Gauge-gravity duality of the BFSS matrix model

Toby Wiseman (Imperial)

Matrix Quantum Mechanics for M-theory Revisited. CERN Jan '24

Plan Goal: understand quantum gravity

• Maldacena's large N duality

• BFSS matrix model (and SYM generalisations)

• Towards solving thermal BFSS; numerical, analytic

• Modifications of BFSS: BMN and gauging

SU(N) (p+1)-d maximal SYM <-> string theory in the decoupling limit of N Dp branes

SU(N) (1+p)-d maximal SYM <-> string theory in the decoupling limit of N Dp branes $\frac{1}{2}$ 2 ⁴ [*Xi, X^j*] **N** Dp branes

• Some basic quantities can be deduced by calculating for asymptotically flat solutions *before* taking the near horizon decoupling limit.

• However holographic renormalization still works in a similar manner and one can compute directly in the decoupling asymptotics.

TW, Withers '08; Kanitscheider, Skenderis, Taylor '08

• Worth emphasising that *all* physics that occurs in bulk should be captured by the boundary theory.

$$
S_{YM} = \frac{N}{\lambda} \int dt dx^p \operatorname{Tr} \left[\frac{1}{4} F_{\mu\nu}^2 + \frac{1}{2} (D^{\mu} X^I)^2 - \frac{1}{4} \left[X^I, X^J \right]^2 + \Psi \left(\Gamma^{\mu} D_{\mu} - \Gamma^I \left[X^I, \cdot \right] \right) \Psi \right]
$$

So (9-*p*) flavor

- X^I are (9-p) $N \times N$ Hermitian matrices transforming in the adjoint, Ψ is a fermion also in the adjoint
- For BFSS, p=0, usually written as (by gauge fixing);

$$
S_{BFSS} = \frac{N}{\lambda} \int dt \operatorname{Tr} \left[\frac{1}{2} (\dot{X}^I)^2 - \frac{1}{4} \left[X^I, X^J \right]^2 + \Psi \left(i \dot{\Psi} - \Gamma^I \left[X^I, \Psi \right] \right) \right]
$$

• However we must remember the SU(N) singlet constraint

• What are the interesting questions...

• How does locality emerge in the bulk?

• Black holes thermodynamics — how is entropy encoded

• Black hole evaporation and information loss?

Holography near houzon
region black p-brane d vality finie temporature hoizon

- Define dimensionless temperature $t = T\lambda^{-\frac{1}{3-1}}$ 3 − *p*
- Define dimensionless energy density $\epsilon = \rho \lambda^{-\frac{1+p}{3-p}}$ 3 − *p*
- Black hole thermodynamics: $t \ll 1$ in large N limit

$$
\epsilon = 2^{\frac{27-5p}{5-p}} \left(9-p\right) \left(7-p\right)^{-\frac{19-3p}{5-p}} N^2 \left(\pi^{\frac{13-3p}{2}} \Gamma\left(\frac{7-p}{2}\right) t^{7-p}\right)^{\frac{2}{5-p}} \sim N^2 t^{\frac{2(7-p)}{5-p}}
$$

\n- Note; entropy
$$
s \sim N^2 t^{\frac{9-p}{5-p}} \to 0
$$
 as $t \to 0$; not near extremal
\n

Holography

Goal

Perform direct quantum simulation of gravity

- String theory: extremal black hole micro state counting
	- g/s degeneracy rather than thermal entropy

Strominger, Vafa '96 …… Benini, Hristov, Zaffaroni '15 ……

For QM: Dorey, Mouland, Zhao '22

• Real black holes — only have thermal entropy

• So reproducing this thermal entropy is particularly interesting.

