On non-geometric fluxes in IIB-theory (and the induced W \& $V_{\text {eff }}$ of moduli fields)
\mathcal{G} eorge \mathcal{K}. Leontaris

University of Ioannina
$I \omega \alpha \nu \nu \iota \nu \alpha$
$\mathcal{G R E E C E}$

Based on hep-th/2308.15529
in collaboration with Pramod Shukla (Bose Inst., Kolkata)

Outline of the Talk

© Introductory remarks
© Anatomy of non-geometric fluxes
© Generalised Fluxes and the moduli Superpotential
© Axionic fluxes and the Scalar Potential
© Future Perspectives and Concluding Remarks

PART I
\star Introductory Remarks \star

The background

Δ String compactifications are characterised by moduli fields

- Viable phenomenological models must be free of massless moduli
Δ In the traditional approach, a key role is played by the RR and NS background (geometric) fluxes given in terms of the field strengths

$$
F_{3}=d C_{2}, H_{3}=d B_{2}
$$

\triangle They give rise to the Gukov-Vafa-Witten (GVW) superpotential

$$
W \sim \int(\underbrace{F_{3}-S H_{3}}_{\mathbf{G}_{3}}) \wedge \Omega_{3}
$$

\triangle At least some of the complex structure (CS) moduli and the axio-dilaton $S=C_{0}+i e^{-\phi}$ are stabilised by SUSY conditions.
© However, in contrast to CS and S moduli, Kähler moduli stabilisation is more involved, due to their no-scale property.
Δ A lot of work has been devoted towards a solution: combining background fluxes with perturbative and/or nonperturbative corrections to fix all closed string moduli.
© Origin of corrections:

- Non-perturbative terms in W arising from D3-brane instantons on D7-branes (for refs see review 2303.04819)
- Perturbative corrections come from KK-states propagating between D7 branes and localised EH terms emerging from 10-d action (Antoniadis et al 1803.08941 ... GKL and P. Shukla 2303.16689).
$\boldsymbol{\Delta}$ In most CY manifolds, however, CS moduli come in large numbers and geometric fluxes do not suffice to stabilise all of them.
Δ However, geometric fluxes is only a small part of a broader flux landscape.
Δ As a matter of fact, there is no compelling reason that one should restrict only in flux compactifications with geometric interpretations.
© The time might be ripe we try something new.

Indeed:

Δ Using T duality ${ }^{\text {a }}$ while focusing here only on a background of NS-NS flux ${ }^{\mathrm{b}}$ one can go beyond the above picture and bring into the scene non-geometric fluxes

[^0]
Anatomy of non-geometric Fluxes

(associated with NS-NS background)

T-dualities

- Prelude
Δ If we start with IIB compactified on $C Y_{3}=\mathcal{X}$ without NS flux

$$
H=d B_{2}
$$

a dual theory in type IIA can be constructed, which is described in a mirror CY-manifold $\tilde{\mathcal{X}}$.
$\Delta \underline{\text { If we add NS-NS flux } H=d B_{2} \Delta}$
Now, (as we will demostrate) T-duality, maps H non-trivially to a deformation of the T-dual metric.

Because mirror symmetry is a generalisation of T-duality, mirror geometry is no-longer a CY space

Indeed,
let x, y, z parametrise a 3 -torus:

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}
$$

with the identifications

$$
x \rightarrow x+1, y \rightarrow y+1, z \rightarrow z+1
$$

Choose B field with the only non-zero component:

$$
B_{x y}=N z
$$

Integrating $\left(\operatorname{setting}(2 \pi)^{2} \alpha^{\prime}=1\right)$

$$
\int H_{3}=N
$$

Thus, we turn on N units of NS flux

T-dualising along the x direction, the metric takes the form

$$
\begin{equation*}
d s^{2}=(d x-N z d y)^{2}+d y^{2}+d z^{2} \tag{1}
\end{equation*}
$$

This new space is called:

