5XM0Zyx29skPGK8fgHaTPA==</latexit>

mq = 0

♦ Interesting possible phases (dynamical Higgs, Abelianization, etc.)  in 
chiral gauge theories :    all out of reach of Susy cousins

☞

But

🔵

♦

♦

♦

🔵

♦ QMS (flat directions) in susy systems:  where to start ?   

<latexit sha1_base64="dFRQsnoXXDXiOWq7btgQ05pTfOI="></latexit>

� = A+
p 2✓ 

+ . . .

chiral superfield
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AF or CFT

2.1. Constraints for AF and infrared fixed-point conformal theory (CFT)

The requirement of AF used in Table 1 to restrict the classes of theories, is actually subtler than
that implied by the first coe�cient of the beta function, b0, in (2.7)-(2.9). A theory with b0 > 0
may actually flow into a CFT, as shown by Banks and Zaks [39] for QCD at large N and NF

near NF = 11N/2, and by Seiberg [40] for supersymmetric QCD in the range 3N/2 < NF < 3N .

We have examined whether or not some of the theories listed in Table 1 (all with b0 > 0)
can flow into a CFT, by taking into account the second coe�cient of the beta function, at large
N [38, 41]. The result is shown in the Table below
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where the rows and columns refer to the values of N , N� = 1, 2, . . . , 6. The positive value of the
possible fixed-point coupling ↵N ,N� might indicate the presence of an IR CFT. Models having
↵N ,N� < 0 in the Table are instead AF. This table might suggest that the most of the models
towards the boundaries in Fig. 1 are actually in the IR CFT, instead of being asymptotically free.

Unfortunately, all these putative fix-points (if they really exist) are non-perturbative, even
if ↵ ⌧ 1. The reason is that the coe�cients bi of the beta function scales as O(N i+1) so for
↵ ⇠ O(1/N) all the terms of

�(g) = �
g
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are of the same order. Another, equivalent, way to state this state of matter is that if 5 b0 ⇠ O(N),
the correct perturbative expansion for large N is the ’t Hooft coupling � = Ng2 which is O(1) in
these models. We shall not pursue further this problem in this work.

3. Hypothetical confining, symmetric phase

Most of the theories studied here contain a large, non-Abelian flavor symmetry group.
Confinement without symmetry breaking, with no condensate formation, would require that
the spectrum of massless gauge-invariant composite fermions be such that it matches all the ’t
Hooft anomaly triangles of the UV theory. This represents quite a nontrivial constraint on the
IR theory, and it is somewhat surprising that some models in the family, namely the BY [12] and
the generalized GG models, apparently allow for solutions to these constraints, with a simple set
of massless baryons [11, 12].

We review first these solutions, and then explain why one cannot expect any solution of this

5 By adding vector-like matter, e.g. by cranking up p in (2.10) or in (2.11), one can reach a point where b0 ⇠ O(1),
while b1 is still O(N2). In this case, one obtains ↵ ⇠ O(1/N2), and the fix-point is perturbative. The scenario
should be similar to the Banks-Zaks fix-point in QCD. We postpone any further discussion on this point to future
work.

Up to 2 loops:    
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2.1. Constraints for AF and infrared fixed-point conformal theory (CFT)

The requirement of AF used in Table 1 to restrict the classes of theories, is actually subtler than
that implied by the first coe�cient of the beta function, b0, in (2.7)-(2.9). A theory with b0 > 0
may actually flow into a CFT, as shown by Banks and Zaks [39] for QCD at large N and NF

near NF = 11N/2, and by Seiberg [40] for supersymmetric QCD in the range 3N/2 < NF < 3N .

We have examined whether or not some of the theories listed in Table 1 (all with b0 > 0)
can flow into a CFT, by taking into account the second coe�cient of the beta function, at large
N [38, 41]. The result is shown in the Table below
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the correct perturbative expansion for large N is the ’t Hooft coupling � = Ng2 which is O(1) in
these models. We shall not pursue further this problem in this work.

3. Hypothetical confining, symmetric phase

Most of the theories studied here contain a large, non-Abelian flavor symmetry group.
Confinement without symmetry breaking, with no condensate formation, would require that
the spectrum of massless gauge-invariant composite fermions be such that it matches all the ’t
Hooft anomaly triangles of the UV theory. This represents quite a nontrivial constraint on the
IR theory, and it is somewhat surprising that some models in the family, namely the BY [12] and
the generalized GG models, apparently allow for solutions to these constraints, with a simple set
of massless baryons [11, 12].