Hoppe '82, '87; de Wit, Hoppe, Nicolai '88

Banks, Fischler, Shenker, Susskind '96

• BFSS is a gapless theory with a unique ground state

Fröhliche Graf, Haller, Hoppe, Yau '99 Lin, Xi '14 De Wit, Luscher, Nicolai '89

• Classically vacua are gauge equivalent to diagonal A^μ and X^I

$$
(\underline{A}^{\mu})_{ab} = A^{\mu}_a \delta_{ab} \qquad (\underline{X}^I)_{ab} = X^I_a \delta_{ab} \qquad a = 1,...,N
$$

$$
X_{ab}^I = \begin{pmatrix} X_1^I & 0 & 0 & \dots & 0 \\ 0 & X_2^I & 0 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & X_N^I \end{pmatrix}
$$

• May view X_a as position of a'th D-brane in transverse (9-p)dimensions

- We may integrate out the off-diagonal matrix components which are weakly coupled when the branes are 'well separated'
- The X_{ab}^I off-diagonal element has a mass $\sim |\overline{X}_a \overline{X}_b|$ ⃗
- For large separations these are heavy and we may integrate out.

- We may integrate out the off-diagonal matrix components which are weakly coupled when the branes are 'well separated'
- The X_{ab}^I off-diagonal element has a mass $\sim |\overline{X}_a \overline{X}_b|$ ⃗
- For large separations these are heavy and we may integrate out.

- These off-diagonal elements represent the open strings between the D-branes
- However due to supersymmetry there is no contribution.
- But since this is a quantum mechanics, we have to consider fluctuations… (so unique ground state)

• Let us promote to classical moduli (and ignore the gauge fields);

$$
(\underline{\phi}^I)_{ab} = X_a^I(t, x)\delta_{ab}
$$

• The classical moduli space action is (using vector notation);

$$
S^{classical} = \frac{N}{\lambda} \int dt dx^{p} \sum_{a=1}^{N} \left(\frac{1}{2} \partial^{\mu} \overrightarrow{X}_{a} \cdot \partial_{\mu} \overrightarrow{X}_{a} \right)
$$

 $X_{ab} = X_a - X_b$ ⃗

·

X ab

 $|\overrightarrow{X}_{ab}|^7$

• For well separated moduli we may integrate out off-diagonal modes at 1-loop;

$$
S_{leading}^{1-loop} = -\int d\tau dx^p \sum_{a
$$

*S*1−*loop leading*

 $=-\frac{15}{16}$

 $\frac{1}{16}$ $d\tau$

a<*b*

• For BFSS this is the famous attractive;

• More generally, different blocks which are well separated don't classically 'talk' to each other, and are expected to weakly interact.

- Original BFSS conjecture relates the interactions in this moduli theory to those in 11-d supergravity
- Very interesting recent progress considering scattering!
- However here we will consider the 't Hooft large N limit…

- Taking the large N limit where the brane separations are fixed implies small separations and strong coupling.
- Interpretation: fluctuations of the resulting clump of D-branes are given by the dual gravity

- Turning on finite temperature, the dual geometry will contain a black hole.
- However this clump of branes isn't the black hole it is the entire dual geometry.

- Turning on finite temperature, the dual geometry will contain a black hole.
- However this clump of branes isn't the black hole it is the entire dual geometry.

Thermal behaviour

• When the diagonal components of X^I are well separated they behave as free QM particles, and lead to divergence in **thermal** partition function *cf*. H atom

$$
X^{I} = \begin{pmatrix} x_{1}^{I} & 0 & 0 & \dots & 0 \\ 0 & x_{2}^{I} & 0 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & x_{N}^{I} \end{pmatrix} + \delta X^{I}
$$

Catterall, TW '09

- Interpretation: Hawking radiation of D0-branes from decoupling region
- Thermal behaviour is meta-stable at large N

Thermal behaviour

$$
S_{BFSS} = \frac{N}{\lambda} \oint d\tau \operatorname{Tr} \left[\frac{1}{2} (D_{\tau} X^{I})^2 - \frac{1}{4} \left[X^{I}, X^{J} \right]^2 + \Psi \left(\Gamma^{\tau} D_{\tau} - \Gamma^{I} \left[X^{I}, \cdot \right] \right) \Psi \right]
$$

Banks, Fischler, Schenker, Susskind '96

- Introduce finite temperature using Euclidean time, *τ* ∼ *τ* + *β*
- Consider 't Hooft limit; $N \to \infty$ with $t \sim O(1)$
- High temp/energy usual $QM \sim hot$ strings *ϵ N*² ∼ *t*