Twisted Torus

It is topologically distinct from the ordinary torus.
The first term in particular remains intact under the shifts

$$
x \rightarrow x^{\prime}=x+N y, z \rightarrow z^{\prime}=z+1
$$

and thus we have the identifications

$$
(x, y, z) \cong(x+1, y, z) \cong(x, y+1, z) \cong(x+N y, y, z+1)
$$

Description through the Heisenberg Group \mathcal{H} :

$$
h(x, y, z)=\left(\begin{array}{ccc}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) \in \mathcal{H}
$$

\mathcal{H} is a simply connected 2 -step nilpotent group

$$
1 \rightarrow \mathbb{R} \rightarrow \mathcal{H} \rightarrow \mathbb{R}^{2} \rightarrow 1
$$

Matrices relevant to our discussion have the particular structure

$$
h_{N} \equiv h(x, y,-z / N)=\left(\begin{array}{ccc}
1 & y & -\frac{z}{N} \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)
$$

(where N is associated with units of flux)

The product of two such matrices defines Translations

$$
\begin{gathered}
h_{N}=h(x, y,-z / N), g_{N}=h(a, b,-c / N): \\
h_{N} \cdot g_{N}=\left(\begin{array}{ccc}
1 & b+y & -\frac{c}{N}+b x-\frac{z}{N} \\
0 & 1 & a+x \\
0 & 0 & 1
\end{array}\right) \cong\left(\begin{array}{ccc}
1 & y^{\prime} & -\frac{z^{\prime}}{N} \\
0 & 1 & x^{\prime} \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

They imply the identifications (similar to twisted torus)

$$
x^{\prime} \cong x+a, y^{\prime} \cong y+b, z^{\prime} \cong z-N b x+c
$$

Translations defined through \mathcal{H} are non-commutative

$$
h_{N} \cdot g_{N} \neq g_{N} \cdot h_{N}
$$

The importance of the latter approach is that a specific group structure is revealed. $\forall N>0$ and ℓ, m, n integers, we define the matrices

$$
\Gamma_{N}=\left(\begin{array}{ccc}
1 & \ell & n / N \\
0 & 1 & m \\
0 & 0 & 1
\end{array}\right)
$$

Now, Γ_{1} defines the discrete subgroup of \mathcal{H} consisting of all the integral matrices and Γ_{N} is the lattice containing Γ_{1}. It holds

$$
H_{1}\left(\mathcal{H} / \Gamma_{N} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}^{2} \oplus \mathbb{Z}_{N}
$$

The General Case

To generalise the above case let's introduce the notation:

$$
\begin{equation*}
d s^{2}=\left(d x-\omega_{y z}^{x} z d y\right)^{2}+d y^{2}+d z^{2} \tag{2}
\end{equation*}
$$

We compactify this space by identifying $x \cong x+1, y \cong y+1$, However the identification $z \cong z+1$ will induce an extra term

$$
\begin{equation*}
\left(d x-\omega_{y z}^{x}(z+1) d y\right)^{2} \rightarrow(d x-\omega_{y z}^{x} z d y-\underbrace{\omega_{y z}^{x} d y}_{\text {extra term }})^{2} \tag{3}
\end{equation*}
$$

As explained, we must compactify through the chain

$$
(x, y, z) \cong(x+1, y, z) \cong(x, y+1, z) \cong\left(x+\omega_{y z}^{x} y, y, z+1\right)
$$

In this way a well-defined metric is achieved globally.
Space is now T^{2} along x, y and a fibered one over an S^{1} in z.