We review first these solutions, and then explain why one cannot expect any solution of this
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As the ’t Hooft anomaly matching requirement does not lead to any new constraint here, it is
di�cult to know which particular condensate and which symmetry-breaking pattern is actually
realized. To determine the correct one, one can appeal to several heuristic arguments:

• The Maximally Attractive Channel (MAC) criterion [9] suggests that the condensate that
actually forms is the one that maximizes (in the absolute value) the quantity

C2(Rc)� C2(R1)� C2(R2) (4.1)

where C2(R) is the quadratic Casimir of the irrep R. It represents the strength of the one-
gluon exchange force (4.1) in various bifermion (made of (R1) and (R2)) composite-scalar
(Rc) channels.
Just to have some quantitative idea, let us compare the strength of the attraction (4.1) in
various bifermion scalar channels, formed by two out of the three types of fermions,  , � and
⌘. Some of the most probable channels are

A :  
⇣ ⌘

 
⇣ ⌘

forming ;

B : �

✓ ¯ ◆
�

✓ ¯ ◆
forming

¯

;
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⌘
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¯
⌘

forming (·) (singlet) . (4.2)

The one-gluon exchange strength is, in the six cases above, proportional to
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matching condition.

(ii) SU(8)Ũ(1)2: again only ⌘ai contribute both in the UV and in the IR. The matching is

trivial.

(iii) Ũ(1)3: In the UV, all of  ,�, ⌘ give contributions,

8 · N(N + 1)

2
� 8 · N(N � 1)

2
� 8N = 0 ; (3.44)

in the IR,  ii and ⌘ai contribute:

8 ·N � 8 ·N = 0 . (3.45)

(iv) Ũ(1): In the UV,  ,�, ⌘ give

2 · N(N + 1)

2
� 2 · N(N � 1)

2
� 8 ·N = �6N ; (3.46)

whereas in the IR,  ii and ⌘ai give

2 ·N � 8N = �6N . (3.47)

fields SU(8) Ũ(1)

 N(N+1)
2 · (·) N(N+1)

2 · (2)
� N(N�1)

2 · (·) N(N�1)
2 · (�2)

⌘A N · 8N · (�1)
( � )ii ⇠  ii N · (·) N · (2)
 �⌘A ⇠ ⌘A N · 8N · (�1)

Table 3: Full dynamical Abelianization in the  �⌘ model, in Subsection 3.5

4 (N , N�) = (1, 0) model: a review

Let us review the (N , N�) = (1, 0) model. The matter fermions are in

 {ij} , ⌘Bi , B = 1, 2, . . . , N + 4 , (4.1)

or

+ (N + 4)
¯

. (4.2)
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The (continuous) symmetry of this model is

SU(N)c ⇥ SU(N + 4)f ⇥ U(1) , (4.3)

where U(1) is an anomaly-free combination of U (1) and U⌘(1), with

Q : N + 4; , Q⌘ : �(N + 2) . (4.4)

The discrete group is 2 if N is even; none if N is odd.

4.1 Chirally symmetric phase of (N , N�) = (1, 0) model

Let us first examine the possibility that no condensates form, the system confines and the

flavor symmetry is unbroken. The candidate massless baryons are:

B[AB] =  ij⌘Ai ⌘
B
j , A,B = 1, 2, . . . , N + 4 , (4.5)

antisymmetric in AB. All the SU(N + 4)f ⇥ U(1) anomalies are saturated by those by

B[AB], as shown by Appelquist-Duan-Sannino, and as can be seen by inspection of the

Table 4.

fields SU(N)c SU(N + 4) Ũ(1)

 N(N+1)
2 · (·) N + 4

⌘A (N + 4) · ¯
N · �(N + 2)

B[AB] (N+4)(N+3)
2 · (·) �N

Table 4: Chirally symmetric phase of the (1, 0) model

4.2 Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase appears, with

h {ij⌘Bi i = C �jB , j, B = 1, 2, . . . N , (4.6)

in which the symmetry is reduced to

SU(N)cf ⇥ SU(4)f ⇥ U 0(1) . (4.7)

As this forms a subgroup of the full symmetry group, (4.3), it is quite easily seen, by

making the decomposition of the fields in the subgroup, that a subset of the same baryons

saturate all of the triangles associated with the reduced symmetry group. See Table 5.
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Appelquist, Duan, Sannino, ‘00  

The anomaly matching OK, 

fields SU(N)cf SU(4)f U 0(1)

 N(N+1)
2 · (·) N(N+1)

2 · (1)

⌘A1
¯ �

¯

N2 · (·) N2 · (�1)

⌘A2 4 · ¯
N · 4N · (�1

2)

B[A1B1]

¯

N(N�1)
2 · (·) N(N�1)

2 · (�1)

B[A1B2] 4 · ¯
N · 4N · (�1

2)

Table 5: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 4.2. A1 or
B1 stand for A,B = 1, 2, . . . , N . A2 or B2 the rest of the flavor indices.