Low temp/energy - Dual to IIA sugra/M theory

$$
\text{ory} \frac{\epsilon}{N^2} = 7.41 \, t^{14/5}
$$

Thermal behaviour

$$
S_{BFSS} = \frac{N}{\lambda} \oint d\tau \operatorname{Tr} \left[\frac{1}{2} (D_{\tau} X^{I})^{2} - \frac{1}{4} \left[X^{I}, X^{J} \right]^{2} + \Psi \left(\Gamma^{\tau} D_{\tau} - \Gamma^{I} \left[X^{I}, \cdot \right] \right) \Psi \right]
$$

- At very low temperature $t \sim N^{-10/21}$ the IIA dual becomes strongly coupled — the dilation is large near the horizon
- Then one may pass to 11-d sugra to describe the solution $-$ a black string boosted on the 11-circle.

• At a yet *smaller* temperature $t \sim N^{-5/9}$ (when the entropy $S \sim N$) we expect a Gregory-Laflamme instability to a localized black hole, still boosted on the 11-circle

Thermal behaviour

$$
S_{BFSS} = \frac{N}{\lambda} \oint d\tau \operatorname{Tr} \left[\frac{1}{2} (D_{\tau} X^{I})^2 - \frac{1}{4} \left[X^{I}, X^{J} \right]^2 + \Psi \left(\Gamma^{\tau} D_{\tau} - \Gamma^{I} \left[X^{I}, \cdot \right] \right) \Psi \right]
$$

• Sketch of expected large N behaviour;

Thermal behaviour

$$
S_{BFSS} = \frac{N}{\lambda} \oint d\tau \operatorname{Tr} \left[\frac{1}{2} (D_{\tau} X^{I})^2 - \frac{1}{4} \left[X^{I}, X^{J} \right]^2 + \Psi \left(\Gamma^{\tau} D_{\tau} - \Gamma^{I} \left[X^{I}, \cdot \right] \right) \Psi \right]
$$

• Sketch of expected large N behaviour;

- Two types of correction;
	- 1/N corrections are `quantum gravity' corrections BUT the whole low energy curve is quantum gravity
	- Corrections in *t* are classical *α*′

Thermal behaviour

$$
S_{BFSS} = \frac{N}{\lambda} \oint d\tau \operatorname{Tr} \left[\frac{1}{2} (D_{\tau} X^{I})^2 - \frac{1}{4} \left[X^{I}, X^{J} \right]^2 + \Psi \left(\Gamma^{\tau} D_{\tau} - \Gamma^{I} \left[X^{I}, \cdot \right] \right) \Psi \right]
$$

Banks, Fischler, Schenker, Susskind '96

• Simple observables; energy, Polyakov loop - diagnoses horizon

Witten '98

$$
W = Pe^{\oint dxA} \quad P = \frac{1}{N} \left\langle |\operatorname{Tr}(W)| \right\rangle
$$

• More subtle ones; Maldacena loop, entanglement

Frenkel, Hartnoll '23

Lattice results BFSS model

0 Anagnostopoulos, Hanada, Nishimura, Takeuchi '07

temperature, we have access to the continuum large-*N* behavior (*E*⁰ through *e*00) and the 1*/N*² correction (*E*¹ through *e*10) independently. This allows us to fit the di↵erent orders of *N*² in (5.1) separately. **BFSS model**

1.1 Superintensity Lattice results

BFSS model Lattice results

MCSMC: Pateloudis, Bergner, Hanada, Rinaldi, Schafer, Vranas, Watanabe, Bodendorfer '23

Analytic directions

• Gaussian approximation and gap equations

Kabat, Lifschytz '99 Kabat, Lifschytz and Lowe '01 Lin, Shan, Wang, Yin '13

• Exciting progress QM bootstrap

Berenstein, Hulsey '21 Lin '20 Han, Hartnoll, Krustoff '20 ….

• Scaling symmetry

TW '13 Biggs, Maldacena '23

• Can we understand the temperature behaviour?

