Yuan Xin 2024/01/08

Yale University

Quantum many-body bootstrap 2211.03819 with Colin Nancarrow Also work in progress with Minjae Cho, Colin Nancarrow, Peter Tadic, Zechuan Zheng

Motivation

- Systems with large degrees of freedom can have interesting emergent behaviors, which are often strongly coupled and hard to compute.
- Bootstrap is a robust computational framework for making rigorous predictions in strongly coupled systems
- The setup for bootstrapping quantum many-body system is new, where a lot of progress was made recently.

2

Outline

- Introduction
- Bounding many-body ground state
- Bounding gap of many-body systems

Introduction

Introduction Moment problem and Hankel matrix

- Moment Problem:
	- Organize observables as Hankel Matrix

•
$$
\langle x^n \rangle = \int x^n d\mu
$$
 for a positive me z
 \Leftrightarrow
 M^K is positive semidefinite $M^K \geq$

• $\langle x^n \rangle$ is further constrained by equations of motion, symmetry and locality.

- Bound from unitarity $M_{ij} \equiv \langle E | x^{i+j} \rangle$
- Using defining equations of motions
- For diagonal matrix elements

Introduction Warm up: Bootstrapping Anharmonic Oscillator [Han, Hartnoll, Kruthoff '20]

•
$$
H = p^2 + \omega^2 x^2 + \lambda x^4
$$

$$
4tE\langle x^{t-1}\rangle - t(t-1)\langle x^{t+1}\rangle - 4\lambda(t+2)\langle x^{t+3}\rangle = 0
$$

$$
\Rightarrow \langle x^{2n} \rangle = \# + \# \langle x^2 \rangle
$$

$$
\begin{aligned}\n\langle \mathbf{B} \rangle &\geq 0 \\
\langle \mathbf{B} \rangle &\geq 0 \\
\langle \mathbf{H} \mathbf{B} \rangle &= 0\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\langle \mathbf{B} \rangle &\geq 0 \\
\langle \mathbf{H} \mathbf{B} \rangle &\geq 0 \\
\langle \mathbf{H} \mathbf{B} \rangle &= 0\n\end{aligned}
$$
\n
$$
\langle \mathbf{B} \mathbf{B} \rangle = \langle \mathbf{B} \mathbf{B} \rangle
$$
\n
$$
\langle \mathbf{H} \mathbf{B} \rangle = \langle \mathbf{B} \mathbf{B} \rangle
$$
\n
$$
\langle \mathbf{H} \mathbf{B} \rangle = \langle \mathbf{B} \mathbf{B} \rangle
$$

 $\langle x^{2n+1} \rangle \propto \langle x \rangle = 0$ from parity

Introduction

- $M_{ij} \equiv \langle E | x^{i+j} | E \rangle \ge 0$, $\langle x^{2n} \rangle = # + #'\langle x^2 \rangle$ $0 \le i, j \le K$
- Give $E, \langle x^2 \rangle$, ask if $M \ge 0$
	- Yes: an eigenstate with $\langle \, , \, \langle x^2 \rangle$ is possible $E, \langle x^2 \rangle$
	- No: an eigenstate with $\langle \, , \, \langle x^2 \rangle$ is impossible $E, \langle x^2 \rangle$
- Bound also allows other eigenstates (not shown)

Warm up: Bootstrapping Anharmonic Oscillator [Han, Hartnoll, Kruthoff '20]

• For quantum mechanical systems, unitarity and equations of motion directly impose bounds on observables.

• See for example:

Introduction Summarize & previous works

[Anderson, Kruczenski '16], [Lin '20, '23], [Han, Hartnoll, Kruthoff '20], [Han '20], [Kazakov, Zheng '21 '22], [Lawrence '21, '22], [Cho, Gabai, Lin, Rodriguez, Sandor, Yin '22] [Li '22] [Guo, Li '22] [Kull, Schuch, Dive, Navascués'22] [Cho '23], [Cho, Sun, '23] [Fawzi, Fawzi, Scalet, '23], [Araújo, Klep, Vértesi, Garner, Navascues '23] And more…

 $\langle \delta \mathcal{O} + \mathcal{O} \delta S \rangle = 0$ Bound $\langle O_* \rangle$, E_0 , etc. Such that $\langle 0 \bar{0} \rangle \geq 0$ Or \langle [*H*^{\odot}] $\rangle = 0$

Bounding Many-body Ground State

• Vacuum energy diverges at infinite d.o.f. If we discard the corresponding equation, the energy does not explicitly show up in the bootstrap constraints.

