

# Anomalies and parities for quintessential and ultra-light axions

Dark energy source from a new confining force [248]

Jihn E. Kim

**Seoul National University** 

Arion Hotel, Corfu, 1 Sep 2023

If we consider the potential energy which is of order

$$(???x10^{-3}eV)4$$

We may consider the potential energy of a pseudo-Goldstone boson with the breaking term of this order.

### Breaking must be of this order

#### Dark Energy in the Universe

### Quintessential axions require

The decay constant is near the Planck scale

QA mass is near 10<sup>-32</sup> eV

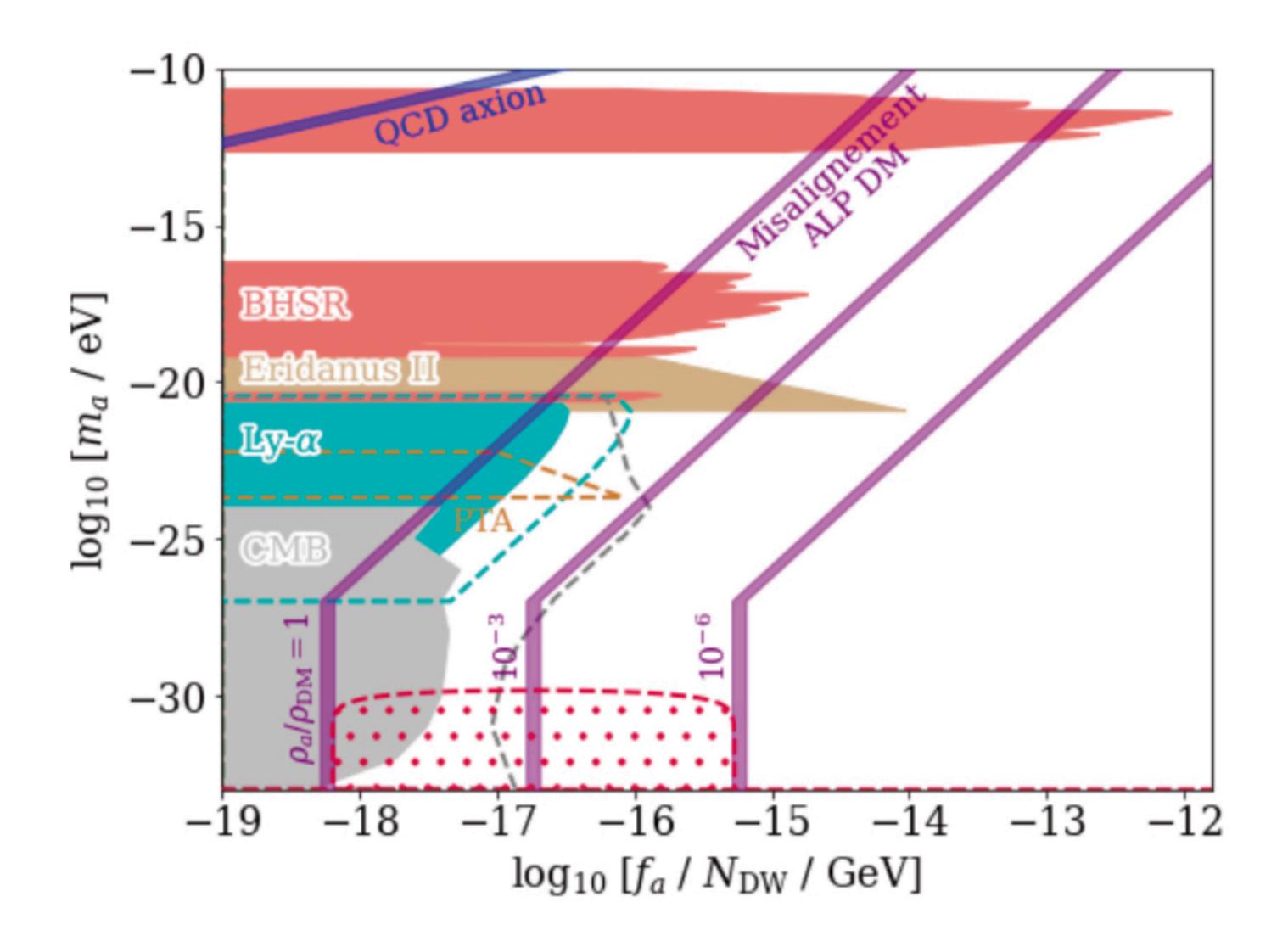
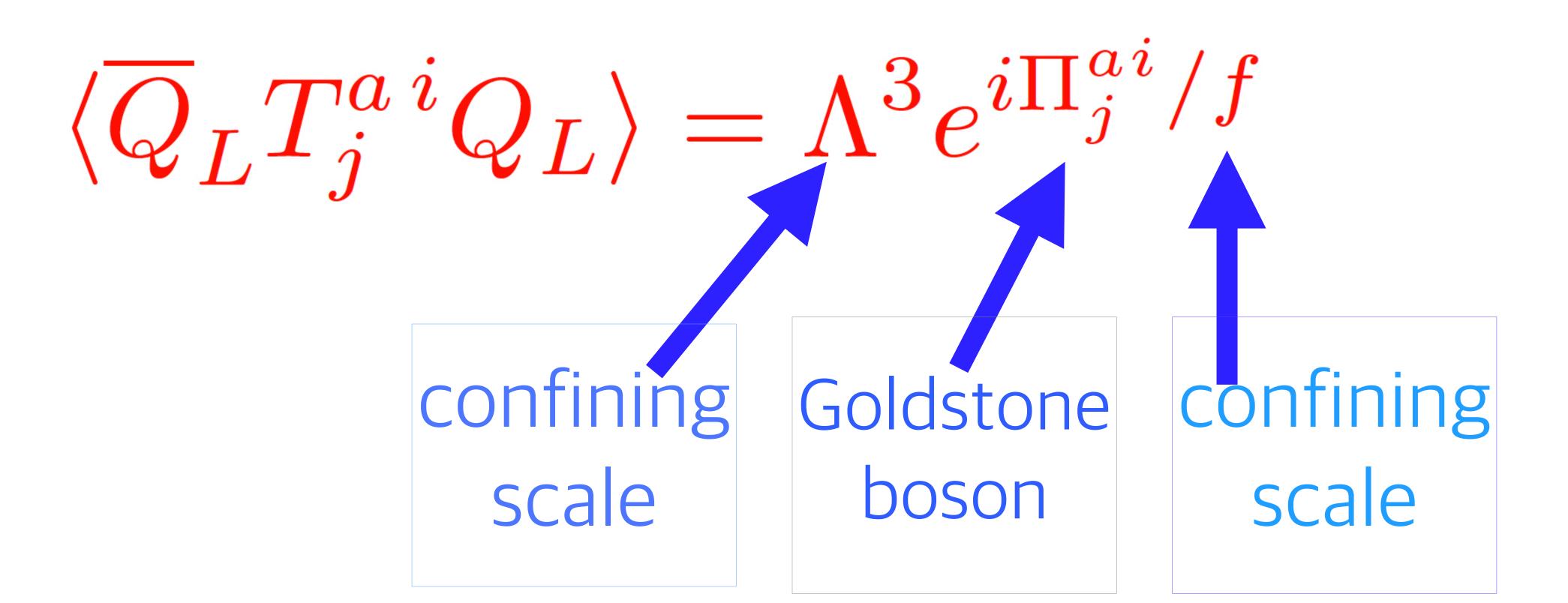


FIG. 5: A summary of the axion scale  $f_a/N_{\rm DW}$  versus axion mass from gravitational probes [18]. The shaded regions are excluded by the existing constraints, while the dashed lines show the sensitivities of future experiments.  $f_a/N_{\rm DW}$  is identified as the field VEV  $\langle a \rangle$  for ALP DM or DE.