Important insight can be provided through the definition of the following 1-forms

$$
\begin{aligned}
\eta^{x} & =d x-\omega_{i j}^{k} z d y \\
\eta^{y} & =d y \\
\eta^{z} & =d z
\end{aligned}
$$

Observe now that $d \eta^{y}=d \eta^{z}=0$, while

$$
d \eta^{x}=\omega_{y z}^{x} d y \wedge d z \equiv \omega_{y z}^{x} \eta^{y} \wedge \eta^{z} \neq 0
$$

In a straightforward generalisation

$$
d x^{k}=\omega_{i j}^{k} d x^{j} \wedge d x^{k}
$$

where $\omega_{i j}^{k}$ play the role of structure constants of a Lie group associated with the isometries of the torus $\left(Z_{i, j, k} \rightarrow\right.$ generators $)$

$$
\left[Z_{i}, Z_{j}\right]=\omega_{i j}^{k} Z_{k}
$$

\star T-dualities along all three directions \star

Δ Assuming T-duality along x has been performed as above, we T-dualise in the y direction (metric is independent of y).
Δ Locally we end up with a 'geometric torus', however, globally it cannot be described by a fixed geometry (see eg hep-th/0508133).
Δ In general for compactifications on $T^{6} \sim T_{1}^{2} \times T_{2}^{2} \times T_{3}^{3}$, under three successive T-dualities, the three-form flux $H_{3}=d B_{2}$ implies the following 'geometric' and non-geometric fluxes:

$$
\begin{equation*}
\underbrace{H_{m n p} \xrightarrow{T_{m}} \omega_{n p}^{m}}_{\text {geometric }} \xrightarrow{T_{n}} \underbrace{Q_{p}^{m n} \xrightarrow{T_{p}} R^{m n p}}_{\text {non-geometric }} . \tag{4}
\end{equation*}
$$

Furthermore, (as we will see) S-duality invariance of the type IIB superstring compactification requires the inclusion of additional fluxes, which are S-dual to the (non)-geometric fluxes (see eg, Font et al, hep-th/0602089, Gao \& Shukla 1501.07248)

PART II

\star Generalised Fluxes and the Superpotential \star
\star Framework \star
Type IIB compactification on $\mathbb{T}^{6} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ orbifold with Compexified coordinates

$$
\begin{gather*}
z^{1}=x^{1}+U_{1} x^{2}, z^{2}=x^{3}+U_{2} x^{4}, z^{3}=x^{5}+U_{3} x^{6} \\
\text { and } \mathbb{Z}_{2} \text { actions: } \\
\theta:\left(z^{1}, z^{2}, z^{3}\right) \rightarrow\left(-z^{1},-z^{2}, z^{3}\right) \tag{5}\\
\bar{\theta} \quad: \quad\left(z^{1}, z^{2}, z^{3}\right) \rightarrow\left(z^{1},-z^{2},-z^{3}\right) \tag{6}
\end{gather*}
$$

Orientifold action:
$\mathcal{O}=\Omega_{p} I_{6}(-)^{F_{L}}$,
$I_{6}:\left(z^{1}, z^{2}, z^{3}\right) \rightarrow\left(-z^{1},-z^{2},-z^{3}\right)$

Some Definitions

We introduce the prepotantial \mathcal{F} in terms of projective coordinates and the symplectic period vectors $\left(\mathcal{X}^{K}, \mathcal{F}_{K}\right)$ we also define:

$$
\begin{aligned}
\mathcal{F} & =\frac{\mathcal{X}^{1} \mathcal{X}^{2} \mathcal{X}^{3}}{\mathcal{X}^{0}}=U^{1} U^{2} U^{3} \\
\Omega_{3} & =\mathcal{X}^{K} \alpha_{K}-\mathcal{F}_{K} \beta^{K},\left(\mathcal{F}_{i}=U_{j} U_{k}, \ldots\right) \\
S & =C_{0}+i e^{-\phi} \equiv C_{0}+i s, s=\frac{1}{g_{s}} \\
J & =t^{a} \mu_{a}=t^{1} d x^{1} \wedge d x^{2}+\cdots \\
\mathcal{J} & =C_{4}-\frac{i}{2} J \wedge J
\end{aligned}
$$

\triangle S-duality Δ

All pairs of fluxes transform under $S L(2, Z)$ according to:

$$
\binom{\mathcal{A}}{\mathcal{B}} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\mathcal{A}}{\mathcal{B}}, a, b, c, d \in \mathbb{Z}, a d-b c=1
$$

