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Motivation

• Systems with large degrees of freedom can 
have interesting emergent behaviors, which 
are often strongly coupled and hard to 
compute.


• Bootstrap is a robust computational 
framework for making rigorous predictions 
in strongly coupled systems


• The setup for bootstrapping quantum 
many-body system is new, where a lot of 
progress was made recently.
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Outline

• Introduction


• Bounding many-body ground state


• Bounding gap of many-body systems
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Introduction
Moment problem and Hankel matrix

• Moment Problem: 


• Organize observables as Hankel Matrix


•  


•  is further constrained by equations of motion, symmetry and locality.⟨xn⟩

⟨xn⟩ = ∫ xndμ for a positive measure μ

⇔

MK
ij = ⟨xi+j⟩, 1 ≤ i, j ≤ K

MK is positive semidefinite MK ⪰ 0, ∀ K
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Introduction
Warm up: Bootstrapping Anharmonic Oscillator

• 


• Bound from unitarity 


• Using defining equations of motions


• For diagonal matrix elements

H = p2 + ω2x2 + λx4

Mij ≡ ⟨E |xi+j |E⟩ ≽ 0

{⟨[H, 𝒪]⟩ = 0
⟨H 𝒪⟩ = E⟨𝒪⟩

4tE⟨xt−1⟩ − t(t − 1)⟨xt+1⟩ − 4λ(t + 2)⟨xt+3⟩ = 0

⇒ ⟨x2n⟩ = # + #′￼⟨x2⟩ ⟨x2n+1⟩ ∝ ⟨x⟩ = 0 from parity

⟨1⟩ ⟨x⟩ ⋯ ⟨xK⟩
⟨x⟩ ⟨x2⟩ ⋯ ⟨xK+1⟩
⋮ ⋮ ⋱

⟨xK⟩ ⟨xK+1⟩ ⟨xK+K⟩

[Han, Hartnoll, Kruthoff ’20]
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[Han, Hartnoll, Kruthoff ’20]
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H = p2 + x2 + x4

0 ⩽ i, j ⩽ K

Introduction
Warm up: Bootstrapping Anharmonic Oscillator

[Han, Hartnoll, Kruthoff ’20]

•   ,   


• Give , , ask if 


• Yes: an eigenstate with 
 ,  is possible


• No: an eigenstate with 
 ,  is impossible


• Bound also allows other eigenstates (not shown)

Mij ≡ ⟨E |xi+j |E⟩ ≽ 0 ⟨x2n⟩ = # + #′￼⟨x2⟩

E ⟨x2⟩ M ≽ 0

E ⟨x2⟩

E ⟨x2⟩



Introduction

• For quantum mechanical systems, unitarity 
and equations of motion directly impose 
bounds on observables.


• See for example: 
[Anderson, Kruczenski ’16], [Lin ’20, ’23], 
[Han, Hartnoll, Kruthoff ’20], [Han ’20], 
[Kazakov, Zheng ’21 ’22], [Lawrence ’21, ’22], 
[Cho, Gabai, Lin, Rodriguez, Sandor, Yin ’22] 
[Li ’22] [Guo, Li ’22] 
[Kull, Schuch, Dive, Navascués’22] 
[Cho ’23], [Cho, Sun, ’23] 
[Fawzi, Fawzi, Scalet, ‘23],  
[Araújo, Klep, Vértesi, Garner, Navascues ’23] 
And more…

⟨δ𝒪 + 𝒪δS⟩ = 0

Bound , , etc.⟨𝒪*⟩ E0
Such that

⟨𝒪𝒪̄⟩ ⩾ 0

Or ⟨[H𝒪]⟩ = 0
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Bounding Many-body Ground State
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Bounding Many-body Ground State

• Vacuum energy diverges at infinite d.o.f. If we discard the corresponding 
equation, the energy does not explicitly show up in the bootstrap constraints. 
 

• How do we specify that we are bounding ground state properties?


• By definition, minimizing energy density leads to the ground state.