It is not known which of the possibilities, 4.1 or 4.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N + 1 Nambu-Goldstone bosons, in the latter.

Let us check the a theorem and the ACS criterion for both.

fUV = 2(N2 � 1) +
7

4

✓
N(N + 1)

2
+ (N + 4)N

◆
=

1

8
(37N2 + 63N � 16) . (4.8)

In the infrared, for the unbroken-symmetry Subsection 4.1 :

fIR =
7

4

(N + 4)(N + 3)

2
=

7

8
(N2 + 7N + 12) (4.9)

So

fUV � fIR =
1

4
(15N2 + 7N � 50) � 0 , N � 2 . (4.10)

For the color-flavor locking scenario Subsection 4.2 with partially broken symmetries:

fIR =
7

4

✓
N(N � 1)

2
+ 4N

◆
+ 8N + 1 =

1

8
(7N2 + 113N + 8) (4.11)

so that

fUV � fIR =
1

4
(15N2 � 25N � 12) � 0 , N � 3 . (4.12)

These results are already discussed in the papers ACSS and ADS, where it was noted that

the symmetric phase 4.1 has a lower fIR.
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fields SU(N)cf SU(4)f U 0(1)

 N(N+1)
2 · (·) N(N+1)

2 · (1)

⌘A1
¯ �

¯

N2 · (·) N2 · (�1)

⌘A2 4 · ¯
N · 4N · (�1

2)

B[A1B1]

¯

N(N�1)
2 · (·) N(N�1)

2 · (�1)

B[A1B2] 4 · ¯
N · 4N · (�1

2)

Table 5: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 4.2. A1 or
B1 stand for A,B = 1, 2, . . . , N . A2 or B2 the rest of the flavor indices.

It is not known which of the possibilities, 4.1 or 4.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N + 1 Nambu-Goldstone bosons, in the latter.

Let us check the a theorem and the ACS criterion for both.

fUV = 2(N2 � 1) +
7

4

✓
N(N + 1)

2
+ (N + 4)N

◆
=

1

8
(37N2 + 63N � 16) . (4.8)

In the infrared, for the unbroken-symmetry Subsection 4.1 :

fIR =
7

4

(N + 4)(N + 3)

2
=

7

8
(N2 + 7N + 12) (4.9)
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fUV � fIR =
1

4
(15N2 + 7N � 50) � 0 , N � 2 . (4.10)

For the color-flavor locking scenario Subsection 4.2 with partially broken symmetries:

fIR =
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N(N � 1)

2
+ 4N

◆
+ 8N + 1 =

1

8
(7N2 + 113N + 8) (4.11)

so that

fUV � fIR =
1

4
(15N2 � 25N � 12) � 0 , N � 3 . (4.12)

These results are already discussed in the papers ACSS and ADS, where it was noted that

the symmetric phase 4.1 has a lower fIR.
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in those theories.2

A key ingredient of these developments is the idea of "gauging a discrete symmetry",
i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,
and eliminating the consequent redundancies, effectively modifying the path-integral sum-
mation rule over gauge fields [36, 37]. Since these generalized symmetries are symmetries
of the models considered, even though they act differently from the conventional ones, it is
up to us to decide to "gauge" these symmetries. Anomalies we encounter in doing so, are
indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as
in the usual application of the ’t Hooft anomalies such as the "anomaly matching" between
UV and IR theories, a similar constraint arises in considering the generalized symmetries
together with a conventional ("0-form") symmetry, which has come to be called in recent
literature as a "mixed ’t Hooft anomaly". Another term of "global inconsistency" was also
used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and
ask whether these new theoretical tools can be usefully applied to them, and whether they
provide us with new insights into the infrared dynamics and global symmetry realizations
of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of
models ( ⌘ models [8, 9]). In Sec. 2 we review the symmetry and earlier results on the
possible phases of these theories. In Sec. 3 the symmetry group of the systems is discussed
more carefully, by taking into account its global aspects. Sec. 4 and Sec. 5 contain the
derivation of the anomalies in odd N and even N theories, respectively. In Sec. 6 we
discuss the UV-IR matching constraints of certain 0-form and 1-form mixed anomalies, and
their consequences on the IR dynamics in even N theories. In Sec. 7 the mixed anomalies are
reproduced without using the Stora-Zumino descent procedure adopted in Sec. 6. Summary
of our analysis and Discussion are in Sec. 8. We shall come back to more general classes of
chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

