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Introduction

Matrix Models can be
non-perturbative formulation of string/M theory

c=1 matrix model, BFSS model, IKKT model,...

BMN matrix model (a.k.a. plane-wave matrix model)

... the mass-deformation of BFSS

w/ maximal supersymmetry
[Berenstein, Maldacena, Nastase '02]

Non-perturbative physics
D-/M-branes — how do they emerge?

Target space metric — how is it determined?

-+ Emergent geometry



Introduction
Gauge/gravity duality

[Lin, Lunin, Maldacena '04; Lin, Maldacena ’05]

Gravity solution
IA/11D SUGRA

. blown-up p-branes - .
matrix model DOs/gravitons gravitational field
Xxi=Lp

3¢ Bubbling geometries
L : SU(2) generators
a=1,2,3)

Each matrix-model vacuum should
describe the corresponding brane config.
and its gravitational field.

Many degenerate vacua



Introduction
Gauge/gravity duality at finite T

[Costa, Greenspan, Penedones, Santos '14]

Thermal state Thermal geometry
BMN matrix model I IA/11D SUGRA

o AP .o ' Hawking-Page-like transition
E III‘ \
| f Polyakov loop R
b { high temp. low temp.

02| i

e T, The agreement is numerically checked.
[Y.A., Filev, Kovacik, O’Connor ’18;

126

- I\/IyerS term Bergner, Bodendorfer, Hanada, Pateloudis,
1ol ~ (T (iX1] X2, X3])) Rinaldi, Schéfer, Vranas, Watanabe '21;...]
0.8 {
f Transitions between different brane
‘ - configs have been observed.

(u=5, L=24, N=11) [Y.A,, Filev, Kovacik, O’Connor 18]



Introduction
The vacua of the BMN model

The BMN model has many degenerate vacua, protected by susy.
[Dasgupta, Sheikh-Jabbari, Raamsdonk '02]

1y ® Lc[lel]
ya—H 1,, ® LIV L™ N5 dimensional irrep. matrix
3 ’ N2: multiplicity of this irrep.
a=1,2,3)
XM — The vacuum is parameterised by {N,, NJ },_1 5 ...
m=4,...,9)
- R
Partition of N
N =) N;N;
S
J

[Maldacena, Sheikh-Jabbari, Raamsdonk '02]



Introduction
The vacua of the BMN model

The BMN model has many degenerate vacua, protected by susy.
[Dasgupta, Sheikh-Jabbari, Raamsdonk '02]

1
1y ® LM
[Nsl. A7 S -
ya — H 1y, ® LIV L N5.d|.m.en3|onél rrep. matrix
3 Na2: multiplicity of this irrep.
(a=1,2,3)
XM — The vacuum is parameterised by {N,, NJ },_1 5 ...
m=4,...,9)

Numbers of 5-branes «—  finite —~ 5-brane config.

Mnite

p™ of 5-branes

Partition of V
N =) N;N;
S

[Maldacena, Sheikh-Jabbari, Raamsdonk '02]



Introduction

5-brane geometry in the Matrix Model

X4 = %La > fuzzy 2-sphere .-+ 2-brane!
=1,2,3
Vacuum: @ )
X" =0 > ?  should be (fuzzy) 5-sphere...
(m=4,...,9)

5-branes have been a long-standing problem

To solve this problem, we ought to notice that
geometrical features should be seen at strong coupling



Localisation



Localisation

Supersymmetric localisation computation [Pestun '07;...]

Symmetry tends to make difficult computation possible.

The (new) SUSY localisation technique is a very powerful tool!

- applicable to a large class of supersymmetric theories

not only topological field theories
but also gauge theories on curved space, supergravity theories, ...

» can make an infinite-dim. path integral to a finite-dim. integral
N i

J[dX@] _>j | [am,

_l:1 -

* its result is exact and valid in the strong-coupling regime




Localisation

How the localisation works

Let us consider a system with a fermionic trf. o

Zs = | [dX] Oe™>X] 58S =0

oJ

[Pestun ’07;...]

=0

Introduce a deformation 0V whose bosonic part is positive-definite.

Z,(1) = J[dX] Ge-SXI-VIXI 2y

dZy(6)
dt

Then

The original path integral can be computed by config.
localised around oV = O:

[dX]5(OV e >XI=1VIX]y =

if the surface term

vanishes or
[dX] is SUSY inv.

