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PART 1

% Introductory Remarks %




The background

String compactifications are characterised by moduli fields

Viable phenomenological models must be free of massless moduli

In the traditional approach, a key role is played by the RR and
NS background (geometric) fluxes given in terms of the field
strengths

F3 =dC5, H3 = dB>

They give rise to the Gukov-Vafa-Witten (GVW) superpotential

At least some of the complex structure (CS) moduli and the
axio-dilaton S = Cy + ie~? are stabilised by SUSY conditions.




A However, in contrast to CS and S moduli, Kahler moduli

stabilisation is more involved, due to their no-scale property.

A lot of work has been devoted towards a solution:

combining background fluxes with perturbative and/or

nonperturbative corrections to fix all closed string moduli.

A Origin of corrections:

e Non-perturbative terms in W arising from D3-brane instantons
on D7-branes (for refs see review 2303.04819 )

e Perturbative corrections come from KK-states propagating
between D7 branes and localised EH terms emerging from 10-d
action (Antoniadis et al 1803.08941 ... GKL and P. Shukla
2303.16689 ).

A A In most CY manifolds, however, CS moduli come in large
numbers and geometric fluxes do not suffice to stabilise all of them.




However, geometric fluxes is only a small part of a broader flux
landscape.

A As a matter of fact, there is no compelling reason that one
should restrict only in flux compactifications with geometric
interpretations.

A The time might be ripe we try something new.

Indeed:
Using 1" duality * while focusing here only on a background of

NS-NS flux P one can go beyond the above picture and bring into

the scene non-geometric fluxes

aT-duality relates winding modes in compact space with momentum modes in
its dual space through R — 1/R (R = compactification radius).

bSources of non-geometric flures abound; here we only consider a restricted
set of specific non-geometric flux compactifications.




Anatomy of non-geometric Fluxes

( associated with NS-NS background)




T-dualities

e Prelude

If we start with IIB compactified on C'Y3 = A without NS flux
H = dBs,

a dual theory in type IIA can be constructed, which is described in
a mirror CY-manifold X

If we add NS-NS flux H = dB>

Now, (as we will demostrate) T-duality, maps H non-trivially to a

deformation of the T-dual metric.

Because mirror symmetry is a generalisation of T-duality,

mirror geometry is no-longer a CY space




Indeed,

let z,y, z parametrise a 3-torus:
ds® = dx? + dy* + dz°
with the identifications

r—x+1l,y—y+1l,z—=>2+1

Choose B field with the only non-zero component:

Byy =Nz

Integrating (setting (2m)%a’ =1

)
/ngN

Thus, we turn on N units of NS flux



T-dualising along the x direction, the metric takes the form

ds® = (dx — Nzdy)? + dy* + dz* (1)

This new space is called:

Twisted Torus

It is topologically distinct from the ordinary torus.

The first term in particular remains intact under the shifts
r—2' =x+ Ny, 2 =2 =2+1
and thus we have the identifications

(z,y,2) =2 (v +1,y,2) = (x,y+ 1,2) = (2 + Ny,y, 2+ 1)




Description through the Heisenberg Group #:

H is a simply connected 2-step nilpotent group
l - R—-H—>R* =1

Matrices relevant to our discussion have the particular structure

Ly -F
0

(where N is associated with units of flux)




The product of two such matrices defines Translations
hn = h(x,y,—2/N), gy = h(a,b,—c/N):

1 bty —L+br— % —
/

1
hn-gn=1] 0 1 a—+x 0 1 =x
0O O

0 0 1 1

They imply the identifications (similar to twisted torus)

¥ =rda,y Z2y+b 22z~ Nbx+c

Translations defined through A are non-commutative

hn-9gn # gn - hn




The importance of the latter approach is that a specific group
structure is revealed.

VN > 0 and ¢, m,n integers, we define the matrices

1 ¢ n/N
I'ny = 0 1 m
0 O 1

Now, I'; defines the discrete subgroup of H consisting of all the
integral matrices and I'y is the lattice containing I'y. It holds

H\(H/TN;Z) = 72 © Ty




The General Case

To generalise the above case let’s introduce the notation:
ds® = (dx — w;“ﬁzzdy)2 + dy? + dz*

We compactify this space by identifying z =Zx+ 1,y =y + 1,

However the identification z = 2z + 1 will induce an extra term

(dz —w;. (2 + 1)dy)* — (dx — w, zdy —  w,_dy )2
N——

extraterm

As explained, we must compactify through the chain
(z,y,2) =2 (v +1,y,2) = (v,y +1,2) = (v +w,.y,y,2 + 1)

In this way a well-defined metric is achieved globally.

Space is now 7% along x,y and a fibered one over an S! in z.




