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Plan

• Maldacena’s large N duality


• BFSS matrix model (and SYM generalisations)


• Towards solving thermal BFSS; numerical, analytic


• Modifications of BFSS: BMN and gauging

Goal: understand quantum gravity



SU(N) (p+1)-d maximal SYM <-> string theory in the decoupling limit of N Dp branes
Holography

Maldacena ’97; Itzhaki et al '98
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Holography

the temperature range probed.

2. Brief review of duality with black holes

Following Itzhaki et al [4], we consider the “decoupling” limit of N coincident D0-branes.
We take N large with Ngs fixed, where gs is the string coupling. The decoupling limit is
then defined by considering excitations of these D0-branes with fixed energy while sending
the string length scale to zero so ↵

0
! 0. In this limit the degrees of freedom of the system

split up into those localized near the branes - the ‘near horizon’ excitations - and those living
far from the brane which we are not interested in here.

There are two descriptions of the degrees of freedom living near the branes in the decou-
pling limit. The first, the open string description, arises from the open string worldvolume
theory of the D0-branes whose degrees of freedom are the open strings ending on the branes.
In the limit of fixed energy excitations as ls ! 0, the dynamics is governed by 16 supercharge
SU(N) Yang-Mills quantum mechanics with gauge coupling g

2
Y M = gs↵

0�3/2
/(2⇡)2. Explic-

itly this theory arises from dimensional reduction of N = 1 super Yang-Mills in 10-d. The
10-d gauge field reduces to the 1-d gauge field A and 9 scalars, X

i, i = 1, . . . , 9 and the 10-d
Majorana-Weyl fermion to 16 single component fermions,  ↵, ↵ = 1, . . . , 16. The action is
given as,
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where �
t
, �

i are the real Majorana-Weyl gamma matrices.
The second description is the closed string one, namely IIA closed strings propagating

in the near horizon geometry of N D0-branes. When supergravity is valid we may write the
vacuum near horizon geometry as,

ds
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where b = 240⇡
5, with � = Ng

2
Y M and the coordinate U can now be interpreted as an

energy scale. Closed string excitations may be added to this and then the geometry is simply
asymptotic (as U ! 1) to this. It is crucial that all curvatures and the string coupling e

�

are small in order that the above supergravity solution is valid. The curvature radius ⇢ at
energy scale U is characterized by the radius of the sphere in the above geometry, so that in
string units,
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Holography
• Some basic quantities can be deduced by calculating for 

asymptotically flat solutions before taking the near horizon 
decoupling limit.


• However holographic renormalization still works in a similar 
manner and one can compute directly in the decoupling 
asymptotics.

TW, Withers ’08; Kanitscheider, Skenderis, Taylor ‘08



Holography
• Worth emphasising that all physics that occurs in bulk should be 

captured by the boundary theory.



•  are (9-p)  Hermitian matrices transforming in the 
adjoint,  is a fermion also in the adjoint


• For BFSS, p=0, usually written as (by gauge fixing);


• However we must remember the SU(N) singlet constraint

XI N × N
Ψ

Holography

SYM =
N
λ ∫ dtdxp Tr [ 1

4
F2

μν +
1
2

(DμXI)2 −
1
4 [XI, XJ]2 + Ψ (ΓμDμ − ΓI [XI, ⋅ ]) Ψ]

SBFSS =
N
λ ∫ dt Tr [ 1

2
( ·XI)2 −

1
4 [XI, XJ]2 + Ψ (i ·Ψ − ΓI [XI, Ψ])]



Holography
• What are the interesting questions…


• How does locality emerge in the bulk?


• Black holes thermodynamics — how is entropy encoded


• Black hole evaporation and information loss?



Holography

Maldacena ’97; Itzhaki et al '98



Holography



• Define dimensionless temperature  


• Define dimensionless energy density  


• Black hole thermodynamics:   in large  limit


• Note; entropy  as  ; not near extremal

t = T λ− 1
3 − p

ϵ = ρλ− 1 + p
3 − p

t ≪ 1 N

s ∼ N2t
9 − p
5 − p → 0 t → 0

Holography

ϵ = 2
27 − 5p
5 − p (9 − p) (7 − p)− 19 − 3p

5 − p N2 (π
13 − 3p

2 Γ ( 7 − p
2 ) t7−p)

2
5 − p

∼ N2t
2(7 − p)

5 − p



Holography



• String theory: extremal black hole micro state counting


• g/s degeneracy rather than thermal entropy


• Real black holes — only have thermal entropy


• So reproducing this thermal entropy is particularly interesting.

