# Matrix Geometry Revisited

#### Masanori Hanada 花田 政範

### Queen Mary University of London

10 Jan 2024 @ CERN

- How is the geometry encoded into matrices?
- Is matrix geometry really "noncommutative"?
- First of all, what is "matrix"?

MH, 2102.08982[hep-th] (PRD) Gautam, MH, Jevicki, Peng, 2204.06472[hep-th] (JHEP)



(Witten, 1995; <u>as low-energy effective description</u>) Toby's talk this morning





Symmetry enhancement

• 
$$\vec{x}_1 = \cdots = \vec{x}_N$$
  
& off-diag = 0  $\rightarrow U(N)$ -invariant

(All strings are massless)

• 
$$\vec{x}_1 = \dots = \vec{x}_{N_1}, \ \vec{x}_{N_1+1} = \dots = \vec{x}_{N_1+N_2},\dots$$
  
& off-diag = 0  
 $\rightarrow U(N_1) \times U(N_2) \times \dots$ -invariant

(Strings connecting D-branes in the same bunch are massless)

$$ec{x_1} = \cdots = ec{x}_{N_1}, \ ec{x}_{N_1+1} = \cdots = ec{x}_{N_1+N_2}, \ldots$$
  
+ off-diag excitations in each block

Non-commutative sub-matrices = various objects e.g., BH



Large-N = (almost) 2nd Quantization

Banks, Fischler, Shenker, Susskind 1996 (in the Matrix Theory proposal)

Toby's talk this morning

### A natural hope

"Diagonal elements = location of D-branes"-picture can be used for Maldacena-type gauge/gravity duality.



- Polchinski (1998) and Susskind (1999) pointed out a subtlety.
   Toby's talk this morning
- There is a simple resolution. (MH, 2021)

### <u>A subtlety</u>

(Polchinski, hep-th/9903165) **Toby's talk this morning** 

[This is for p<3. Similar argument applies to p=3.]

### Gauge theory

Highly non-commutative 'fuzz' (delocalized ground-state wave function)



'Location' can make sense only here



large stringy corrections

$$\langle \mathrm{Tr} X_I^2 \rangle \sim N^2 \ (\leftarrow \text{'t Hooft counting})$$

Eigenvalues of  $X_I^2 \sim N$ 

Eigenvalues of  $X_I \sim \sqrt{N}$ 

#### Eigenvalues are large...

$$\langle \operatorname{Tr}[X_I, X_J]^2 \rangle \sim N^3 \ (\leftarrow \text{'t Hooft counting})$$

Diagonalize  $X_1$   $\rightarrow \sum_{i,j=1}^{N} (X_1^{ii} - X_1^{jj})^2 |X_{J,ij}|^2 \sim N^3$  $\rightarrow |X_{J,ij}| \sim 1$ 

#### Not close to diagonal at all...

Highly non-commutative 'fuzz' (delocalized ground-state wave function)



#### 'Location' can make sense only here



We must be  
careful here 
$$\langle \operatorname{Tr} X_I^2 \rangle \sim N^2 \ (\leftarrow \text{'t Hooft counting})$$
 Correct  
Eigenvalues of  $X_I^2 \sim N$   
Eigenvalues of  $X_I \sim \sqrt{N}$  Correct

#### We consider matrix model for simplicity. (Generalization to QFT is straightforward.)

$$\hat{H} = \text{Tr}\left(\frac{1}{2}\hat{P}_{I}^{2} + \frac{1}{2}\hat{X}_{I}^{2} - \frac{g^{2}}{4}[\hat{X}_{I}, \hat{X}_{J}]^{2}\right) \quad \text{(+fermion)}$$

$$I=1,2,...,9$$

(this mass term is not essential)

Low-energy states = (superpositions of) <u>wave packets</u>.

$$\begin{split} |\Phi\rangle &= \int_{\mathbb{R}^{9N^2}} dX |X\rangle \langle X |\Phi\rangle \equiv \int_{\mathbb{R}^{9N^2}} dX \underline{\Phi(X)} |X\rangle \\ & \text{Extended smoothly in} \\ & \mathbb{R}^{9N^2} \end{split}$$

### $X_{I,ij} \in \mathbb{R}^{9N^2}$ is not uniquely determined.

Physically meaningful 'matrices' = center of a wave packet in  $\mathbb{R}^{9N^2}$ 

$$\{Y_{I,\alpha}\}$$

### SU(N) gauge transformation:

$$\hat{X}_{I,ij} \to \hat{U}\hat{X}_{I,ij}\hat{U}^{-1} = (U\hat{X}_I U^{-1})_{ij}$$

$$|X\rangle \to \hat{U}|X\rangle = |U^{-1}XU\rangle$$



- The location of the wave packet moves  $\rightarrow$  diagonalizable
- The size of the wave packet does not change.
- Y=0 for the ground state.



Almost **no** overlap, if the distance between centers is larger than 1.