- How do we specify that we are bounding ground state properties?
	- By definition, minimizing energy density leads to the ground state.
	- Or, add another constraint $\langle \mathcal{O}^\dagger[H, \mathcal{O}] \rangle \geq 0$ to isolate the ground state.

any static states and linear combination

Bounding Many-body Ground State Generalize to Many-body Systems

$$
\begin{cases}\n\langle [H, 0] \rangle = 0 & \text{satisfied by} \\
\langle H \Theta \rangle = E(\Theta)\n\end{cases}
$$

[Fawzi, Fawzi, Scalet, 2311.18706, also Araújo, Klep, Vértesi, Garner, Navascues 2311.18707]

Bounding Many-body Ground State Lower bounding ground state energy

relate to infinitely many operators. Restrict to operators within range L.

• Minimize $\langle H_{12} \rangle \equiv \langle \sigma_1^z \sigma_2^z + h \sigma_1^x \rangle$, constrained by $\langle \mathcal{O}^\dagger \mathcal{O} \rangle \geq 0$.

• Example: Transverse Field Ising Model (TFIM) on 1d infinite spin chain

$$
0 = \langle [H, \sigma_1^{\mu_1} \sigma_2^{\mu_2} \cdots] \rangle = \langle \sum_{\{\nu\}} c_{\nu_1 \nu_2 \cdots}^{\mu_1 \mu_2 \cdots} \sigma_1^{\nu_1} \sigma_1^{\nu_2} \cdots \sigma
$$

$$
H = \sum_i \sigma_i^z \sigma_{i+1}^z + h \sigma_i^x
$$

Infinitely many EOMs

Bounding Many-body Ground State Optimizing the bound with Matrix Product State

- Bound converges as $\sim e^{-m_{gap}L}$, but dimension of $\langle O_i^{\dagger} O_j \rangle$ grows as 4^L . $i \overset{\bigcirc}{f}$ $\big\langle$ grows as 4^L
- We do not need full 4^L variables to optimize bootstrap bound: Relaxing the constraint matrix $\langle O_i^{\dagger} O_j \rangle \geq 0$ to $\langle B_i^{\dagger} O_i^{\dagger} O_k B_{kl} \rangle \geq 0$, where is a $4^N \times O(D^2)$ matrix. $i \overset{\bigcirc}{f}$ $\rangle \geq 0$ to $\langle B_{ii}^\dagger$ *ij* † $\langle \overline{P}_k B_{kl} \rangle \geq 0$, where *B*
- *B* can be a Matrix Product State (MPS) [Kull, Schuch, Dive, Navascués 2212.03014]

Bounding Many-body Ground State Isolating the ground state

- If we want upper bound on ground state or other ground state expectation values, we will need to isolate the ground state.
- The additional condition is $\langle \mathcal{O}^\dagger[H, \mathcal{O}]\rangle \geq 0$

[Fawzi, Fawzi, Scalet, 2311.18706, also Araújo, Klep, Vértesi, Garner, Navascues 2311.18707] 0.0 0.5 1.0 1.5 1.5 2.0

if bound can be optimized using variational techniques.

 $\bullet\,$ Large L is still required to see convergence numerically. It is interesting to see

Bounding Many-body Ground State Our setup: optimize ground state bound using MPS

• Idea: Moment matrix problem , + [Fawzi, Fawzi, Scalet, 2311.18706] + MPS relaxation [Kull, Schuch, Dive, Navascués 2212.03014] $\langle O^{\dagger} O \rangle \geq 0, \langle [H, O] \rangle = 0$ $\langle \mathcal{O}^\dagger[H, \mathcal{O}]\rangle \geq 0$ $\langle B_{ii}^\dagger$ *ij* † $\langle O^{\dagger}O \rangle \geq 0$ $\langle [H, O] \rangle = 0$ $\langle \mathcal{O}^\dagger[H, \mathcal{O}] \rangle \geq 0$ 1 **a** + Self consistency L' + self consistency