Perform direct quantum simulation of gravity
Goal

Strominger, Vafa ’96 ……  Benini, Hristov, Zaffaroni ’15 ……

For QM: Dorey, Mouland, Zhao ’22



BFSS model
• BFSS is a gapless theory with a unique ground state


• Classically vacua are gauge equivalent to diagonal  and 


• May view  as position of a’th D-brane in transverse (9-p)-
dimensions

Aμ XI

⃗X a

(Aμ)ab = Aμ
a δab ( XI)ab = XI

aδab a = 1,…, N

XI
ab =

XI
1 0 0 … 0

0 XI
2 0 … 0

⋮
0 0 0 … XI

N

Lin, Xi ‘14Fröhliche Graf, Haller, Hoppe, Yau ‘99

Banks, Fischler, Shenker, Susskind ‘96

Hoppe ’82, ‘87;  de Wit, Hoppe, Nicolai ‘88

De Wit, Luscher, Nicolai ‘89



BFSS model
• We may integrate out the off-diagonal matrix components which 

are weakly coupled when the branes are ‘well separated’


• The  off-diagonal element has a mass 


• For large separations these are heavy and we may integrate out.

XI
ab ∼ | ⃗X a − ⃗X b |



BFSS model
• We may integrate out the off-diagonal matrix components which 

are weakly coupled when the branes are ‘well separated’


• The  off-diagonal element has a mass 


• For large separations these are heavy and we may integrate out.


• These off-diagonal elements represent the open strings between 
the D-branes


• However due to supersymmetry there is no contribution.


• But since this is a quantum mechanics, we have to consider 
fluctuations… (so unique ground state)

XI
ab ∼ | ⃗X a − ⃗X b |



BFSS model
• Let us promote to classical moduli (and ignore the gauge fields);


• The classical moduli space action is (using vector notation);


• For well separated moduli we may integrate out off-diagonal 
modes at 1-loop;


• For BFSS this is the famous attractive;

(ϕI)ab = XI
a(t, x)δab

Sclassical =
N
λ ∫ dtdxp

N

∑
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2
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| ⃗X ab |7

⃗X ab = ⃗X a − ⃗X b



BFSS model
• More generally, different blocks which are well separated don’t 

classically ‘talk’ to each other, and are expected to weakly 
interact. 


• Original BFSS conjecture relates the interactions in this moduli 
theory to those in 11-d supergravity


• Very interesting recent progress considering scattering!


• However here we will consider the ’t Hooft large N limit…



BFSS model
• Taking the large N limit where the brane separations are fixed 

implies small separations and strong coupling.


• Interpretation: fluctuations of the resulting clump of D-branes are 
given by the dual gravity



BFSS model
• Turning on finite temperature, the dual geometry will contain a 

black hole.


• However this clump of branes isn’t the black hole — it is the 
entire dual geometry.



BFSS model
• Turning on finite temperature, the dual geometry will contain a 

black hole.


• However this clump of branes isn’t the black hole — it is the 
entire dual geometry.



• When the diagonal components of  are well separated they 
behave as free QM particles, and lead to divergence in thermal 
partition function cf. H atom


• Interpretation: Hawking radiation of D0-branes from decoupling 
region


• Thermal behaviour is meta-stable at large N

XI

Thermal behaviour
BFSS model

XI =

xI
1 0 0 … 0

0 xI
2 0 … 0

⋮
0 0 0 … xI

N

+ δXI

Catterall, TW ’09



• Introduce finite temperature using Euclidean time, 


• Consider ’t Hooft limit;   with 


• High temp/energy - usual QM ~ hot strings 


• Low temp/energy - Dual to IIA sugra/M theory 

τ ∼ τ + β

N → ∞ t ∼ O(1)
ϵ

N2
∼ t

ϵ
N2

= 7.41 t14/5

SBFSS =
N
λ ∮

β
dτ Tr [ 1

2
(DτXI)2 −

1
4 [XI, XJ]2 + Ψ (ΓτDτ − ΓI [XI, ⋅ ]) Ψ]

Banks, Fischler, Schenker, Susskind ’96

BFSS model
Thermal behaviour



• At very low temperature  the IIA dual becomes 
strongly coupled — the dilation is large near the horizon


• Then one may pass to 11-d sugra to describe the solution — a 
black string boosted on the 11-circle.