• Or, add another constraint  to isolate the ground state.⟨𝒪† [H, 𝒪]⟩ ≥ 0

Generalize to Many-body Systems

{⟨[H, 𝒪]⟩ = 0
⟨H 𝒪⟩ = E⟨𝒪⟩

satisfied by any static states and linear combination

[Fawzi, Fawzi, Scalet, 2311.18706,  
also Araújo, Klep, Vértesi, Garner, Navascues 2311.18707]
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Bounding Many-body Ground State
Lower bounding ground state energy

• Example: Transverse Field Ising Model (TFIM) on 1d infinite spin chain


• Infinitely many EOMs 
 
 
 
relate to infinitely many operators.  
Restrict to operators within range .


• Minimize , constrained by .

L

⟨H12⟩ ≡ ⟨σz
1σz

2 + hσx
1⟩ ⟨𝒪†𝒪⟩ ≥ 0

0 = ⟨[H, σμ1
1 σμ2

2 ⋯]⟩ = ⟨∑{ν} cμ1μ2⋯ν1ν2⋯ σν1
1 σν2

2 ⋯⟩

H = ∑i σz
i σz

i+1 + hσx
i
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exact
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Bounding Many-body Ground State
Optimizing the bound with Matrix Product State

• Bound converges as                ,  
but dimension of  grows as       .


• We do not need full        variables 
to optimize bootstrap bound:  
Relaxing the constraint matrix 

 to , where  
is a  matrix. 


•  can be a Matrix Product State (MPS)

⟨𝒪†
i 𝒪j⟩

⟨𝒪†
i 𝒪j⟩ ⪰ 0 ⟨B†

ij𝒪
†
j 𝒪kBkl⟩ ⪰ 0 B

4N × O(D2)

B

∼ e−mgapL

4L

4L

[Kull, Schuch, Dive, Navascués 2212.03014]

L

[Kull, Schuch, Dive, Navascués 2212.03014]
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Bounding Many-body Ground State
Isolating the ground state

• If we want upper bound on ground state  
or other ground state expectation values,  
we will need to isolate the ground state.


• The additional condition is  
 

• Large  is still required to see convergence numerically. It is interesting to see 
if bound can be optimized using variational techniques.

⟨𝒪† [H, 𝒪]⟩ ≥ 0

L

[Fawzi, Fawzi, Scalet, 2311.18706,  
also Araújo, Klep, Vértesi, Garner, Navascues 2311.18707] 0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

h

〈σ
x 〉

L  3

L  4

exact
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Bounding Many-body Ground State
Our setup: optimize ground state bound using MPS

• Idea: Moment matrix problem  
,  
+ 

  
[Fawzi, Fawzi, Scalet, 2311.18706]  

+ 
MPS relaxation  

[Kull, Schuch, Dive, Navascués 2212.03014]

⟨𝒪†𝒪⟩ ≥ 0 ⟨[H, 𝒪]⟩ = 0

⟨𝒪† [H, 𝒪]⟩ ≥ 0

⟨B†
ij𝒪

†
j 𝒪kBkl⟩ ⪰ 0

Expensive, restrict to 
range L′￼

Cheap, go to range  
that is very large

L

⟨𝒪†𝒪⟩ ≥ 0 ⟨[H, 𝒪]⟩ = 0
⟨𝒪† [H, 𝒪]⟩ ≥ 0

⟨B†
ij𝒪

†
j 𝒪kBkl⟩ ⪰ 0

L′￼1 L

+ self consistency

+ self consistency
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Bounding Many-body Ground State
Our setup: optimize ground state bound using MPS

• Full semidefinite problem

minimize:  ⟨𝒪b⟩ = Tr(Eij𝒪b)α(L′￼)
ij

over:  α(r)
ij , r = 1,2,⋯, L′￼, ⋯L

with constraints:  ρr ⪰ 0, ρr = α(r)
ij Eij, for r ≤ L1

Tr1ρr = Trrρr = ρr−1, Trρ1 = 1
ωr ⪰ 0, ωr = α(r)

ij Eij, for r ≥ L′￼+ 1
Tr1ωr = B ∘ ωr−1, Trrωr = ωL′￼

∘ B
Tr1ωL′￼+1 = B ∘ ρL′￼

, TrL′￼+1ωL′￼+1 = ρL′￼
∘ B

isolate ground state:  M ⪰ 0, Mij = Tr(Ers𝒪†
i [H, 𝒪j])α(L′￼)

rs

equations of motion:  ⟨[H, 𝒪k]⟩ = Tr(Ers[H, 𝒪k])α(L′￼)
rs = 0, ∀k .