In particular, the following $S L(2, \mathbb{Z})$ transformations

$$
\mathrm{S} \rightarrow \mathrm{~S}+1, \mathrm{~S} \rightarrow-1 / \mathrm{S}
$$

interchange the fluxes according to:

$$
\begin{gathered}
F \rightarrow-H, H \rightarrow F \\
\text { and for } S=C_{0}+i e^{-\phi} \equiv C_{0}+i s,\left(s=1 / g_{s}\right) \\
C_{0} \rightarrow-\frac{C_{0}}{\left(C_{0}^{2}+s^{2}\right)}, s \rightarrow \frac{s}{\left(C_{0}^{2}+s^{2}\right)}, \frac{s}{C_{0}} \rightarrow-\frac{s}{C_{0}}
\end{gathered}
$$

\star The scalar potential V with F, and H fluxes \star

To appreciate the impact of the non-geometric fluxes on the final theory, let's recall again the well known Gukov-Vafa-Witten superpotential

$$
W_{I I B}=\int\left(F_{3}-S H_{3}\right) \wedge \Omega_{3}
$$

The only invariant components of the F_{3} and H_{3} fluxes surviving under the orientifold action are,

$$
\begin{array}{ll}
H_{3}: & H_{135}, H_{146}, H_{236}, H_{245}, H_{246}, H_{235}, H_{145}, H_{136}, \\
F_{3}: & F_{135}, F_{146}, F_{236}, F_{245}, F_{246}, F_{235}, F_{145}, F_{136} .
\end{array}
$$

\star The Scalar Potential *

In the absence of odd-moduli G^{a}, the Kähler metric acquires a block diagonal form corresponding to each of the S, U^{i} and T_{α} classes of moduli.
The resulting scalar potential V, derived from the formula:

$$
e^{-K} V=K^{\mathcal{A} \overline{\mathcal{B}}}\left(D_{\mathcal{A}} W\right)\left(\bar{D}_{\overline{\mathcal{B}}} \bar{W}\right)-3|W|^{2}
$$

is expressed in terms of the components of F_{3}, H_{3}, and contains 361 distinct terms.
However, defining the following "Axionic" fluxes:

$$
\mathbb{F}_{i j k}=F_{i j k}-C_{0} H_{i j k}, \quad \mathbb{H}_{i j k}=H_{i j k},
$$

V can be grouped into three types only with $\underline{160 \text { terms: }}$

$$
V=V_{1}+V_{2}+V_{3}
$$

$$
\begin{aligned}
& V_{1}=\frac{1}{4 s \mathcal{V}}\left[\frac{1}{3!} \mathbb{F}_{i j k} \mathbb{F}_{i^{\prime} j^{\prime} k^{\prime}} g^{i i^{\prime}} g^{j j^{\prime}} g^{k k^{\prime}}\right] \\
& V_{2}=\frac{1}{4 s \mathcal{V}}\left[\frac{1}{3!}\left(s^{2}\right) \mathbb{H}_{i j k} \mathbb{H}_{i^{\prime} j^{\prime} k^{\prime}} g^{i i^{\prime}} g^{j j^{\prime}} g^{k k^{\prime}}\right] \\
& V_{3}=\frac{1}{4 s \mathcal{V}}\left[(+2 s) \times\left(\frac{1}{3!} \times \frac{1}{3!} \mathbb{H}_{i j k} \mathcal{E}^{i j k l m n} \mathbb{F}_{l m n}\right)\right] .
\end{aligned}
$$

$g^{i i^{\prime}}$ are elements of the torus metric, and $\mathcal{E}^{i j k l m n}=\epsilon^{i j k l m n} / \mathcal{V}$.
The origin of V is attributed to the kinetic pieces of IIB action which also includes a Chern-Simons (CS) term:

$$
\begin{gathered}
\mathcal{S} \equiv \frac{1}{2} \int d^{10} x \sqrt{-g}\left(\mathcal{L}_{\mathrm{FF}}+\mathcal{L}_{\mathcal{H H H}}\right)+S_{C S} \\
S_{C S}=-\int d^{10} x C^{(4)} \wedge F \wedge H
\end{gathered}
$$

Implementation of T- and S-dualities

The most generic (tree-level) flux induced superpotential will be derived in a series of iterative steps by the T / S dual completions

To start with we first present the IIB/ IIA duality disctionary for the Moduli fields. The first line of the table shows type IIB axio-dilaton S, odd G_{a}, T_{α} Kähler, and $U_{i}(\mathrm{CS})$ moduli. Their T-dual IIA moduli appear in the second line.