• At a yet smaller temperature   (when the entropy 
) we expect a Gregory-Laflamme instability to a localized 

black hole, still boosted on the 11-circle

t ∼ N−10/21

t ∼ N−5/9

S ∼ N

SBFSS =
N
λ ∮

β
dτ Tr [ 1

2
(DτXI)2 −

1
4 [XI, XJ]2 + Ψ (ΓτDτ − ΓI [XI, ⋅ ]) Ψ]

BFSS model
Thermal behaviour



SBFSS =
N
λ ∮

β
dτ Tr [ 1

2
(DτXI)2 −

1
4 [XI, XJ]2 + Ψ (ΓτDτ − ΓI [XI, ⋅ ]) Ψ]

Thermal behaviour
BFSS model

• Sketch of expected large N behaviour;



SBFSS =
N
λ ∮

β
dτ Tr [ 1

2
(DτXI)2 −

1
4 [XI, XJ]2 + Ψ (ΓτDτ − ΓI [XI, ⋅ ]) Ψ]

Thermal behaviour
BFSS model

• Sketch of expected large N behaviour;


• Two types of correction;


• 1/N corrections are `quantum gravity’ corrections — BUT the 
whole low energy curve is quantum gravity


• Corrections in  are classical t α′￼



• Simple observables;  energy, Polyakov loop - diagnoses horizon


• More subtle ones; Maldacena loop, entanglement

SBFSS =
N
λ ∮

β
dτ Tr [ 1

2
(DτXI)2 −

1
4 [XI, XJ]2 + Ψ (ΓτDτ − ΓI [XI, ⋅ ]) Ψ]

P =
1
N ⟨ Tr(W ) ⟩W = Pe ∮ dxA

Banks, Fischler, Schenker, Susskind ’96

BFSS model
Thermal behaviour

Witten ‘98

Frenkel, Hartnoll ‘23



Lattice results
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Figure 3: Plots of ✏/t against t for various N computed without a regulator mass for 5 and 10 lattice
points, but instead artificially truncating the Monte Carlo sequences when the scalar eigenvalues start
to diverge. The open squares denote points where truncation was required, small discs are points
where no divergence was seen for the number of configurations used. We note that for larger N or
more lattice points the error bars are smaller for fewer configurations and hence one may probe to
lower temperatures. Whilst the method is clearly ad hoc and di�cult to justify, the results do look
plausibly in agreement with the predicted dual black hole low temperature behaviour, plotted as the
solid blue curve. Configurations are generated in the phase quenched approximation.

Also interesting is that as the regulator mass is decreased, the phase appears to become
closer to zero. We have no reason to expect the value to be trivial in the continuum limit, but
apparently it is rather small over the temperature range probed. One point to note is that
the phase appears closer to zero for N = 3 than N = 5. One might worry that increasing N
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at the leading order was fitted nicely to the power law
E/N2 = 3.2 · T 2.7 within 0.25 ! T ! 1. Their results
are in reasonable agreement with our data at T ∼ 1, but
disagree at lower temperature.
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FIG. 3: The energy is plotted against temperature. The
dashed line represents the result obtained by HTE up to the
next leading order for N = 8 [24]. The solid line represents
the energy predicted at small T by the gauge/gravity duality.
The upper left panel zooms up the region, where the power-
law behavior sets in.

Summary.— In this paper we have presented the first
Monte Carlo results for the maximally supersymmetric
matrix quantum mechanics, which is expected to play a
very important role in string/M theories. The recently
proposed non-lattice simulation together with the RHMC
algorithm enabled us to study the low temperature be-
havior, which was not accessible by the high tempera-
ture expansion. As we lower the temperature, we ob-
served the infrared instability, which was found to be
eliminated, however, by increasing N . We gave a natural
explanation to this phenomenon based on the one-loop
effective action. Our data for the internal energy asymp-
tote nicely to the result obtained from the dual geom-
etry, which we consider as a highly nontrivial evidence
for the gauge/gravity duality in the non-conformal case.
In particular, our results suggest that the maximally su-
persymmetric matrix quantum mechanics exactly repro-
duces not only the power but also the coefficient of the
power-law behavior obtained from the dual black-hole
geometry.
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If we instead make a one-parameter fit with p = 4.6 fixed,
we obtain C = 5.58(1). This value, in turn, provides a
prediction for the α′ corrections on the gravity side.
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FIG. 1: The deviation of the internal energy 1

N2 E from the

leading term 7.41 T
14

5 is plotted against the temperature in
the log-log scale for λ = 1. The solid line represents a fit
to a straight line with the slope 4.6 predicted from the α

′

corrections on the gravity side.
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FIG. 2: The internal energy 1

N2 E is plotted against T for
λ = 1. The solid line represents the leading asymptotic be-
havior at small T predicted by the gauge-gravity duality. The
dashed line represents a fit to the behavior (1) including the
subleading term with C = 5.58.

Summary.— We have discussed the α′ corrections to
the black hole thermodynamics, which enable us to de-
termine the power of the sub-leading term in (1). This
power is then found to be reproduced precisely by Monte
Carlo data in gauge theory. Let us emphasize that the
subleading term is crucial for the precision test of the
gauge-gravity duality. It is intriguing that our results in
gauge theory can tell us the absence of O(α′) and O(α′2)

corrections to the supergravity action.

Recently [20] Monte Carlo data for the Wilson loop
are also shown to reproduce a prediction obtained by es-
timating the disk amplitude in the dual geometry. Unlike
the present case, α′ corrections to that quantity start at
O(α′) due to the fluctuation of the string worldsheet and
its coupling to the background dilaton field.