Another parameter to mention is the confining force for SUSY breaking around

$$\Lambda = 1013 \text{ GeV}$$

#### Quark condensates from confining force



#### Mesons from light quarks in QCD

#### pi/K mesons and eta'

Octet +singlet

f=250 MeV

#### New Confining Force Example

H. P. Nilles, Phys. Lett. B115, 193 (1982):

Dynamically Broken Supergravity and the Hierarchy Problem

S. Ferrara, L. Girardello, H. P. Nilles, Phys. Lett. B125, 457 (1982):

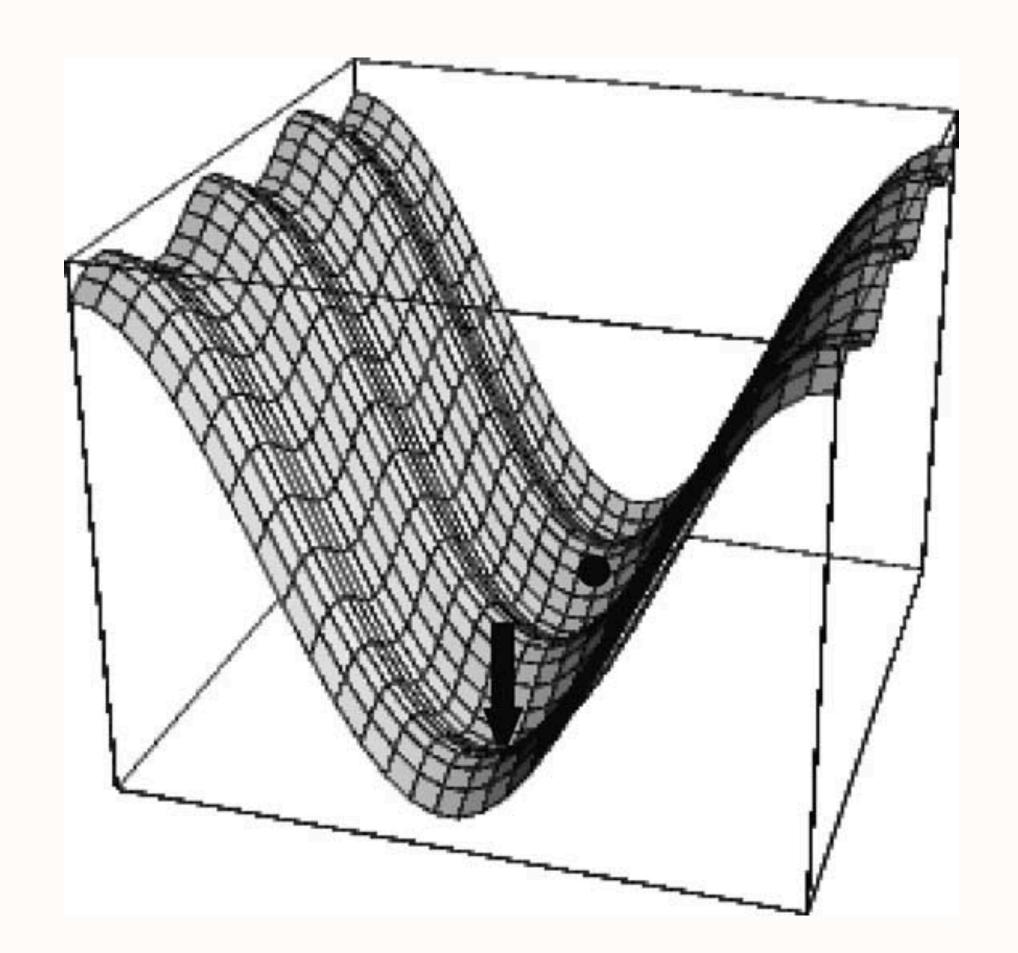
Breakdown of Local Supersymmetry Through Gauge Fermion Condensates

$$m_{3/2} = mu^3 / M^2 = TeV$$
 $\Lambda = 1013 GeV$ 

#### Quintessential axion as a pseudoscalar

First introduced in, JEK+Nilles, PLB 553, 1 (2003):