Z,=Z,0) = lim Z7)

I——400

1-loop computation becomes exact



Localisation

BMN-model action
Let us consider a double-Wick-rotated theory (r = it, X" = — iX°)

(to construct susy)

2
1 R 1
(- Jdr tr(E(DTX’)Z o (—ﬁgabcxc — X Xb]) - SIX" X

g 3 . )
L x4 = (2 X, X"+ ) KK, + fermi
——[X™, ermions
4 2\6) " &
Off-shell SUSY (9 supercharges) (=1,....8,0, a=1,23, m=4,....8,0)
5.X' = iey'?, 0,A = iey, P,
iy l .U 7
5S\{’ — (DTXZ}/ - 5 Xi: )(j]yl] B EXayaylzg’ T g m}/m}/123> €+ KIUI
0.K, = iy, (;/TDT‘P —iy'[X,, P] — ;—48@6;/“1"‘{’) [Berkovits "93]
Killing spinoreq.: 0.e = — iyﬂ/l%e e & u;’s satisfy conditions that

T
12 make the SUSY closes off-shell



Localisation

Quarter-BPS sector (4 supercharges) [Y.A., Ishiki, Okada, Shimasaki *12)
. 50(5,1) — SO(4)XSO(1,1)Z y4567€ = €
A = 4 vector multiplet
— /N = 2 vector + /' = 2 hyper
- BPS Wilson loop : ve(7) = e(—7)

0,6 = ——yy'Pe

‘ 12

dim. reduction of
the half-BPS Wilson loop
in #/=4SYMon R XS>

¢ — X3 + sinh % X8 + cosh % XO IS Invariant

(x€yhe; X))



Localisation

What will this 1/4-BPS mean? [Y.A., Ishiki, Okada, Shimasaki *12]
In the original BMN model,

[ [
¢=X3+i<sin%X8—cos%X9)

This would describe the radial directions of S% X S°

fiber space

insertion of ¢ RxSO(3)xSO(6)
(f(p(1))) — 50(2)xS0(5)

a point on S% X S°

We expect it describes low-energy d.o.f. In fact, ¢ turns out to be
time-independent, meaning that it only has a “0-energy mode.”



Localisation

| ocalisation for the BMN model [Y.A., Ishiki, Okada, Shimasaki *12]

- Wick rotation to the Euclidean theory (but not compactified)

- B.C.: All fields approach the same vac. config. at 7 — * 0.

- Fermionic sym.: off-shell SUSY + BRST sym. 6 =6, + 63
(the 1/4-BPS)

- Deformation oV: 6V =96 (sz tr[W6Y] + Ven

Hermitian conjugate after the Wick rot.

Localising locus: (basically, a solution to 6,'¥ = 0)
A A M
X =K, X0 =-——0r (L,M]=0)
3 6 cosh —
same as the vacuum ) 6
moduli

other X’s are zero

~ U .
¢ = g(2L3 + IM) (u = 6 from now on, set by rescaling)



Localisation

Partition fn. in the 1/4-BPS sector (YA, ishiki, Okada, Shimasaki’12]

Z, = | [dX] e XI-1oVIX] Exact result
| (up to instanton effect)
, - —S[X]-t5VIX+-L1X] i 5
— tllm J [dM] [dX] € Vi — [dM] Zl —loop e_S[X]
— 00 .
= — 2 - 2
S[X] tI‘ M Z Z M contribution from superpartners of

s=1 i=1 erlx2x3x8
1NN{; 9 9 9 9

Z1 - loop = H H H H [ {27 +2)° + (msi — muy) 2 H(2J)% + (msi —my;)?}

s,t=1 —nNt =1 g5=1 {(2J+1)2+(msz_mtj)2}2

J_
g contribution from X4, ---, X’

1
2

1 ® LM (M, ®1y, ‘

lNé\@Lc[lNS]} \ MA® 1N§\)

(/A blocks) (m,; are eigenvalues of M)



Localisation

The VEV of any 1/4-BPS operators can be computed

by a simple matrix integral
T-iIndependent

@@ H@@))) = (F@Ly + M) H(QLs +iM)-+)

(<@>MM — ZLJ[dM] O Zl—loope_S[X])

1

The eigenvalue distribution for the sth block:
N

p(q) = < Z o(q — msi)>
i=1

(support: [—¢'®, g¥])

MM



Localisation

Eigenva|ue distribution [Y.A., Ishiki, Okada, Shimasaki ’14]
The saddle point eq. for S.¢[M] = S[X] — In Zl_loop
at large q,f,f) for the sth block is a Fredholm-type integral eq.

A gl

p(s)(Q)_l Z J dq’ Ng T Ng — |N§ _ Ngl p(t)(q/) — ﬂs _ 2N5S 6]2
r &) o | (VSHND P+ (g0 (N§S—ND>+(g—q)* r mg?

p.: Lagrange multiplier
In the A = 1 case,

1 [ ON ON.
plg)——| d > p(q’)=ﬁ > 4

r)_, TN+ (g - q) T g

This can be solved in special limits.
(Ns/q,, = 0 and +00)



Localisation

Applications of the localisation result

- The eigenvalue dist. of ¢ reproduces the spherical geometry
of stacks of M5-branes.