While it is certainly motivated to obtain the coefficient
C of the subleading term from gravity, our results already
provide a strong evidence that the gauge-gravity duality
holds including α′ corrections. This, in particular, im-
plies that we can understand the microscopic origin of
the black hole thermodynamics including α′ corrections
in terms of the open strings attached to the D0-branes.
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where a0 and b0 are known by exact calculations to be approximately 7.41 and �5.77
respectively. We group the coe�cients at a fixed order in N into the functions Ei(T ).
On the gauge-theory side of the duality, these functions should be reproduced by our
coe�cients ei0 reported in Tab. 1.

In this section we will present a variety of fits comparing our extrapolated values in
Tab. 1 to these forms and we will summarize our findings in the next section. At each
temperature, we have access to the continuum large-N behavior (E0 through e00) and the
1/N2 correction (E1 through e10) independently. This allows us to fit the di↵erent orders
of N2 in (5.1) separately.

5.1 SUGRA at Low Temperatures

Figure 8. Our best fits of E0 to the data points e00 shown as black diamonds, including the
first two/three/four terms as a cyan dotted line/blue solid line/purple dot-dot-dashed line with 1�
error bands. We also show the result from Ref. [12] and Ref. [11] results as green dashed and red
dot-dashed lines, respectively. The SUGRA result is shown in black.

First, let us confirm that our continuum and large-N data are consistent with the
SUGRA prediction, in that they reproduce the SUGRA calculation of the leading coe�cient
a0 = 7.41. The agreement between D0-brane quantum mechanics and SUGRA is our main
result. Checking the value of a0 against lattice simulations is a non-trivial task and is
usually hindered by numerical results with large error bars or with undefined systematic
errors.

We fit the O
�
N0

�
coe�cients, including the leading-order coe�cient known from su-

pergravity. We perform two fits of E0 to e00, fitting a0 and a1, including or excluding a2.
We exclude the T = 1.0 data point, because the assumption T ⌧ 1 is certainly broken
there. In Fig. 8 we show the best fits of E0(T ), together with previous estimates of the
same function and the SUGRA result.

The fit that excludes a2 struggles to capture the full behavior of the data, and in the
best case (fitting to T  0.8) produces a0 = 6.2 ± 0.2, substantially di↵erent from the
supergravity result, and a1 = �3.8± 0.3. However, this can be understood as a systematic
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Figure 3. Internal energy of the black hole against temperature. The simulation results (red for
N = 14, green for N = 32) coincide with the result of the high temperature expansion (dashed
orange curve) at high temperature and approach the theoretical prediction (dashed blue curve) as
the temperature decreases.

the theoretical prediction of the gravity side at the leading order of the expansion, (5.1) with

c2 = 0. The slightly curved orange line is the result of the high temperature expansion

[26], [27]. As can be seen in the figure, the lattice data coincide with the result of the

high temperature expansion at high temperature, while as the temperature decreases, they

smoothly approach the theoretical prediction of the gravity side.

In figure 4, we focus on low temperature of figure 3. The data surely approach the pre-

diction (dashed blue curve) and are likely to coincide with it as the temperature decreases

further. But, unfortunately, the temperatures we used in the simulations were not low

enough to explain the leading behavior of the gravity side. To obtain quantitative results

for the leading-order term, simulations at further low temperatures are required.

Instead, one can study the contribution of the next-to-leading order term by fitting

the lattice results using the following formula,

f(x) = 7.41x2.8 + Cxp, (5.5)

where C and p are the fitting parameters. From (5.1), if the duality conjecture is really

true, the obtained p should be 4.6 within the statistical errors. We performed the fit using

the 5 points within 0.375 ≤ T ≤ 0.475 and obtained

C = 9.0 ± 2.6, p = 4.74 ± 0.35. (5.6)
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Figure 4. Low temperature region of the internal energy of the black hole. The dashed blue curve
is again the theoretical prediction of the gravity side up to the leading order. The dashed curve
denotes the fit result which is obtained by fitting 5 points within T = 0.375− 0.475.

The obtained p is consistent with the theoretical prediction of the gravity side within

about seven percent statistical error. This is the first lattice result of the NLO term, which

quantitatively shows the validity of the duality conjecture in this system.

In [9], the NLO term was estimated from the numerical simulation based on the momen-

tum sharp cut-off method using the same fit formula (5.5). The fitted values C = 5.55(7),

p = 4.58(3) are consistent with our results (5.6) within two sigma. However, those values

were obtained from their data in a little high temperature region 0.5 ≤ T ≤ 0.7. We

also tried to fit the lattice results in the same temperature region, but could not obtain

a reasonable result within χ2/dof ! 1. This observation raised the possibility that the

temperature region 0.5 ≤ T ≤ 0.7 was a little high to estimate the next-leading order term.