IIB	S	G^{a}	T_{α}	U^{i}	g_{s}
IIA	N^{0}	$\mathrm{~N}^{k}$	U_{λ}	T^{a}	z^{0}

Orientifold actions imply:

$$
h_{-}^{1,1}=0, h_{+}^{2,1}=0
$$

The superpotential with non-geometric fluxes

Using type T-duality the IIB superpotential coming from IIA (hep-th/0602089) takes the form:

$$
\begin{equation*}
\mathcal{W}_{\mathrm{IIB}}=\int_{X}[\underbrace{F-S H}_{G_{3}}+Q^{\alpha} T_{\alpha}]_{3} \wedge \Omega_{3}, \tag{7}
\end{equation*}
$$

Due to the T-dual emerging term $Q^{\alpha} T_{\alpha}$, the underlying S-duality of the type IIB supergravity is no longer a symmetry of the effective scalar potential

S-duality is preserved if the superpotential $\mathcal{W}_{\text {IIB }}$ is completed with a new flux P^{α} :

$$
Q^{\alpha} T_{\alpha} \longrightarrow\left(Q^{\alpha}-S P^{\alpha}\right) T_{\alpha}
$$

Incorporating the new term $\mathcal{W}_{\text {IIB }}$ takes the form:

$$
\begin{equation*}
\mathcal{W}_{\mathrm{IIB}}=\int_{X}[F-S H+(Q^{\alpha}-\underbrace{\left.S P^{\alpha}\right) T_{\alpha}}_{\text {new term }}]_{3} \wedge \Omega_{3} \tag{8}
\end{equation*}
$$

Observations:
Δ The inclusion of Q^{α}, P^{α} fluxes introduces Kähler T_{a} in $\mathcal{W}_{\text {IIB }}$.
Δ The new term $S T_{\alpha}$ in $\mathcal{W}_{\text {IIB }}$, implies a term $\mathbb{N}^{0} \mathbb{U}_{\lambda} \in \mathcal{W}_{\text {IIA }}$
\triangle Applying successively T-dualities between $I I A \leftrightarrow I I B$ and implementing S duality completions, we end up with new T_{α} terms,

$$
\propto T_{\alpha} T_{\beta}, \& \propto T_{\alpha} T_{\beta} T_{\gamma}
$$

which require two new sets of fluxes

$$
\left(Q^{\prime}, P^{\prime}\right) \&\left(H^{\prime}, F^{\prime}\right)
$$

These non-geometric contributions generate a huge number of terms in the scalar potential V.
A way to handle them and provide a compact form for V is to write it in terms of axionic flux combinations (as we have already done for GWV case). The superpotential can be written schematically as follows:

$$
\begin{align*}
W_{\mathrm{IIB}}^{\text {gen }}= & \int_{X_{3}}[(F-S H)+(Q-S P) \triangleright \mathcal{J}+ \\
& \left.+\left(P^{\prime}-S Q^{\prime}\right) \diamond \mathcal{J}^{2}+\left(H^{\prime}-S F^{\prime}\right) \odot \mathcal{J}^{3}\right] \wedge \Omega_{3}, \tag{9}
\end{align*}
$$

$\left(P^{\prime}, Q^{\prime}\right)$: their indices have non-geometric structure similar to $Q_{i}^{j k}$ $\left(H^{\prime}, F^{\prime}\right)$: indices have non-geometric structure similar to $R^{i j k}$