ϵ = 2 − 5*p* [−] *^p* (9 − *p*) (7 − *p*) −¹⁹ [−] ³*^p* [−] *^p N*² (*π* − 3*p* ^Γ (− *p*) *^t* −*p*) − *p*

Smilga '07; TW '13

Morita, Shiba, TW, Withers '13 and '14

Biggs, Maldacena '23

 $S \sim \int d\tau dx^p \left(L_{classical} + L_{1-loop} + ... \right)$

• Can we understand the temperature behaviour?

$$
\epsilon = 2^{\frac{27-5p}{5-p}} \left(9-p\right) \left(7-p\right)^{-\frac{19-3p}{5-p}} N^2 \left(\pi^{\frac{13-3p}{2}} \Gamma\left(\frac{7-p}{2}\right) t^{7-p}\right)^{\frac{2}{5-p}}
$$

Recall the moduli space theory;

$$
L_{classical} = \frac{N}{\lambda} \sum_{a=1}^{N} \left(\partial \overrightarrow{X}_{a} \right)^{2} \qquad L_{1-loop} \sim \sum_{a
$$

$$
L_{n-loop} \sim \sum_{a_1 < a_2 < \ldots < a_n} \frac{\left(\partial \overrightarrow{X}\right)^{2+2n}}{|\overrightarrow{X}|^{(7-p)n}}
$$

- Morita, Shiba, TW, Withers '13 Biggs, Maldacena '23
- Then there is a scaling symmetry;

 $\tau \to \Lambda^{-1} \tau$ $\vec{x} \to \Lambda^{-1} \vec{x}$ $\vec{X}_a \to \Lambda$ 2 ⁵ [−] *^p X a* $S \to \Lambda$ $(3-p)^2$ $\overline{5-p}$ \overline{S}

• This constrains energy density to scale as;

$$
\epsilon \sim t^{\frac{2(7-p)}{5-p}}
$$

- While the SYM doesn't have conformal symmetry for $p \neq 3$ leading to AdS in the dual, there is a scaling symmetry in the dual gravity
- Recall the moduli space theory; $S \sim \int d\tau dx^p \left(L_{classical} + L_{1-loop} + ... \right)$

$$
L_{classical} = \frac{N}{\lambda} \sum_{a=1}^{N} \left(\partial \overrightarrow{X}_{a} \right)^{2}
$$

$$
L_{1-loop} = -\sum_{a
$$

• When does this become strong coupled? When,

$$
\langle L_{classical} \rangle \sim \langle L_{1-loop} \rangle
$$

• Estimate thermal vevs as;

• Proceed *keeping transcendental numbers!*

$$
\langle L_{classical} \rangle = \langle \frac{N}{\lambda} \sum_{a=1}^{N} \left(\partial \overrightarrow{X}_{a} \right)^{2} \rangle \sim \frac{N^{2}}{\lambda} \pi^{2} T^{2} \chi^{2}
$$
\n
$$
\langle L_{1-loop} \rangle = \langle -\sum_{a
$$

• So strong coupling implies;

$$
\frac{N^2}{\lambda}\pi^2T^2\chi^2 \sim N^2\frac{\Gamma\left(\frac{7-p}{2}\right)}{(4\pi)^{\frac{1+p}{2}}}\pi^4T^4\chi^{p-3}
$$

$$
\chi = \left(\Gamma\left(\frac{7-p}{2}\right)\pi^{\frac{3-p}{2}}\lambda T^2\right)^{\frac{1}{5-p}}
$$

Estimate energy density as;

$$
\rho \sim \langle L_{classical} \rangle = \langle \frac{N}{\lambda} \sum_{a=1}^{N} \left(\partial \overrightarrow{X}_{a} \right)^{2} \rangle \sim \frac{N^{2}}{\lambda} \pi^{2} T^{2} \chi^{2} \sim \frac{N^{2}}{\lambda} \pi^{2} T^{2} \left(\Gamma \left(\frac{7-p}{2} \right) \pi^{\frac{3-p}{2}} \lambda T^{2} \right)^{\frac{2}{5-p}}
$$