A quintessential axion



$$\lambda_h^4 \equiv m_Q^n m_{\widetilde{G}}^N \Lambda_h^{4-n-N}, \tag{4}$$

where  $\Lambda_h \simeq 10^{13}$  GeV is the hidden sector scale and  $m_{\widetilde{G}}$  is the hidden sector gaugino mass.

Let us now discuss some illustrative examples for the conditions between  $m_Q$ , n and N needed to account for the  $(0.003 \text{ eV})^4$  dark energy, assuming  $m_{\widetilde{G}} \simeq 1 \text{ TeV}$ ,

$$\left(\frac{m\varrho}{\Lambda_h}\right)^n \sim \begin{cases} 10^{-68}, & \text{for } SU(3)_h, \\ 10^{-58}, & \text{for } SU(4)_h, \\ 10^{-48}, & \text{for } SU(5)_h. \end{cases}$$
 (5)

For N=4, we obtain  $m_Q \simeq 10^{-45}$  GeV,  $10^{-16}$  GeV, and  $10^{-7}$  GeV, respectively, for n=1,2, and 3.

- M. Bronstein, Phys. Z. Sowjetunion 3 (1933) 73;
- M. Özer, M.O. Taha, Nucl. Phys. B 287 (1987) 797;
- B. Ratra, P.J.E. Peebles, Phys. Rev. D 37 (1988) 3406;
- C. Wetterich, Nucl. Phys. B 302 (1988) 645;
- H. Gies, C. Wetterich, hep-ph/0205226;
- J.A. Frieman, C.T. Hill, R. Watkins, Phys. Rev. D 46 (1992) 1226;
- R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582;
- P. Binetruy Phys. Rev. D 60 (1999) 063502:
- C. Kolda, D.H. Lyth, Phys. Lett. B 458 (1999) 197;
- T. Chiba, Phys. Rev. D 60 (1999) 083508;
- P. Brax, J. Martin, Phys. Lett. B 468 (1999) 40;
- A. Masiero, M. Pietroni, F. Rosati, Phys. Rev. D 61 (2000) 023504;
- M.C. Bento, O. Bertolami, Gen. Relativ. Gravit. 31 (1999) 1461;
- F. Perrotta, C. Baccigalupi, S. Matarrase, Phys. Rev. D 61 (2000) 023507;
- A. Arbey, J. Lesgourgues, P. Salati, Phys. Rev. D 65 (2002) 083514.

Not by ex-quark mass, but by the scale itself. Then, we have another reason for introducing a new confining source. Mesons have the adjoint representation of  $SU(N)_{\Delta}$ 

$$SU(N)_A \subset SU(N) \times SU(N)$$

Condensate is parametrized by and f,

$$\langle \overline{Q}_L T_j^{ai} Q_L \rangle = \Lambda^3 e^{i \Pi_j^{ai} / f}$$

| υ <u></u>        | Representation under $\mathcal{G} \equiv SU(\mathcal{N})$ | $\mathrm{SU}(N)_L$      | $\mathbf{Z}_{12}$ |
|------------------|-----------------------------------------------------------|-------------------------|-------------------|
| $\overline{Q_L}$ | $\mathcal{N}$                                             | N                       | +1                |
| $\overline{Q}_L$ | $\overline{\mathcal{N}}$                                  | $\overline{\mathbf{N}}$ | +1                |
| $\sigma$         | 1                                                         | 1                       | +7                |

$$\frac{1}{M^9} \overline{Q}_L \mathcal{C}^{-1} Q_L \sigma^{10},$$

$$\Lambda \simeq 2.9 \times 10^6 \, \mathrm{GeV}$$

### With SUSY

$$\Delta W = \frac{1}{M^{n+3}} \overline{Q}_L Q_L \left( H_u H_d \right)^2 \sigma^n.$$