The reason of the discrepancy between the two results have not been clear in detail so far.

Further simulations are now in progress and will give us the final answer.

6 Summary

Lattice gauge theory is a promising framework to reveal the gauge/gravity duality and the

quantum effects of gravity from the gauge theory side. In this paper, we have investigated

the duality from the lattice simulations of supersymmetric SU(N) Yang-Mills theory in

1+0 dimension with sixteen supercharges. The numerical results of the SUSY WTI have

shown that the Sugino lattice action that we used reproduces the correct continuum theory

in the continuum limit. We have also estimated the internal energy of the black hole and
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Figure 9. Scaling of the internal energy with the lattice spacing for temperatures T = 0.9, 1.0 and
N = 10. One can see that the lattice e↵ects dies our linearly, which allows extrapolation of the zero
lattice spacing result.
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Figure 10. Results for the internal energy for 8  N  14 and 8  ⇤  16. The dashed curve at high
temperature correspond to the theoretical results of [26], while the low temperature curve represent
the prediction for the internal energy from the AdS/CFT correspondence.

the regulator is removed that they describe the full quantum dynamics of these membranes.

Surprisingly we found that the bosonic model, for su�ciently large embedding dimension

reduces to a system of p-massive free bosons with the mass given by m ⇠ p
1/3. For p = 9

we performed detailed simulations of the model evaluating both the fall o↵ of the correlation

function and the eigenvalue distribution of the Xi fit with a Wigner semi-circle both of which

give a consistent mass m ' (1.965± .007)�1/3. This is a fundamental non-perturbative result

– 21 –

Berkowitz, Rinaldi, Hanada, Ishiki, Shimasaki, Vranas ‘16

Kadoh, Kamata ‘15

Filev, O’Connor ‘15

BFSS model
Lattice results



MCSMC:  Pateloudis, Bergner, Hanada, Rinaldi, Schafer, Vranas, Watanabe, Bodendorfer ‘23

BFSS model
Lattice results



3

L ! 5 pts
10 pts

Thermal SU!5"

1 2 3 4 5 6
t

2

4

6

8

Ε#t

Thermal SU!5" L ! 5 pts

0 1 2 3 4 5 6
t0.90

0.92

0.94

0.96

0.98

1.00

Cos$Pf%

FIG. 2: Top: Plot of dimensionless energy ε/t verses dimen-
sionless temperature t for the thermal SU(5) theory with 5
and 10 lattice points. Bottom: Plot of the cosine of the Pfaf-
fian argument for the thermal SU(5) theory with 5 points.

on two observables - the mean energy, ε, and absolute
value of the trace of the Polyakov loop, P . In the Yang-
Mills theory these are given by [6, 15]

< ε/t > =
3

N2

(

9

2
L(N2 − 1)− < Sbos >

)

P =
1

N
< |Tr

L−1
∏

a=0

Ua| > . (5)

The inclusion of 1/N2, 1/N in these definitions is to en-
sure these quantities are finite in the t’Hooft limit for
a deconfined phase. In the periodic case, since Z is an
index, it should not depend continuously on the inverse
volume t, and hence in the continuum ε = 0.
To check for a restoration of supersymmetry we have

computed ε/t in the periodic theory for a variety of lat-
tice sizes L = 5, 10 and 20. The upper plot of figure 1
shows ε/t for SU(2). For large t the index ε is already
consistent with zero for L = 5, while at small t it appears
to approach zero as L increases. Notice that while this
quantity is a sensitive test of the restoration of supersym-
metry in the continuum limit L → ∞ other observables
such as P shown in the lower plot are relatively insensi-
tive to the number of lattice sites for L ≥ 5.
We have also examined the continuum limit of the ther-

mal theory. In figure 2 we show L = 5 and 10 data for
the thermal energy for SU(5) (in the phase quenched ap-
proximation – which we discuss shortly). As noted above,
we find a lattice instability for the thermal theory with
t ! 1 (with some dependence on N and L). However,

SU!2"
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SU!8"
SU!12" thermal

Black Hole
HTE

1 2 3 4 5
t0
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Ε#t
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0.4

0.6

0.8

1.0

P

FIG. 3: Top: A plot of the dimensionless energy ε/t verses
dimensionless temperature t. Data shown is generated in two
ways. For temperatures larger than t ∼ 1 we simulate the
thermal theory for N = 2, 3, 5, 8, 12 with 5 points. The low
temperature results are computed for N = 2, 3, 5 for 5 points
by simulating the periodic theory, and reweighting with the
appropriate combination of the thermal and periodic Pfaffi-
ans, as described in the main text. The low temperature black
hole prediction is shown. Bottom: A plot of the Polyakov loop
observable P for the same cases.
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FIG. 4: For comparison with figure 3, ε/t verses t is shown
for the quenched theory for N = 5, 12, 30 and periodic theory
with Pfaffian reweighting for N = 3, 5, using 5 point lattices.