Important insight can be provided through the definition of the
following 1-forms

dx — wszdy
dy
dz

Observe now that dnY = dn® = 0, while

dn" =w,,dyNdz=w, . n’ A\n~ #0

In a straightforward generalisation

dzt = wfjda:j A da®

where wfj play the role of structure constants of a Lie group
associated with the isometries of the torus (Z; ; x — generators)

Zi, Z;] = wi; Z,




% T-dualities along all three directions %

Assuming T-duality along x has been performed as above, we
T-dualise in the y direction ( metric is independent of y).

Locally we end up with a ‘geometric torus’, however, globally it
cannot be described by a fixed geometry (see eg hep-th/0508133).

In general for compactifications on T° ~ T? x T% x T3, under
three successive T-dualities, the three-form flux Hs; = d B> implies

the following ‘geometric’ and non-geometric fluxes:

T Th T
Hypp 2 w25 QU Ly R (4)

\ . 7

geometric non—geometric

Furthermore, (as we will see) S-duality invariance of the type I1B
superstring compactification requires the inclusion of additional

fluxes, which are S-dual to the (non)-geometric fluxes
(see eg, Font et al, hep-th/0602089, Gao & Shukla 1501.07248)




PART 11

% Generalised Fluxes and the Superpotential %




* Framework x
Type IIB compactification on T°/(Zy x Z3) orbifold with
Compexified coordinates

=t +U2?, 2% = 22 + Usa?, 22 = 2° 4 Uga®

and Zso actions:

Orientifold action:

O =Q,I(—)t,

I : (21, 2%,23) — (=2t —22, —23)




Some Definitions
We introduce the prepotantial F in terms of projective coordinates
and the symplectic period vectors (X, F) we also define:
xtx2xs

— —7rlyr2773
F=""pg—=UUU

Qg — XKozK — FKﬁK, (F@ — UjUk, . )

1
S:C’o+ie_¢500+is, s = —
Js

J =1, = thdx! Nda® + - --

j:C4—%JAJ




S-duality
All pairs of fluxes transform under SL(2, Z) according to:

A
B

,a,b,c,d e Z, ad —bc=1

In particular, the following SL(2,7Z) transformations
S—S+1,S— —1/S
interchange the fluxes according to:

F—-H, H—F

and for S = Cy +ie ? = Cy +1is, (s =1/g,):




% The scalar potential V with F', and H fluxes %




To appreciate the impact of the non-geometric fluxes on the final
theory, let’s recall again the well known Gukov-Vafa-Witten

superpotential

Wris :/(FS—SHS)/\Qs

The only invariant components of the F's and H3 fluxes surviving

under the orientifold action are,

Hs:  Hiss, Hige, Hoze, Hoys, Hoss, Hoss, Hi4s, Hisg ,

Fs:  Fiss, Fia6, Fose, Fouas, Fosg, Foss, Flras, Flisg .




% The Scalar Potential
In the absence of odd-moduli G, the Kahler metric acquires a
block diagonal form corresponding to each of the S, U* and T,
classes of moduli.
The resulting scalar potential V', derived from the formula:

e KV = KAB(D,W)(DgW) —3|W|?

is expressed in terms of the components of F's, H3, and contains
361 distinct terms.

However, defining the following “Axionic” fluxes:

Fijk = Fijr — Co Hyjr, ;e = Hijk,

V' can be grouped into three types only with 160 terms:

V=Vi+Vy+V5




T Ty g gl R
| ijkLirg'kr g g7 g ,

(s*) Hije Hirjrwr g 77 g** ]

1 .
Q Hijk gzgklmn Flmn)] .

Y

g*“ are elements of the torus metric, and £YFmn = kimn /y)

The origin of V' is attributed to the kinetic pieces of IIB action
which also includes a Chern-Simons (CS) term:

1

S B /dlow V=g (»C]F]F + »CHH) + Scs

Scs = —/d10x0<4> ANEFNH




Implementation of T- and S-dualities

The most generic (tree-level) flux induced superpotential will be
derived in a series of iterative steps by the T/S dual completions

To start with we first present the IIB/ ITA duality disctionary for
the Moduli fields. The first line of the table shows type 1B
axio-dilaton S, odd G, T,, Kéhler, and U; (CS) moduli. Their

T-dual ITA moduli appear in the second line.

