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Introduction

As derived by Jens Hoppe (yesterday) the membrane Hamiltonian
with matrix regularization where the embedding coordinates X a

become matrices becomes

HB = Tr(
1

2

D−1∑
a=1

PaPa − 1

4

p∑
a,b=1

[X a,X b][X a,X b])

With the Gauss law constraint [Pa,X a] = 0.

This appears to realize a proposed requirement of quantum gravity
of Doplicher, Fredenhagen and Roberts,1995 arXiv:hep-th/0303037
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The BFSS model

S
SMembrane

=
∫ √

−G −
∫
C + Fermionic terms

The susy version only exists in 4, 5, 7 and 11 spacetime dimensions.

BFFS Model — The supersymmetric membrane à la Hoppe

H = Tr(12

9∑
a=1

PaPa − 1

4

9∑
a,b=1

[X a,X b][X a,X b] +
1

2
ΘTγa[X a,Θ])

It also describes a system of N interacting D0 branes.
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Finite Temperature Model

The partition function and Energy of the model at finite
temperature is

Z = Tr
Phys

(e−βH) and E =
Tr

Phys
(He−βH)

Z
= ⟨H⟩
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The 16 fermionic matrices Θα = ΘαAt
A are quantised as

{ΘαA,ΘβB} = 2δαβδAB

The ΘαA are 28(N
2−1) and the Fermionic Hilbert space is

HF = H256 ⊗ · · · ⊗ H256

with H256 = 44⊕ 84⊕ 128 suggestive of
the graviton (44), anti-symmetric tensor (84) and gravitino (128)
of 11− d SUGRA.

For an attempt to find the ground state see: J. Hoppe et al
arXiv:0809.5270
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Lagrangian formulation

.
The BFSS matrix model is also the dimensional reduction of ten
dimensional supersymmetric Yang-Mills theory down to one
dimension:

SM =
1

g2

∫
dt Tr

{
1

2
(D0X

i )2 +
1

4
[X i ,X j ]2

− i

2
ΨTC10 Γ

0D0Ψ+
1

2
ΨTC10 Γ

i [X i ,Ψ]

}
,

where Ψ is a thirty two component Majorana–Weyl spinor, Γµ are
ten dimensional gamma matrices and C10 is the charge conjugation
matrix satisfying C10Γ

µC−1
10 = −ΓµT .
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The BMN or PWMM

The supermembrane on the maximally supersymmetric plane wave
spacetime

ds2 = −2dx+dx−+dxadxa+dx idx i−dx+dx+((
µ

6
)2(x i )2+(

µ

3
)2(xa)2)

with
dC = µdx1 ∧ dx2 ∧ dX 3 ∧ dx+

so that F123+ = µ. This leads to the additional contribution to the
Hamiltonian

∆Hµ =
N

2
Tr

(
(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
iϵijkX

iX jX k +
µ

4
ΘTγ123Θ

)
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∆Sµ = − 1

2g2

∫ β

0
dτTr

(
(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
iϵijkX

iX jX k +
µ

4
ΨTγ123Ψ

)
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The gravity dual and its geometry

Gauge/gravity duality predicts that the strong coupling regime of
the theory is described by IIA supergravity, which lifts to
11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

S11D =
1

2κ211

∫
[
√
−gR − 1

2
F4 ∧ ∗F4 −

1

6
A3 ∧ F4 ∧ F4]

where 2κ211 = 16πG 11
N =

(2πlp)9

2π .
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The relevant solution to eleven dimensional supergravity for the
dual geometry to the BFSS model corresponds to N coincident D0
branes in the IIA theory. It is given by

ds2 = −H−1dt2 + dr2 + r2dΩ2
8 + H(dx10 − Cdt)2

with A3 = 0
The one-form is given by C = H−1 − 1 and H = 1 + α0N

r7
where

α0 = (2π)214πgs l
7
s .
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A thermal bath and black hole geometry

ds211 = −H−1Fdt2 + F−1dr2 + r2dΩ2
8 + H(dx10 − Cdt)2

Set U = r/α′ and we are interested in α′ → ∞
H(U) = 240π5λ

U7 and the black hole time dilation factor

F (U) = 1− U7
0

U7 with U0 = 240π5α′5λ. The temperature

T

λ1/3
=

1

4πλ1/3
H−1/2F ′(U0) =

7

24151/2π7/2
(
U0

λ1/3
)
5/2

.