The induced scalar potential V can be written in terms of S-dual pairs and S-self dual terms as follows

$$
\begin{align*}
V & =\underbrace{V_{\mathbb{F F}}+V_{\mathbb{H} \mathbb{H}}}_{\text {S-dual pair }}+\underbrace{V_{\mathbb{Q} \mathbb{Q}}+V_{\mathbb{P P}}}_{\text {S-dual pair }}+\cdots \\
& +\underbrace{V_{\mathbb{F H}}+V_{\mathbb{Q P}}+V_{\mathbb{P}^{\prime} \mathbb{Q}^{\prime}}+V_{\mathbb{H}^{\prime} \mathbb{F}^{\prime}}}_{\text {S-self dual terms }} \tag{10}
\end{align*}
$$

We demonstrate its S-duality property by examining the terms

$$
\begin{aligned}
V_{\mathbb{F F}} & +V_{\mathbb{H} H} \propto \frac{1}{s} \mathbb{F}_{i j k} \mathbb{F}_{i^{\prime} j k^{\prime}}+s \mathbb{H}_{i j k} \mathbb{H}_{i^{\prime} j k^{\prime}} \\
& \propto \underbrace{\frac{1}{s} F_{i j k} F_{i^{\prime} j k^{\prime}}+\frac{s^{2}+C_{0}^{2}}{s} H_{i j k} H_{i^{\prime} j k^{\prime}}}_{\text {S-dual terms }}-2 \underbrace{\frac{C_{0}}{s} F_{i j k} H_{i^{\prime} j k^{\prime}}}_{\text {self S-dual term }},
\end{aligned}
$$

Here is the list-plot of the number of V terms vs the number of standard fluxes $\left\{F, H, Q, P, P^{\prime}, Q^{\prime}, H^{\prime}, F^{\prime}\right\}$

...it's a huge number of terms, however, V simplifies dramatically if it is expressed in terms of axionic fluxes

The axionic flux structure can be appreciated by observing:

	Standard fluxes	$\# V$-terms	Axionic fluxes	$\# V$-terms
1$)$	F	76	\mathbb{F}	76
$2)$	F, H	361	\mathbb{F}, \mathbb{H}	160
$3)$	F, H, Q	2422	$\mathbb{F}, \mathbb{H}, \mathbb{Q}$	772
$4)$	F, H, Q, P	9661	$\mathbb{F}, \mathbb{H}, \mathbb{Q}, \mathbb{P}$	2356
5)	F, H, Q, P, P^{\prime}	23314	$\mathbb{F}, \mathbb{H}, \mathbb{Q}, \mathbb{P}, \mathbb{P}^{\prime}$	4855
$6)$	F, H, Q, P	50185	$\mathbb{F}, \mathbb{H}, \mathbb{Q}, \mathbb{P}$,	8326
	P^{\prime}, Q^{\prime}		$\mathbb{P}, \mathbb{Q}{ }^{\prime}$	
7)	F, H, Q, P,	60750	$\mathbb{F}, \mathbb{H}, \mathbb{Q}, \mathbb{P}$,	9603
	$P^{\prime}, Q^{\prime}, H^{\prime}$		$\mathbb{P}^{\prime}, \mathbb{Q}, \mathbb{H}^{\prime}$	
8)	F, H, Q, P,	76276	$\mathbb{F}, \mathbb{H}, \mathbb{Q}, \mathbb{P}$,	10888
	$P^{\prime}, Q^{\prime}, H^{\prime}, F^{\prime}$		$\mathbb{P}^{\prime}, \mathbb{Q}, \mathbb{H} \mathbb{H}^{\prime}, \mathbb{F}^{\prime}$	

The investigation of V in its full generality is a tremendous task. Here is the plot of a 'naive' case obtained by 'random' flux choices