for larger t this does not occur. As argued above we be-
lieve this is an artifact of our lattice formulation and has
nothing to do with continuum physics. The points plot-
ted in the figure are taken only from simulations where
the scalar distribution remained bounded for hundreds
of physical RHMC times (the observed instability sets in
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Figure 11. Plots of the expectation value of the Polyakov loop h|P |i and the extent of space hR2i
as functions of temperature. The dashed curves represent the predictions of the high temperature
expansion.

and gives the mass gap in the full Hamiltonian of the model.

The correspondence of the full and gauged Gaussian model is excellent for a wide range

of temperatures. Somewhat surprisingly the phase transition region of the full model is

faithfully reproduced by the e↵ective model with the two transitions of the full model merged

into one. Since the finite temperature version of the model is also the high temperature limit

of 1 + 1 dimensional maximally supersymmetric Yang-Mills [24] compactified on a circle, we

have established that this latter model should also reduce to a system of free massive scalars

in its large radius high temperature phase.

We then study the full supersymmetric BFSS model using a rational hybrid monte carlo

simulation with Fourier acceleration to evaluate observables of the model. After describing

our lattice discretisation of the model we investigated the phase of the Pfa�an obtained on

integrating out the Fermions. The Pfa�an is generically complex, however, its phase is in

fact not a problem for simulations. What enters simulations is the cosine of this phase and

in the regularisation used in our work this phase is in fact restricted to a region where the

cosine is positive once the lattice spacing is su�ciently small. Direct measurements confirm

that the phase is indeed small.

Though our results for this part of the paper do not yet go beyond those of [19] or cover as

low a temperature as those of [21] they are more precise than those of Catterall and Wiseman

[18] who use a similar lattice simulation. We have taken several lattice spacings and then

performed an extrapolation to the limit of zero lattice spacing. We find good agreement

with earlier results and excellent agreement with the predictions of AdS/CFT once 1/↵0

corrections are included. Our results appear to approach the predictions of AdS/CFT a

little more closely than those of [19] but the di↵erence is broadly within the errors. The

principal di�culty in simulating the model at lower temperatures is due to critical slowing

down and though Fourier acceleration helped for T ' 0.5, simulations becomes increasingly

more di�cult at lower temperatures. An additional di�culty is the instability due to flat
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BFSS model
Analytic directions

• Gaussian approximation and gap equations


• Exciting progress QM bootstrap


• Scaling symmetry

Berenstein, Hulsey ‘21

Lin ’20
Han, Hartnoll, Krustoff ’20 

….

Kabat, Lifschytz ‘99
Kabat, Lifschytz and Lowe ‘01

Lin, Shan, Wang, Yin ‘13

TW ’13
Biggs, Maldacena ‘23



BFSS model
• Can we understand the temperature behaviour?

ϵ = 2
27 − 5p
5 − p (9 − p) (7 − p)− 19 − 3p

5 − p N2 (π
13 − 3p

2 Γ ( 7 − p
2 ) t7−p)

2
5 − p



BFSS model
• Can we understand the temperature behaviour?


• Recall the moduli space theory;


• Then there is a scaling symmetry;


• This constrains energy density to scale as;

Lclassical =
N
λ

N

∑
a=1

(∂ ⃗X a)
2

S ∼ ∫ dτdxp (Lclassical + L1−loop + …)

L1−loop ∼ ∑
a<b

(∂μ
⃗X ab)

4

| ⃗X ab |7−p

Ln−loop ∼ ∑
a1<a2<…<an

(∂ ⃗X )
2+2n

| ⃗X |(7−p)n

τ → Λ−1τ ⃗x → Λ−1 ⃗x ⃗X a → Λ
2

5 − p ⃗X a S → Λ
(3 − p)2

5 − p S

ϵ = 2
27 − 5p

5 − p (9 − p) (7 − p)− 19 − 3p
5 − p N2 (π

13 − 3p
2 Γ ( 7 − p

2 ) t7−p)
2

5 − p

ϵ ∼ t
2(7 − p)

5 − p

Smilga ’07;  TW ’13

Morita, Shiba, TW, Withers ’13 and ‘14

Biggs, Maldacena ‘23

Morita, Shiba, TW, Withers ’13
Biggs, Maldacena ‘23



BFSS model
• While the SYM doesn’t have conformal symmetry for  

leading to AdS in the dual, there is a scaling symmetry in the dual 
gravity


• Recall the moduli space theory;


• When does this become strong coupled? When,

p ≠ 3

Lclassical =
N
λ

N

∑
a=1

(∂ ⃗X a)
2

S ∼ ∫ dτdxp (Lclassical + L1−loop + …)

L1−loop = − ∑
a<b

Γ ( 7 − p
2 )

(4π)
1 + p

2 (2
(∂μ

⃗X ab ⋅ ∂ν
⃗X ab)

2

| ⃗X ab |7−p
−

(∂μ
⃗X ab ⋅ ∂μ ⃗X ab)

2

| ⃗X ab |7−p )

⟨Lclassical⟩ ∼ ⟨L1−loop⟩



BFSS model
• Estimate thermal vevs as;


• Proceed keeping transcendental numbers! 