#### If you are a singlet-Hilbert-space lover:



(~Polyakov loop; gauge field A<sub>0</sub>)

$$Z(T) = \operatorname{Tr}_{\mathcal{H}_{\operatorname{inv}}}(e^{-\hat{H}/T})$$

# **Gauged Gaussian Matrix Model**

$$\hat{H}_{\text{Gaussian}} = \sum_{\alpha=1}^{N^2} \left( \frac{1}{2} \hat{P}_{I,\alpha}^2 + \frac{1}{2} \hat{X}_{I,\alpha}^2 \right) \qquad \qquad \textit{I=1,2,...,9}$$

#### <u>Ground state = Fock vacuum</u>

ground state 
$$\rangle = |\{0\}\rangle = \otimes_{I,\alpha} |0\rangle_{I,\alpha}$$

$$\langle X | \text{ground state} \rangle = \frac{1}{\pi^{9N^2/4}} \exp\left(-\frac{1}{2} \sum_{I} \text{Tr} X_{I}^{2}\right)$$

Gauge-invariant wave packet localized around the origin.

#### <u>Generic wave packets = coherent states</u>

(in Gaussian matrix model)

|wave packet at 
$$\{Y_{I,\alpha}\}\rangle = e^{-i\sum_{I=1}^{9}\sum_{\alpha=1}^{N^2}Y_{I,\alpha}\hat{P}_{I,\alpha}}|\text{ground state}\rangle$$
  
=  $e^{-i\sum_{I=1}^{9}\text{Tr}(Y_I\hat{P}_I)}|\text{ground state}\rangle.$ 

(More generally,  $e^{-i\sum_{I=1}^{9} \operatorname{Tr}(Y_I \hat{P}_I - Q_I \hat{X}_I)} | \text{ground state} \rangle$ )

$$\langle X|Y,Q=0\rangle = \frac{1}{\pi^{9N^2/4}} \exp\left(-\frac{1}{2}\sum_{I} \operatorname{Tr}(X_I - Y_I)^2\right) \qquad \underbrace{\{Y_{I,\alpha}^{(U')}\}}_{\{Y_{I,\alpha}^{(U')}\}} \qquad \underbrace{\{Y_{I,\alpha}^{(U')}\}}_{\sqrt{\sum_{I} \operatorname{Tr}Y_I^2}} \qquad \underbrace{\{Y_{I,\alpha}\}}_{\sqrt{\sum_{I} \operatorname{Tr}Y_I^2}} \ \underbrace{\{Y_{I,\alpha}\}}_{\sqrt{\sum_{I} \operatorname{Tr}Y_I^2}} \ \underbrace{$$

### Correct symmetry enhancement pattern

• *i*-th D-brane at  $\vec{y}_i \in \mathbb{R}^9$ 

$$e^{-i\sum_{k=1}^{N} \vec{y}_k \cdot \hat{\vec{P}}_{kk}} |\text{ground state}\rangle$$
  
$$\vec{y}_1 = \dots = \vec{y}_{N_1}, \ \vec{y}_{N_1+1} = \dots = \vec{y}_{N_1+N_2}, \dots$$
  
$$\to \mathrm{U}(N_1) \times \mathrm{U}(N_2) \times \dots \text{-invariant}$$

Correct 'Higgsing' effect

$$\hat{H} = \text{Tr}\left(\frac{1}{2}\hat{P}_{I}^{2} + \frac{1}{2}\hat{X}_{I}^{2} - \frac{g^{2}}{4}[\hat{X}_{I}, \hat{X}_{J}]^{2}\right)$$

 $e^{-i\sum_{I=1}^{9} \operatorname{Tr}(Y_I \hat{P}_I)} | \text{ground state} \rangle$ 

$$e^{i\sum_{I}\operatorname{Tr}(Y_{I}\hat{P}_{I})}H(\hat{P},\hat{X})e^{-i\sum_{I}\operatorname{Tr}(Y_{I}\hat{P}_{I})} = H(\hat{P},\hat{X}+Y)$$

Mass term due to Higgsing:

$$\sum_{I \neq J} \sum_{i,j} (y_{I,i} - y_{I,j})^2 |\hat{X}_{J,ij}|^2$$

# Wave packet in interacting theories

Some corrections to the coherent state are needed.



# Some speculations

Gautam, MH, Jevicki, Peng, 2204.06472[hep-th] (JHEP)



The confined sector can be used to probe the geometry outside the BH.



- Small BH in AdS can evaporate.
- There is a natural partitioning of matrix degrees of freedom for some states.
- Extended Hilbert space factorizes.  $\rightarrow$  Entanglement can be defined.

$$\mathcal{H}_{\mathrm{ext}} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$$

Partitioning colors, instead of space



# Meaning of region C?

- D-branes in region C ~ BPS black hole
- Asymptotically AdS geometry is created by D-branes in region C
- BH described by A can sit away from the center for some time
  - → Region C is not always "behind the horizon"
- Region C ~ AdS entire geometry?



Suppose Bob has access to BUC, i.e., he has  $\hat{\rho}_{B\cup C}$ 

- Suppose Bob has access to BUC, i.e., he has  $\hat{
  ho}_{B\cup C}$
- Smaller von Neumann entropy → more information
- Page curve = the best of Bob's knowledge

At best, the coarse-grained entropy of region B.

Bob cannot see region C.

<u>After Page time</u>  $S_B > S_{B \cup C}$ 

<u>Before Page time</u>  $S_B < S_{B \sqcup C}$ 

Bob can get information from region C. Bob can see region C.



 $\mathcal{H}_{\mathrm{ext}} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ 



## Future directions

- Shut up and get a number

- Probe BPS p-brane geometry by a D-brane

numerical method like Han-Hartnoll?

- Dual M-theory geometry of D0-brane matrix model?