B | S | G| T, | U
ITA N T

Orientifold actions imply:

ot =0, K2t =0




The superpotential with non-geometric fluxes

Using type T-duality the IIB superpotential coming from
ITA (hep-th/0602089) takes the form:

WHBZ/[f—Sf{-FQaTa ARIZY (7)
X v

3
3

Due to the T-dual emerging term QQ“ 1, the underlying S-duality
of the type 1IB supergravity is no longer a symmetry of the

effective scalar potential

S-duality is preserved if the superpotential Wi is completed with

a new flux P¢%;
Q*T, — (Q% — SPY)T,




Incorporating the new term Wrg takes the form:

WHB:/[F—SH+(QO‘—SPO‘)TQ A 3,
X ~——]3

new term

Observations:

The inclusion of Q<, P* fluxes introduces Kahler 1, in Wrg.

The new term ST, in Wy, implies a term e Wria

Applying successively T-dualities between [/ A <> IIB and
implementing S duality completions, we end up with new 7T, terms,

x Ty1s,& o< T, T5T,

which require two new sets of fluxes

(Q/,Pl) & (H/,F/)




These non-geometric contributions generate a
huge number of terms in the scalar potential V.
A way to handle them and provide a compact form for V is to
write it in terms of axionic flux combinations
( as we have already done for GWV case).

The superpotential can be written schematically as follows:

Wi = /X[(F—SH)+(Q—SP)>J+

+ (P =SQ)oTJ*+(H —SFYOT*| AQs, (9)

P, Q"): their indices have non-geometric structure similar to Q7"
: g i

(H', F"): indices have non-geometric structure similar to R“/*




The induced scalar potential V' can be written in terms of S-dual
pairs and S-self dual terms as follows

V = YFF‘FVHH—E—I-VQQ—I-VPP—F"'

S—dual pair S—dual pair

+ Vrm + Vop + Vo + Virr (10)

S—self dual terms

We demonstrate its S-duality property by examining the terms

1
Vier + Vg x . Wik Firjrr + s Hijp Hyr g

1
S S

\

S—dual terms self S—dual term




Here is the list-plot of the number of V' terms vs the number of
standard flures {F,H,Q,P,P" Q" ,H' , F'}
B V-terms
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...1t’s a huge number of terms, however, V simplifies dramatically if

it 18 expressed in terms of axionic fluxes




The axionic flux structure can be appreciated by observing:

Standard fluxes # V-terms | Axionic fluxes # V-terms
F 76 [F 76
F. H 361 F, H 160
F.HQ 924992 F,H,Q 772
F.H Q,P 9661 F . H,Q,P 2356

F.HQ,P,P 23314 F,H,Q,P,P 4855
F.HQ,P 50185 F,H,Q, P, 8326
P/ Q/ ]P)/ Ql
F.HOQ,P, 60750 F,H,Q, P, 9603
P’ Q/ H' 124 Q/ =
F.HOQ,P, 76276 F,H,Q,P, 10888
P/ Q/ H/ F/ ]P)/ Q/ H/ ]F/




The investigation of V' in its full generality is a tremendous task.

Here is the plot of a ‘naive’ case obtained by ‘random’ flux choices

A minimum of V.g for a simple isotropic case, where all U;, T;

moduli are assumed to be the same: U, = U, T; =T.




v Conclusions %




A Fundamental string dualities have been used to construct a

genaralised superpotential W;rp of type IIB string theory on
T®/(Zo x Zs) orientifold.

A Completion arguments of S/T dualities between IIB-ITA
superpotentials required the incorporation of four sets of 3-form
fluxes resulting to W;yrp with 128 terms

A Computations give a huge 4-d scalar potential which is greatly

simplified when expressed in terms of “Axionic Fluxes”

A Generalised constraints from Bianchi Identities and Tadpole

conditions eliminate a considerable amount of terms.

A The higher dimensional origin of such terms is an open issue
which should be addressed.
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* T hank You %
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* APPENDIX %



Definitions of bases:

®0,1,2,3 — det Adx® Adx®, dx? Adxd A dx®, det A dzt A da?, - -

Bo123 — det Adxd Ada®, dxt Adxt A dx®, dat Ada? A daS, -

Yl

123 — drt Adx?, do’ A dxt, dz® A da®

~

,u1’2’3 — da> Adz* A dx® A d:U6, e




In a general (geometric) setup, Wyrp can be expressed in terms of

generalised axionic fluxes IF, H, ... where the various “products”

involved are as follows:

3 b

(ij>a1a2a3 5@@

1 bibobsb
/ 2 /1C,01020304
(P °J ) — P ‘7[21Q2|Cbl| j@g]bzb3b4 )

a1a20a3 4

ba
) *792 aslbibas

1 b1bobabybsb
/ 3 1€C1€C2C3,010203040506
(H © j )a1a2a3 192 H ‘7[Q1Q2|0102|

X j@3]03b152 *753545556 3

1 1

Hy = Ha + pa POA+ 5pa pp Q" n — & Pa g py F1O0