Then, condensation of the hidden sector quark Q leads to the following VEVs from Eq. (7),

$$\frac{1}{M^{n+3}} \Lambda^3 (v_u v_d)^2 V^n = \frac{1}{M^{n+3}} \Lambda^3 \frac{v_d^4}{\cos \beta^4} V^n \simeq (0.003 \,\text{eV})^4$$

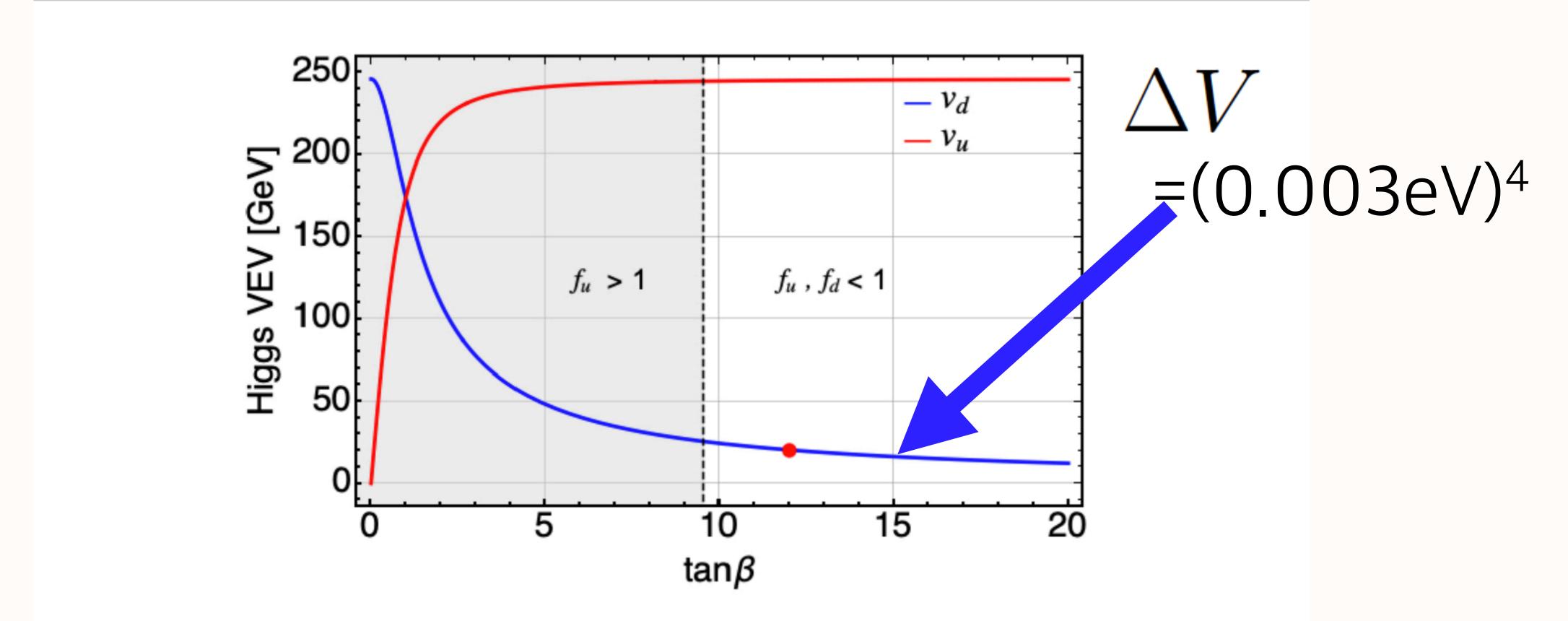


FIG. 1: Potential generated by Yukawa terms breaking  $U(1)_{DE}$ . At the intersection of the blue curve and the  $f_u = 1$  line,  $v_d$  is 25.6 GeV.