• So strong coupling implies;

⟨Lclassical⟩ = ⟨
N
λ

N

∑
a=1

(∂ ⃗X a)
2
⟩ ∼

N2

λ
π2T2χ2

⃗X a ∼ ⃗X ab ∼ χ ∂μ ∼ πT

⟨L1−loop⟩ = ⟨ − ∑
a<b

Γ ( 7 − p
2 )

(4π)
1 + p

2 (2
(∂μ

⃗X ab ⋅ ∂ν
⃗X ab)

2

| ⃗X ab |7−p
−

(∂μ
⃗X ab ⋅ ∂μ ⃗X ab)

2

| ⃗X ab |7−p )⟩ ∼ N2
Γ ( 7 − p

2 )
(π)

1 + p
2

π4T4χ4

χ7−p

N2

λ
π2T2χ2 ∼ N2

Γ ( 7 − p
2 )

(4π)
1 + p

2

π4T4χp−3

∑
a

∼ N ∑
a<b

∼ N2

χ = (Γ ( 7 − p
2 ) π

3 − p
2 λT2)

1
5 − p



BFSS model
• Estimate energy density as;


• So,


• Compare to earlier;

ρ ∼ ⟨Lclassical⟩ = ⟨
N
λ

N

∑
a=1

(∂ ⃗X a)
2
⟩ ∼

N2

λ
π2T2χ2 ∼

N2

λ
π2T2 (Γ ( 7 − p

2 ) π
3 − p

2 λT2)
2

5 − p

ϵ = ρλ− 1 + p
3 − p ∼ N2π2 (Γ ( 7 − p

2 ) π
3 − p

2 t7−p)
2

5 − p t = T λ− 1
3 − p

ϵ = 2
27 − 5p
5 − p (9 − p) (7 − p)− 19 − 3p

5 − p N2 (π
13 − 3p

2 Γ ( 7 − p
2 ) t7−p)

2
5 − p
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To gauge or not to gauge…
• Do we have to gauge? We previously gauge fixed to write;


• Recall there is the singlet constraint


• Maldacena & Milekhin ’18 argue that after dropping the singlet 
constraint, the gravity dual is still valid — the non-singlet sector 
states all live at high energy.


• Non-singlet states can be thought of as adding Wilson line 
insertion,   — gravity dual is a string hanging from the 
‘boundary’


• Note, this is not a susy `Maldacena’ loop

TrRPei ∫ Atdt

SBFSS =
N
λ ∫ dt Tr [ 1

2
( ·XI)2 −

1
4 [XI, XJ]2 + Ψ (i ·Ψ − ΓI [XI, Ψ])]

Maldacena, Milekhin ’18



To gauge or not to gauge…
• Gravity dual is a string with Neumann boundary conditions


• Then it is intuitive that the lowest energy state will be where the 
string end points come together; argue that  


• A very interesting comment in that work is that the same should 
remain true for the M-theory limit….

E ∼ λ1/3

Alday, Maldacena ‘07



To gauge or not to gauge…

• Do we have to gauge?
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• In Catterall & TW ’09 it was argued that an IR regulator mass 
should be added to control the divergence in the partition 
function.


• Further it was argued that the natural regulator is the BMN model, 
since this still has a gravity dual


• There is a mass deformation preserving gravity dual and max 
susy that breaks the flavour 


• Now also discrete ‘fuzzy sphere’ vacua at finite mass 


• However gravity only emerges in  limit

SO(9) → SO(3) × SO(6)

μ

t, μ ≪ 1

BMN deformation Berenstein, Maldacena, Nastase ‘02

SBFSS =
N
λ ∫ dt Tr [ 1

2
( ·XI)2 −

1
4 [XI, XJ]2 + Ψ (i ·Ψ − ΓI [XI, Ψ])]

ΔSBMN =
N
λ ∫ dt Tr

μ2

2 ∑
I=1,2,3

( ·XI)2 +
μ2

8 ∑
I=4…9

( ·XI)2 + iμ ∑
I,J,K=1,2,3

ϵIJKXIXJXK



• Now gravity computation is much more subtle


• Vacuum geometry is known


• Required numerical GR methods to find black hole solutions in 
technical `Tour de Force’ by Costa, Greenspan, Penedones, 
Santos ’14


• Conjecture confining phase transition — dual to gravity gas

BMN deformation Berenstein, Maldacena, Nastase ‘02

Headrick, Kitchen, TW ‘09



Lattice results
smaller and dominate the thermal ensemble. In other words, the critical temperature for the

phase transition is 11

Tc

µ
=

7

12⇡bµc
= 0.105905(57) . (76)
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Figure 9: The free energy ratio f(bµ) obtained numerically using (75).