Bounding Many-body Ground State Our setup: optimize ground state bound using MPS

• Full semidefinite problem

 w *ith constraints:*

minimize: $\langle O_b \rangle = \text{Tr}(E^{ij}O_b) \alpha_{ij}^{(L')}$ over: $\alpha_{ij}^{(r)}, r = 1, 2, ..., L', ...L$ $=\alpha_{ij}^{(r)}E^{ij}$, for $r\leq L_{1}$ $Tr_1 \rho_r = Tr_r \rho_r = \rho_{r-1}, Tr \rho_1 = 1$ $\omega_r \geq 0$, $\omega_r = \alpha_{ij}^{(r)} E^{ij}$, for $r \geq L' + 1$ $\text{Tr}_1\omega_r = B \circ \omega_{r-1}, \text{ Tr}_r\omega_r = \omega_{L'} \circ B$ $\text{Tr}_1\omega_{L'+1} = B \circ \rho_{L'}, \text{ } \text{Tr}_{L'+1}\omega_{L'+1} = \rho_{L'} \circ B$ $M \geq 0, M_{ij} = \text{Tr}(E^{rs} \mathcal{O}_i^\dagger[H, \mathcal{O}_j]) \alpha_{rs}^{(L')}$ equations of motion: $\langle [H, \mathcal{O}_k] \rangle = \text{Tr}(E^{rs}[H, \mathcal{O}_k]) \alpha_{rs}^{(L')} = 0, \forall k$.

Bounding Many-body Ground State Numerical experiments 0.0

- Ongoing work. First result of $\langle \sigma^x \rangle$ upper and lower bound up to $L = 10$. (Note the system itself is infinite)
- Full positive matrix would be 4^{10} \times 4^{10} = 1048576 \times 1048576 . MPS relaxation drastically reduces it to 100~1000.
- Away from criticality result seems to be converging well, while at criticality $(h = 1)$ it seems to require more equations of motion beyond L' .

Bounding Gap of Many-body Systems

• Beyond the ground state observables, we are interested in gaps, correlators and excited state

- observables.
- eigenstates:

• For this purpose, we extend the moment matrix problem by inserting a complete basis of

•
•

$$
\langle 0 | \mathcal{O}_i \mathcal{O}_j | 0 \rangle = \sum
$$

- from E_gap after E_0 itself. Positivity can be used to exclude such assumptions.
- $\langle O^{\dagger}[H, O] \rangle \geq 0$ can be taken as a relaxation from the above bootstrap equation.

$$
\sum_{k} \langle 0 | \mathcal{O}_i | k \rangle \langle k | \mathcal{O}_j | 0 \rangle
$$

• The r.h.s. form a positive semidefinite matrix. If spectrum has a gap then sum over k starts

Bounding Gap of Many-body Systems Bootstrapping spectral decomposition

Bounding Gap of Many-body Systems Analogy to the conformal bootstrap

• The setup closely mirrors the conformal bootstrap. Many of the techniques in

the conformal bootstrap can be directly applied here.

"Crossing equation":

"OPE coefficients": $\langle k | \mathcal{O}_j | 0 \rangle$

• Revisit the moment problem of anharmonic oscillator using the new method:

for $\langle 0 | x^{i+j} \rangle$ $|0\rangle = \sum$ *k* $\langle 0 | x^i | k \rangle \langle k | x^j | 0 \rangle$ $0 \leq i, j \leq K$

• Using equations of motion to reduce the unknowns

 \mathbf{I} $\langle n | [H, \mathcal{O}] | m \rangle = (E_n - E_m) \langle n | \mathcal{O} | m \rangle$ $\langle n | H \mathcal{O} | m \rangle = E_n \langle n | \mathcal{O} | m \rangle$

Bounding Gap of Many-body Systems Anharmonic operator revisited

For diagonal matrix elements we had recursion relation

 $4tE\langle x^{t-1}\rangle - t(t-1)\langle x^{t+1}\rangle - 4\lambda(t+2)\langle x^{t+3}\rangle = 0$