## Model

|                  | Representation under $\mathcal{G} \equiv SU(\mathcal{N})$ | $SU(2)_W \times U(1)_Y$ | $\mathbf{Z}_{6R}$ |
|------------------|-----------------------------------------------------------|-------------------------|-------------------|
| $\overline{Q_L}$ | $\mathcal{N}$                                             | 1                       | +1                |
| $\overline{Q}_L$ | $\overline{\mathcal{N}}$                                  | 1                       | -1                |
| $H_u$            | 1                                                         | $2_{+1/2}$              | +3                |
| $H_d$            | 1                                                         | $2_{-1/2}$              | +2                |
| $\sigma$         | 1                                                         | 1                       | +4                |
| S                | 1                                                         | 1                       | +5                |

TABLE II:  $\mathbf{Z}_{6R}$  quantum numbers of relevant chiral superfileds appearing:

# Here, we write W terms having U(1)<sub>R</sub> quantum number 2 modulo 6. SUSY conditions are

$$W = -\alpha \sigma S^2 + \frac{\varepsilon}{M} S^4 - \frac{x}{M^2} \sigma S^2 Q_L \overline{Q}_L + \cdots$$

$$\frac{\partial W}{\partial \sigma} : \to Q_L \overline{Q}_L = -\frac{\alpha M^2}{x}$$

$$\frac{\partial W}{\partial S} : \to (x \frac{Q_L \overline{Q}_L}{M^2} + \alpha) \sigma = \frac{2\varepsilon}{M} S^2.$$

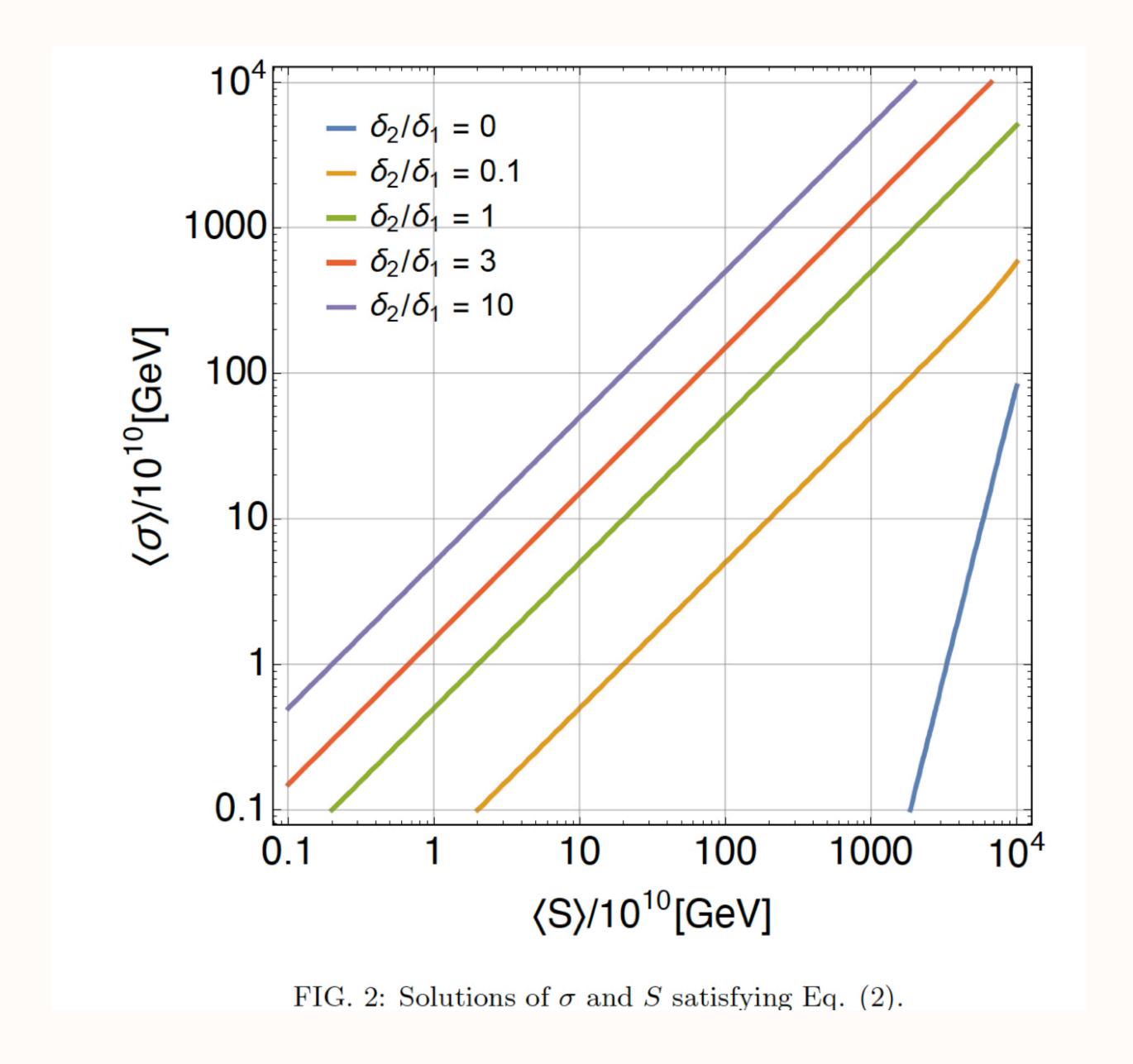
#### No acceptable solution.