To gauge or not to gauge… Maldacena, Milekhin '18

To gauge or not to gauge…

• Do we have to gauge? We previously gauge fixed to write;

$$
S_{BFSS} = \frac{N}{\lambda} \int dt \operatorname{Tr} \left[\frac{1}{2} (\dot{X}^I)^2 - \frac{1}{4} \left[X^I, X^J \right]^2 + \Psi \left(i \dot{\Psi} - \Gamma^I \left[X^I, \Psi \right] \right) \right]
$$

- Recall there is the singlet constraint
- Maldacena & Milekhin '18 argue that after dropping the singlet constraint, the gravity dual is still valid — the non-singlet sector states all live at high energy.
- Non-singlet states can be thought of as adding Wilson line insertion, $Tr_R Pe^{i\int A_t dt}$ — gravity dual is a string hanging from the 'boundary'
- Note, this is not a susy `Maldacena' loop

To gauge or not to gauge…

• Gravity dual is a string with *Neumann* boundary conditions

Alday, Maldacena '07

• Then it is intuitive that the lowest energy state will be where the string end points come together; argue that $E \thicksim \lambda^{1/3}$

To gauge or not to gauge… Lattice results

• Do we have to gauge?

Berkowitz, Hanada, Rinaldi, Vranas '18

Patekoudis, Bergner, Bodendorfer, Hanada, Rinaldi, Schafer '22

BMN deformation Berenstein, Maldacena, Nastase '02

- In Catterall & TW '09 it was argued that an IR regulator mass should be added to control the divergence in the partition function.
- Further it was argued that the natural regulator is the BMN model, since this still has a gravity dual

$$
S_{BFSS} = \frac{N}{\lambda} \int dt \,\text{Tr} \left[\frac{1}{2} (\dot{X}^I)^2 - \frac{1}{4} \left[X^I, X^J \right]^2 + \Psi \left(i \dot{\Psi} - \Gamma^I \left[X^I, \Psi \right] \right) \right]
$$

$$
\Delta S_{BMN} = \frac{N}{\lambda} \int dt \,\text{Tr} \left[\frac{\mu^2}{2} \sum_{I=1,2,3} (\dot{X}^I)^2 + \frac{\mu^2}{8} \sum_{I=4...9} (\dot{X}^I)^2 + i \mu \sum_{I,J,K=1,2,3} \epsilon^{IJK} X_I X_J X_K \right]
$$

- There is a mass deformation preserving gravity dual and max susy that breaks the flavour $SO(9) \rightarrow SO(3) \times SO(6)$
- Now also discrete 'fuzzy sphere' vacua at finite mass *μ*
- However gravity only emerges in $t, \mu \ll 1$ limit

BMN deformation Berenstein, Maldacena, Nastase '02

• Now gravity computation is **much** more subtle

Vacuum geometry is known

Headrick, Kitchen, TW '09

- Required numerical GR methods to find black hole solutions in technical `Tour de Force' by Costa, Greenspan, Penedones, Santos '14
- Conjecture confining phase transition $-$ dual to gravity gas

Lattice results BMN deformation Asano, Filev, Kovacik, O'Connor

Costa, Greenspan, Penedones, Santos '14

$$
\frac{T_c}{\mu} = \frac{7}{12\pi\hat{\mu}_c} = 0.105905(57).
$$

Catterall, Van Anders '10

Asano, Filev, Kovacik, O'Connor '18

Bergner, Hanada et al '22

Lattice results BMN deformation Asano, Filev, Kovacik, O'Connor

Catterall, Van Anders '10

Asano, Filev, Kovacik, O'Connor '18

Bergner, Hanada et al '22

Costa, Greenspan, Penedones, Santos '14

Summary

- Significant progress in BFSS matrix theory at 'large N'.
- Where to go now?
	- Improve further off lattice simulations
	- New analytic approaches
	- New observables entanglement entropy?
	- Develop better understanding for why gravity behaviour seen
- Dynamics and quantum computing? Rinaldi, Han, Hassan, Feng, Nori, McGuigan, Hanada '21 Maldacena '23
- M(atrix) theory limit and finite N?

Herderschee, Maldacena '23 Miller, Strominger, Tropper, Wang '23 Tropper, Wang '23

The End

Thanks for listening!