A minimum of $V_{\text {eff }}$ for a simple isotropic case, where all U_{i}, T_{i} moduli are assumed to be the same: $U_{i}=U, T_{i}=T$.
\star Conclusions \star
© Fundamental string dualities have been used to construct a genaralised superpotential $\mathcal{W}_{\text {IIB }}$ of type IIB string theory on $\mathbb{T}^{6} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ orientifold.
© Completion arguments of S / T dualities between IIB-IIA superpotentials required the incorporation of four sets of 3 -form fluxes resulting to $\mathcal{W}_{\text {IIB }}$ with $\underline{128 \text { terms }}$
© Computations give a huge 4-d scalar potential which is greatly simplified when expressed in terms of "Axionic Fluxes"
© Generalised constraints from Bianchi Identities and Tadpole conditions eliminate a considerable amount of terms.
© The higher dimensional origin of such terms is an open issue which should be addressed.
\star Thank You \star
$\star \mathcal{A P P E N D I X} \star$

Definitions of bases:

$$
\begin{aligned}
\alpha_{0,1,2,3} & \rightarrow d x^{1} \wedge d x^{3} \wedge d x^{5}, d x^{2} \wedge d x^{3} \wedge d x^{5}, d x^{1} \wedge d x^{4} \wedge d x^{5}, \cdots \\
\beta_{0,1,2,3} & \rightarrow d x^{1} \wedge d x^{3} \wedge d x^{5}, d x^{1} \wedge d x^{4} \wedge d x^{5}, d x^{1} \wedge d x^{3} \wedge d x^{6}, \cdots \\
\mu_{1,2,3} & \rightarrow d x^{1} \wedge d x^{2}, d x^{3} \wedge d x^{4}, d x^{5} \wedge d x^{6} \\
\tilde{\mu}^{1,2,3} & \rightarrow d x^{3} \wedge d x^{4} \wedge d x^{5} \wedge d x^{6}, \cdots
\end{aligned}
$$

In a general (geometric) setup, $\mathcal{W}_{I I B}$ can be expressed in terms of generalised axionic fluxes $\mathbb{F}, \mathbb{H}, \ldots$ where the various "products" involved are as follows:

$$
\begin{aligned}
&(Q \triangleright \mathcal{J})_{a_{1} a_{2} a_{3}}=\left.\frac{3}{2} Q_{\left[\underline{a}_{1}\right.}^{b_{1} b_{2}} \mathcal{J}_{\underline{a}_{2}} \underline{a}_{3}\right] b_{1} b_{2}, \\
&\left(P^{\prime} \diamond \mathcal{J}^{2}\right)_{a_{1} a_{2} a_{3}}= \frac{1}{4} P^{\prime c, b_{1} b_{2} b_{3} b_{4}} \mathcal{J}_{\left[\underline{a}_{1} a_{2}\left|c b_{1}\right|\right.} \mathcal{J}_{\left.\underline{a}_{3}\right] b_{2} b_{3} b_{4}}, \\
&\left(H^{\prime} \odot \mathcal{J}^{3}\right)_{a_{1} a_{2} a_{3}}= \frac{1}{192} H^{\prime c_{1} c_{2} c_{3}, b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}} \mathcal{J}_{\left[\underline{a}_{1} \underline{a}_{2}\left|c_{1} c_{2}\right|\right.} \\
& \times \mathcal{J}_{\left.\underline{a}_{3}\right] c_{3} b_{1} b_{2}} \mathcal{J}_{b_{3} b_{4} b_{5} b_{6}}, \\
& \vdots \vdots \\
& \mathbb{H}_{\Lambda}=H_{\Lambda}+\rho_{\alpha} P^{\alpha}{ }_{\Lambda}+\frac{1}{2} \rho_{\alpha} \rho_{\beta} Q^{\prime \alpha \beta}{ }_{\Lambda}-\frac{1}{6} \rho_{\alpha} \rho_{\beta} \rho_{\gamma} F^{\alpha \alpha \beta \gamma}{ }_{\Lambda}
\end{aligned}
$$

[^0]: ${ }^{\text {a }} T$-duality relates winding modes in compact space with momentum modes in its dual space through $R \rightarrow 1 / R$ ($R=$ compactification radius).
 ${ }^{\mathrm{b}}$ Sources of non-geometric fluxes abound; here we only consider a restricted set of specific non-geometric flux compactifications.