Let us now consider thermodynamical stability. The specific heat of the system is given

by

c = T

✓
@S

@T

◆

µ

. (77)

From (70) and (71) we may also express the specific heat in terms of the function s(bµ) as

c

S
=

9

5
� bµ @

@bµ log s(bµ) . (78)

Since in the range the black hole geometry is thermodynamically favoured, s(bµ) is a decreas-

ing function, as shown in Fig. 7b, we conclude that the specific heat is always positive and

therefore our solution is thermodynamically stable in this range.

4 Discussion

Our main result is the construction of the black hole geometry dual to the deconfined phase

of the PWMM. This allowed us to determine the value of the critical temperature at strong

coupling as depicted in the phase diagram 1. In addition, we determine the thermal expec-

tation values of several observables in the deconfined phase (see Fig. 8).

11
We present the critical temperature with 6 digits because our numerical solutions satisfied the Smarr

formulas with 10
�6

% accuracy and the polynomial fit in (75) decreases precision by one order of magnitude.

26
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Figure 5. The left figure shows data for the two observed phase transitions. The green points are
the observed values of the Myers transition and the dark blue points are the Polyakov transition,
both were measured for N = 8 and ⇤ = 24. The blue curve is the large µ expansion of the critical
temperature to 3 loops. The red line is the gauge gravity prediction and the purple curve is the Padé
approximant obtained from the large mass expansion.
The figure on the right shows our extrapolation of the critical temperature of the Myers transition
from the observed values for N = 4, 5, 6, 8 and N = 11 for µ = 2.0 and ⇤ = 24. We use a quadratic
extrapolation (green), given by 0.36�2.17x2 and quartic (red) given by 0.35�1.09x2�15.26x4, which
gives Tc(1) = 0.35± 0.01.

become a problem especially when approaching the continuum limit, a limit involving sending

⇤ to infinity.

In practice we find that the direct observable (4.2) behaves better numerically. For

the BMN model we implement (4.1) directly using pseudo fermions following the strategy

discussed in section 4.2 of [30] and used in [35]. We also, for completeness, observe the BMN

Ward identity analogue of (4.3).

The observables we follow are then: E as defined in (4.1),

Myers =

⌧
i

3N�

Z �

0
d⌧✏rstTr(X

rXsXt)

�
, (4.5)

h|P |i =
⌧

1

N
|Tr (exp [i�A]) |

�
, (4.6)

R2
ii =

⌧
1

N�

Z �

0
d⌧ Tr(XiXi)

�
(no sum on i). (4.7)

The energy and specific heat of the system, which due to supersymmetry, should both

decrease to zero as T approaches zero, are given by

N2E = hHi = �@� lnZ and C = h(H � hHi)2i = @2
� lnZ � 0. (4.8)

We see, furthermore, that E must be a monotonic function of T . This proves especially useful

in the simulations as tracking the energy as a function of T was a crucial clue in identifying

– 10 –
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Let us now consider thermodynamical stability. The specific heat of the system is given

by

c = T

✓
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µ

. (77)

From (70) and (71) we may also express the specific heat in terms of the function s(bµ) as

c

S
=

9

5
� bµ @

@bµ log s(bµ) . (78)

Since in the range the black hole geometry is thermodynamically favoured, s(bµ) is a decreas-

ing function, as shown in Fig. 7b, we conclude that the specific heat is always positive and

therefore our solution is thermodynamically stable in this range.

4 Discussion

Our main result is the construction of the black hole geometry dual to the deconfined phase

of the PWMM. This allowed us to determine the value of the critical temperature at strong

coupling as depicted in the phase diagram 1. In addition, we determine the thermal expec-

tation values of several observables in the deconfined phase (see Fig. 8).

11
We present the critical temperature with 6 digits because our numerical solutions satisfied the Smarr

formulas with 10
�6

% accuracy and the polynomial fit in (75) decreases precision by one order of magnitude.
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• Significant progress in BFSS matrix theory at ‘large N’.


• Where to go now?


• Improve further off lattice simulations


• New analytic approaches


• New observables - entanglement entropy?


• Develop better understanding for why gravity behaviour seen


• Dynamics and quantum computing?


• M(atrix) theory limit and finite N?

Summary
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The End


Thanks for listening!