}
}

MPS ansatz, inspired by 
[Kull, Schuch, Dive, Navascués 2212.03014]

Moment matrix problem, with constraint that 
isolates the ground state, inspired by 
[Fawzi, Fawzi, Scalet, 2311.18706]
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Bounding Many-body Ground State
Numerical experiments

• Ongoing work. First result of  upper and 
lower bound up to  .  
(Note the system itself is infinite)


• Full positive matrix would be
 . MPS 

relaxation drastically reduces it to 100~1000.


• Away from criticality result seems to be 
converging well, while at criticality  it 
seems to require more equations of motion 
beyond .

⟨σx⟩
L = 10

410 × 410 = 1048576 × 1048576

(h = 1)

L′￼

0.0 0.5 1.0 1.5 2.0
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0.0

h

〈σ
x 〉

L  3

L  4

L  10, L′  4

exact

▲
▲▲▲▲▲▲

▲▲▲▲▲▲▲
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1 / L
〈σ
x 〉
-
〈σ
x 〉
ex
ac
t

● h  1 l.b.

● h  1 u.b.

▲ h  1.6 l.b.

▲ h  1.6 u.b.

exact

L′  4
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Bounding Gap of Many-body Systems
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• Beyond the ground state observables, we are interested in gaps, correlators and excited state 
observables.


• For this purpose, we extend the moment matrix problem by inserting a complete basis of 
eigenstates:


• 


• The r.h.s. form a positive semidefinite matrix. If spectrum has a gap then sum over  starts 
from  after  itself. Positivity can be used to exclude such assumptions.


•   can be taken as a relaxation from the above bootstrap equation.

⟨0 |𝒪i𝒪j |0⟩ = ∑
k

⟨0 |𝒪i |k⟩⟨k |𝒪j |0⟩

k
Egap E0

⟨𝒪† [H, 𝒪]⟩ ≥ 0

Bounding Gap of Many-body Systems
Bootstrapping spectral decomposition
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Bounding Gap of Many-body Systems
Analogy to the conformal bootstrap

• The setup closely mirrors the conformal bootstrap. Many of the techniques in 
the conformal bootstrap can be directly applied here.

|k⟩
𝒪i 𝒪j

⟨0 | |0⟩

∑
k

fijl𝒪l

𝒪i 𝒪j

⟨0 | |0⟩

=

⟨0 |𝒪i𝒪j |0⟩ = ∑
k

⟨0 |𝒪i |k⟩⟨k |𝒪j |0⟩

“Crossing equation”: 

⟨k |𝒪j |0⟩“OPE coefficients”:
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• Revisit the moment problem of 
anharmonic oscillator using the new 
method: 
 
 
 
 
 
 
 

 

for 

⟨0 |xi+j |0⟩ = ∑
k

⟨0 |xi |k⟩⟨k |xj |0⟩

0 ⩽ i, j ⩽ K

|k⟩
xi xj

⟨0 | |0⟩

∑
k

xi+j

xi xj

⟨0 | |0⟩

=

•  Using equations of motion to 
reduce the unknowns

{⟨n |[H, 𝒪] |m⟩ = (En − Em)⟨n |𝒪 |m⟩
⟨n |H 𝒪 |m⟩ = En⟨n |𝒪 |m⟩

20

4tE⟨xt−1⟩ − t(t − 1)⟨xt+1⟩ − 4λ(t + 2)⟨xt+3⟩ = 0

Bounding Gap of Many-body Systems
Anharmonic operator revisited

For diagonal matrix elements 
we had recursion relation



• Revisit the moment problem of 
anharmonic oscillator using the new 
method: 
 