From black hole entropy we obtain the prediction for the Energy

S =
A

4GN
∼

(
T

λ1/3

)9/2

=⇒ E

λN2
∼

(
T

λ1/3

)14/5
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Checks of the predictions

We found excellent agreement with this prediction V. Filev and
D.O’C. arXiv:1506.01366 and 1512.02536.
The best current results (Berkowitz, Rinaldi, Hanada, Ishiki,
Shimasaki and Vranas arXiv 1606.04951) give

1

N2

E

λ1/3
= 7.41

(
T

λ1/3

) 14
5 − (10.0± 0.4)

(
T

λ1/3

) 23
5

+ (5.8± 0.5)T
29
5 + . . .

−5.77T
2
5+(3.5±2.0)T

11
5

N2 + . . .
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Hawking Radiation?

The idea is to include a black hole in the gravitational system.

The Hawking termperature provides the temperature of the system.

Hawking radiation

Hanada, Hyakutake, Ishiki, and Nishimura, arXiv 1311.5607
[hep-th] argued the leakage into the flat directions was indicative
of Hawking radiation.
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The Berkooz Douglas Model

Adding fundamental degrees of freedom to the BFSS model yields
the Berkooz–Douglas matrix model

L=LBFSS + tr
(
D0Φ̄

ρD0Φρ + iχ†D0χ
)
+ Lint ,

where:

Lint=tr

(
Φ̄α[X̄ βα̇,Xαα̇]Φβ +

1

2
Φ̄αΦβΦ̄

βΦα − Φ̄αΦαΦ̄
βΦβ

)
+tr

(√
2 i εαβ χ̄λαΦβ −

√
2 i εαβ Φ̄

αλ̄βχ
)

−
Nf∑
i=1

(
(Φ̄ρ)i (X a −ma

i 1)(X
a −ma

i 1)(Φρ)i + χ̄iγa(X a −ma
i 1)χi

)
a = 1, . . . , 5 are transverse to the D4-brane, ma

i are the positions
of the D4-branes, λρ and θα̇ are BFSS and χ the fundamental
fermions.
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The D4-brane as a probe of the geometry.

The dual adds Nf D4 probe branes. In the probe approximation
Nf ≪ Nc , their dynamics is governed by the Dirac-Born-Infeld
action:

SDBI = − Nf

(2π)4 α′5/2 gs

∫
d4ξ e−Φ

√
−det||Gαβ + (2πα′)Fαβ|| ,

where Gαβ is the induced metric and Fαβ is the U(1) gauge field of
the D4-brane. For us Fαβ = 0.

dΩ2
8 = dθ2 + cos2 θ dΩ2

3 + sin2 θ dΩ2
4

and taking a D4-brane embedding extended along: t, u, Ω3 with a
non-trivial profile θ(u).
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Embeddings

2 4 6 8 10u
é cosHqL

0.5

1.0

1.5

ué sinHqL

ũ sin θ = m +
c̃

ũ2
+ . . . .
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The condensate and the dual prediction

0.5 1.0 1.5 2.0 m
é

0.05
0.10
0.15
0.20
0.25
0.30

-2 cé
T = 0.8 l1ê3

V. Filev and D. O’C. arXiv 1512.02536.

The data overlaps surprisingly well with the gravity prediction in
the region where the D4 brane ends in the black hole.
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The Backreacted Problem