• Revisit the moment problem of anharmonic oscillator using the new method:

for $\langle 0 | x^{i+j} \rangle$ $|0\rangle = \sum$ *k* $\langle 0 | x^i | k \rangle \langle k | x^j | 0 \rangle$ $0 \leq i, j \leq K$

• Using equations of motion to reduce the unknowns

$$
\langle n | x^{i} | m \rangle = g_{I}^{i}(E_{n}, E_{m}) \delta_{nm}
$$

+ $g_{x}^{i}(E_{n}, E_{m}) c_{nm,x}$
+ $g_{x}^{i}(E_{n}, E_{m}) c_{nm,x^{2}}$

$$
0 = \sum_{k} (c_{0k})^{2} \overrightarrow{F}_{E_{k},P,\cdots}^{E_{0}}
$$

unknowns $g_{\phi}^{i}(E_{n}, E_{m})$

Bounding Gap of Many-body Systems Anharmonic operator revisited

For off-diagonal elements, we have similar relation

Bounding Gap of Many-body Systems Anharmonic operator revisited

$$
= \big(1\,\, c_{00,x^2}\big) \big(\vec{S_0}-\vec{\mathcal{T}}_0\big)\, \bigg(\frac{1}{c_{00,x^2}}\bigg) + \sum_{k_-} c_{0k_- ,x}^2 \vec{S_{k_-}} + \sum_{k_+} c_{0k_+,x^2}^2 \vec{S_{k_+}}\,.
$$

If there exists α_{ij} such that $\forall E_{k_{+}} \geqslant E_1$

$$
\sum_{\substack{j\leqslant K}}\alpha_{i,j}\big(1\,\,c_{00,x^2}\big)\big(\vec{\mathcal{S}_0}-\vec{\mathcal{T}_0}\big)_{ij}\begin{pmatrix}1\\\overline{c_{00,x^2}}\end{pmatrix}=1\\ \sum_{\substack{j\leqslant K}}\alpha_{i,j}\big(\vec{\mathcal{S}}_{k-}\big)_{ij}\geqslant 0\\ \sum_{\substack{j\leqslant K}}\alpha_{i,j}\big(\vec{\mathcal{S}}_{k+}\big)_{ij}\geqslant 0\,,
$$

then all spectra with the prescribed (E_0, E_1) and c_{00,x^2} are ruled out.

Much better results from mixed bootstrap study: ⟨0| *xi*+*^j* |1⟩

Bounding Gap of Many-body Systems Anharmonic operator revisited

• Found upper bound on the gap E_1

• For $(1+1)$ D transverse field Ising Model, we obtain a rigorous upper bound on the gap

- Operator basis is:
	- "Primary operators" σ_1^x , σ_1^z and $\sigma_1^x \sigma_2^z$
	- All "descendants" by acting [H, \cdot] on primary operators up to Λ times.

Bounding Gap of Many-body Systems The gap of infinite chain

$$
\bullet \quad E_{\rm gap} := E_1 - E_0
$$

$$
H = \sum_{i} \sigma_i^z \sigma_{i+1}^z + h \sigma_i^x
$$

Conclusion & Outlook

- Bootstrap is a useful tool to study Quantum Mechanics with infinite degrees of freedom.
- We have working setups to bound the ground state energy, ground state expectation value, gap and excited state expectation values.
- A relaxation based on variational methods can drastically reduce the cost.
- We are still working on a more general setup that combines bootstrap with variational methods, especially, one that preserves equations of motion.
- It would be interesting to generalize the new techniques to matrix quantum mechanics.

Thank You

Numerical Results of Infinite Spin Chain

• bounds on the correlators.

Nancarrow, YX '22

$$
H = \sum_{i} \sigma_i^z \sigma_{i+1}^z + h \sigma_i^x
$$

• Primary operators: σ_1^x , σ_1^z and $\sigma_1^x \sigma_2^z$

• Λ: Depth of [H, …]

- $h_{\text{crit}} = 1$
- Dots are finite volume exact diagonalization with lattice period *L*

$$
\bullet \quad E_{\rm gap} := E_1 - E_0
$$