 
 
 
 
 
 

 

for 

⟨0 |xi+j |0⟩ = ∑
k

⟨0 |xi |k⟩⟨k |xj |0⟩

0 ⩽ i, j ⩽ K

|k⟩
xi xj

⟨0 | |0⟩

∑
k

xi+j

xi xj

⟨0 | |0⟩

=

•  Using equations of motion to 
reduce the unknowns

21

⟨n |xi |m⟩ = gi
I(En, Em) δnm

+ gi
x(En, Em) cnm, x

+ gi
x2(En, Em) cnm, x2

0 = ∑
k

(c0k)2 ⃗F E0
Ek,P,⋯

gi
𝒪(En, Em)unknowns

Bounding Gap of Many-body Systems
Anharmonic operator revisited

For off-diagonal elements, we 
have similar relation 
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Bounding Gap of Many-body Systems
Anharmonic operator revisited

E1

Schematically: find  such that ⃗α α . F ≥ 0

0 = ∑
k

(c0k)2 ⃗F E0
Ek,P,⋯

gi
𝒪(En, Em)unknowns



• Found upper bound on the gap E1
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2.838 2.839 2.840 2.841 2.842
2.96

2.97

2.98

2.99

3.00

3.01

3.02

Allowed

Disallowed

Exact answer

K = 10

E1

E0

0

5.×
10
-9

1.×
10
-8

1.5
× 1
0-
8

2.×
10
-8

2.5
× 1
0-
8

3.×
10
-8

3.5
× 1
0-
8

-3.× 10-8

-2.5× 10-8

-2.× 10-8

-1.5× 10-8

-1.× 10-8

-5.× 10-9

0 exact answer

K = 8

• Much better results from mixed bootstrap 
study: ⟨0 |xi+j |1⟩

E0 = 2.8398572(3876+3634
−0014)

E1 = 2.9993246(3771+0029
−3231)

⟨0 |x2 |0⟩ = 2.0244491(250+453
−004)

⟨1 |x2 |1⟩ = 2.2188768(2633+0063
−3431)

⟨0 |x |1⟩ = 1.382316052(4+9
−6)

56 equations

Bounding Gap of Many-body Systems
Anharmonic operator revisited



Bounding Gap of Many-body Systems
• For (1+1)D transverse field Ising Model,  

we obtain a rigorous upper bound on the gap
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• Operator basis is: 


• “Primary operators”  ,  and 


• All “descendants” by acting  
on primary operators up to  times. 


•

σx
1 σz

1 σx
1σz

2

[H, ⋅ ]
Λ

Egap := E1 − E0

H = ∑
i

σz
i σz

i+1 + hσx
i

The gap of infinite chain

Nancarrow, YX 2311.16290



Conclusion & Outlook
• Bootstrap is a useful tool to study Quantum Mechanics with infinite degrees 

of freedom.


• We have working setups to bound the ground state energy, ground state 
expectation value, gap and excited state expectation values.


• A relaxation based on variational methods can drastically reduce the cost.


• We are still working on a more general setup that combines bootstrap with 
variational methods, especially, one that preserves equations of motion.


• It would be interesting to generalize the new techniques to matrix quantum 
mechanics.
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Thank You
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Numerical Results of Infinite Spin Chain
• bounds on the correlators.

31
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H = ∑
i

σz
i σz

i+1 + hσx
i

●
●●●●●●●● L  3

L  4

L  5
L  6

L  7
L  8

L  9
L  10

L  ∞

★
★★★★★

L  3
L  4

L  5

L  6
L  7

L  ∞

0.0 0.5 1.0 1.5
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Εgap

〈σ
x 〉

{σx, σz}, Λ  5
bound h 1
bound h 1.6

● exact h 1

★ exact h 1.6

• Primary operators:  ,  and 


• : Depth of 


• 


• 


• Dots are finite volume exact 
diagonalization with lattice period 

σx
1 σz

1 σx
1σz

2

Λ [H, ⋯]

Egap := E1 − E0

hcrit = 1

L