For the backreacted problem we need a solution to 11-dim sugra
(Filev and D. O’C. arXiv:2203.02472) in an M5-brane background
of the form

ds211=−K1(u, v) dt
2 + K3(u, v)(dx11 + A0(u, v) dt)

2

+K2(u, v)(du
2 + u2dΩ2

3) +

+K4(u, v)(dv
2 + v2dΩ2

4) , (1)

F(4) = F ′(v) v4 sin3 ψ sin α̃ cos α̃ dψ ∧ dα̃ ∧ d β̃ ∧ d γ̃ , (2)

dΩ2
3 = dα2 + sin2 α dβ2 + cos2 α dγ2 , (3)

dΩ2
4 = dψ2 + sin2 ψ dΩ̃2

3 , dΩ̃2
3 = dα̃2 + sin2 α̃ d β̃2 + cos2 α̃ d γ̃2 .∫

F(4) =
8

3
π2 v4 F ′(v) = −Q5 the M5-brane charge.

gives

F (v) = 1 +
Q5

8π2v3
≡ 1 +

v35
v3

= 1 +
Nf

Nc

4π3α′3λ

v3
,
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The solution preserving supersymmetry is given by:

ds211=

(
1 +

v35
v3

)−1/3 (
−H(u, v)−1 dt2+

+H(u, v)
(
dx11 + (H(u, v)−1 − 1) dt

)2
+

du2 + u2 dΩ2
3

)
+

(
1 +

v35
v3

)2/3 (
dv2 + v2 dΩ2

4

)
.

Note: Supersymmetry does not restrict the shape of the function
H(u, v). The equation of motion for H can be obtained either by
using the Einstein equations or by requiring that the angular
momentum along x11 is conserved.
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Equation for H(u, v)

The non-trivial equation requiring a solution is:

∂2vH(u, v)+
4

v
∂vH(u, v)+

(
1 +

v35
v3

)(
∂2uH(u, v) +

3

u
∂uH(u, v)

)
= 0
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Perturbation in v5 recovers the probe limit.

In the v → ∞ limit of equation (equivalent to the v5 → 0 limit)
SO(9) symmetry is recovered and

H0(u, v) = 1 +
r70

(u2 + v2)7/2
,

The parameter r70 is proportional to the number of D0–branes, Nc :

r70 = Nc 60π
3 gs α

′7/2 .

1 +
v35
v3

= 1 +
Nf

Nc

4π3λ

(v/α′3)
.

Perturbation in v5 recovers the probe approximation.
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Instability of overlap intersection

There is an instability in the system when the D0-branes lie in the
D4-branes. We move them off into a shell

D0

2Nf 1
3

4
Nf - 1

Nf - 2

D4
D4

D4D4 D4

D4
D4

D4 D4D4D4

u

v0

v0

D0-branes at the origin surrounded by uniform density of
D4-branes separated in the R5 transverse to the D4–branes and a
distance v = v0 from the D0-branes.
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Just as in electrostatics, the solution interior to the shell is the
same as that in the absence of the D4s, however the interior
expression is modified from

H(u, v) = 1 +
r70
r7

to H(u, v) = 1 +
γ3r70
r7

where γ2 = 1 + Nf
Nc

λ
2m3

q
and r2 = u2 + γ2v2 is the interior radial

coordinate. The dependence on Nf /Nc is because the parameter r0
is measured at infinity in u at fixed v .
The backreacted exterior solution takes the fom

H(u, v) = 1 +
r70

(u2 + v2)
7
2

[
1 +

v35
v30

Hc

(
u

v0
,
v

v0
,
v5
v0

)]
.

It is similar to the leading perturbative solution Hc ∼ 1. The
principal effect of increasing v5/v0 is that the geometry outside of
the shell approaches that of the D4-branes geometry in the
absence of D0-branes.
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We need a black hole solution

Work in progress

For useful comparisons with numerical simulations we need an
11-dim gravitational M5-brane solution in the presence of a black
hole. This seems accessible only via numerics.
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Thanks for Your Attention!
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