 {ij} , ⌘Bi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

� (N + 4)
¯

(2.2)

of SU(N). This model was studied in [14, 15], [8, 9].4 This is the simplest of the class of
chiral gauge theories known as Bars-Yankielowicz models [12]. The first coefficient of the

2
A careful exposition of these ideas can be found e.g., in [30].

3
In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [34].
4
A recent application of this class of chiral gauge theories is found in [35].
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fields SU(N)cf SU(4)f U
0(1)

UV  
N(N+1)

2 · (·) 1

⌘
A1

¯ �

¯

N
2 · (·) �1

⌘
A2 4 · ¯

N · �1
2

IR B
[A1B1]

¯

N(N�1)
2 · (·) �1

B
[A1B2] 4 · ¯

N · �1
2

Table 6: Color-flavor locked phase in the (1, 0) model, discussed in Subsection 3.2. A1 or B1 stand for

A,B = 1, 2, . . . , N , A2 or B2 the rest of the flavor indices.

The discrete anomaly  is broken by the condensate  ⌘. There is (for generic N)

no combination between  and ⌘ which survives, therefore there is no discrete anomaly

matching condition.

It is not known which of the possibilities, 3.1 or 3.2, is realized in the (1, 0) model.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the former case, and

N2+7N
2 massless baryons together with 8N+1 Nambu-Goldstone bosons, in the latter. Thus

the complementarity [18], as noted in [1], does not work here even though the (dynamical)

Higgs scalars  ⌘ are in the fundamental representation of color.

4 (N , N�) = (2, 0)

This is a straightforward generalization of the  ⌘ model above. The matter fermions are

 
{ij,m}

, ⌘
B
i , m = 1, 2 , B = 1, 2, . . . , 2(N + 4) , (4.1)

or

2 + 2(N + 4)
¯

. (4.2)

The (continuous) symmetry of this model is

SU(N)c ⇥ SU(2)f ⇥ SU(2N + 8)f ⇥ U(1) , (4.3)

where U(1) is an anomaly-free combination of U (1) and U⌘(1),

U(1) :  ! e
i↵/2(N+2)

 , ⌘ ! e
�i↵/2(N+4)

⌘ . (4.4)

The first coe�cient of the beta function is

b0 =
1

3
[11N � 2(N + 2)� 2(N + 4)] =

7N � 12

3
, (4.5)
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where U(1) is an anomaly-free combination of U (1) and U⌘(1), with

Q : N + 4 , Q⌘ : �(N + 2) . (3.5)

There are also discrete symmetries

 = N+2 ⇢ U (1) , ⌘ = N+4 ⇢ U⌘(1) . (3.6)

3.1 Chirally symmetric phase in the (1, 0) model

Let us first examine the possibility that no condensates form, the system confines and the

flavor symmetry is unbroken [3]. The candidate massless baryons are:

B
[AB] =  

ij
⌘
A
i ⌘

B
j , A,B = 1, 2, . . . , N + 4 , (3.7)

antisymmetric in A $ B. All the SU(N + 4)f ⇥ U(1) anomalies are saturated by B
[AB]

as can be seen by inspection of the Table 5. The discrete anomaly  SU(N)2 is also

matched, as can be easily checked.

fields SU(N)c SU(N + 4) U(1)

UV  
N(N+1)

2 · (·) N + 4

⌘
A (N + 4) · ¯

N · �(N + 2)

IR B
[AB] (N+4)(N+3)

2 · (·) �N

Table 5: Chirally symmetric phase of the (1, 0) model. As in other Tables of the text, the multiplicity,

charges and the representation are shown for each set of fermions. (·) stands for a singlet representation.

3.2 Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase appears [9, 1], with

h {ij}
⌘
B
i i = c⇤3

�
jB

, j, B = 1, 2, . . . N , (3.8)

in which the symmetry is reduced to

SU(N)cf ⇥ SU(4)f ⇥ U
0(1) . (3.9)

As this forms a subgroup of the full symmetry group, (3.4), it is quite easily seen, by making

the decomposition of the fields in the direct sum of representations in the subgroup, that

a subset of the same baryons saturate all of the triangles associated with the reduced

symmetry group, see Table 6.
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G ! G0 =

  (&)   

  (&)   