# So we add SUSY breaking effects parametrized by deltas. Then minima occur at

$$-\alpha S^{2} - \frac{x}{M^{2}} S^{2} Q_{L} \overline{Q}_{L} + \delta_{1} \Lambda^{2} = 0,$$

$$-\alpha S \sigma - \frac{x}{M^{2}} S Q_{L} \overline{Q}_{L} \sigma + \delta_{1} \Lambda^{2} \sigma / S = 0,$$

$$2\alpha \sigma S^{2} + 2 \frac{\varepsilon}{M} S^{4} + (\frac{\delta_{2} S - 2\delta_{1} \sigma}{2}) \Lambda^{2} = 0.$$



But f is near the Planck scale. Not at the confining scale.

In SUSY, condensation of scalar exquarks do not break SUSY. This scale can be nearer to the Planck scale.

$$\overline{Q}_L Q_L \equiv X.$$

Nonzero X does not break supersymmetry. If we consider a potential in terms of X,

$$W = \Lambda X - \frac{1}{2M_{\rm P}} X^2 + \cdots.$$

$$V = \left(\Lambda - \frac{1}{M_{\rm P}}X\right)^2 + \cdots.$$

So,  $f = \sqrt{X}$  is expected at a median of  $\Lambda$  and  $M_{\rm P}$ .

 $X = M_{D} \Lambda$ 

X=0

Above Planck scale

# For SUSY breaking effects to the SM superpartners, we need the mu term

$$W_{\mu} = \frac{(10^{10} \text{ GeV})^2}{M} H_u H_d$$

J. E. Kim and H. P. Nilles, The problem and the strong CP problem, Phys. Lett.B 138 (1984) 150 [doi:10.1016/0370-2693(84)91890-2].

But, there should be no HuHd and HuHdS terms.

$$W_{\mu} = \frac{\sigma S}{M} H_u H_d$$

With <sigma> and <S> VEVs around 10<sup>10</sup> GeV, we have a needed mu term.

#### Conclusion

I reviewed a new theory on the quintessential axion.

Thanks for attention