It also reproduces the spherical geometry of stacks of M2-
branes at Iarge NZ' [Y.A., Ishiki, Shimasaki, Terashima ’17]

- The eigenvalue dist. of ¢ satisfies exactly the same equations
as the Lin-Maldacena geometry does,
[Y.A., Ishiki, Okada, Shimasaki '14;

i.e., ¢ constructs part of Einstein’s €q. VA ishiki. Shimasaki *14]

matrix model blown-up
DOs/gravitons

-




Localisation

* The double scaling limit for NS5-branes

(It was obtained with help of nhumerical computation)

[Y.A., Ishiki, Okada, Shimasaki ’14;
Y.A., Ishiki, Matsumoto, Shimasaki, Watanabe ’22]

(Purely analytic derivation of the DSL is work in progress )
[Y.A., Ishiki, Shimasaki]

What hasn’t done yet

» Complete reconstruction of the Lin-Maldacena geometry in the
matrix model, and the real meaning of ¢

- 1/ N correction and coupling expansion (a’ correction)

* Reproducing the theory on M-branes in the 1/4-BPS sector

 Relationship to the ABUM/BLG model, in the limit for M2-branes
» Using the exact result as an input for the bootstrapping

- Application of the localisation technique to other BPS sectors,
and other matrix models



M-brane geometry



M-brane geometry

The vacuum corresponding to a single-stack M5 (A = 1):

Sa _ M : _ 52
-+ corresponds to Ns/g,, — 0

@) l”q'f”d, 2N @) p 2Ns
S, T eNy v a—a2 " T !
_ ZL (w(gq — 2Nsi) — w(g + 2Nsi)) w7 = qu P4)
7l <—dq
/ . / . 2N5 2
— Ns(0'(q—1i0)+w'(qg+i0) =p R

~ one-matrix model with quartic interaction

gm IS determined by the least action:
- q 3/2

2
3 q
p(q) = 1 — (-) dn = (8g2N2)%
3rq,, -



M-brane geometry

We now have the eigenvalue distribution in the M5 limit.
- q 3/2

2
3 q o 1
p(Q): | > ,0(7‘) — 3 5 5(‘7:1_Q”rn)
Bﬂqm 4m T4, S5 radi
] " uplift to 6D radius
(x4 )

~U
|

4 i
2n __ 602 Ar2\..2Nn
J dqp(q)q™ = | d°r p(r)x; .
—q,, : \x9)
Filev, O’Connor '14;
Y.A., Ishiki, Shimasaki, Terashima ’17]

1
G = (88°N,)?
-+ exactly the same as the radius computed by

the light-cone Hamiltonian for a 5-brane
after the appropriate rescaling

N . . #m°TipN . gz .. 1 .
H=1tr PP — [ X', XJ][Xl-, X]+ ) - tr| —P'P' — —[X’,XJ][XZ-, X+ -
2p+ pt J o) 4g2 J

[Y.A., Ishiki, Shimasaki, Terashima ’17]



- Mb5-brane realisation:

M-brane geometry

[Y.A., Ishiki, Shimasaki, Terashima ’17]

locus: ¢ ~IM at large N2 and g2N2 > 1
SO(6) symmetric uplift > H(7) = — ) ( | 7] —c]m)
- S5 radius

- M2-brane realisation (at large No):

locus: ¢ ~ 2L, at large Ns and gz/N5 > 1
: : ~ny— 1 N 3wg?N, 1
SO(3) symmetric uplift > p(r) = = =5\ [7]=( o )3>
r( 8N )3 52 radius

We reproduce the spherical thin shell distribution
with the correct radius

N.B. The same goes for multiple-stack M2- or M5-branes.



Theory on 5-branes



Theory on 5-branes

We should reproduce the theory on the spherical 5-branes.
But there’s a subtlety for NS5-branes.

To reproduce the spherical brane geometry, we took
M5-brane limit: N, —» coand A = g°N, = c0  --- OK

The theory on NS5-branes is considered to be Little String Theory.
LST should be reproduced in the BMN model by taking a limit.

NS5-brane limit: N, — oo and A = g*N,: fixed (?)
NS5 coupling (?)
q,, doesn’t approach oo

The spherical NS5 geometry
IS hot reproduced

The above naive identification of the NS5 coupling may not be correct.

This would be answered by the gauge/gravity duality



Theory on 5-branes

Vacuum Gravity solution

Type-llIA Lin-Maldacena geometry: [Lin, Maldacena ’05]
. N2 . .
V—2v % %4 44%
ds? = — d———dt* = 2—(dr* + dz*) + 4dQ3 + 2——dQJ 7,
—V” V-2V V = A=
. . ) ’ /1 TN
V2V (V2) (A =V =2V)V" = (V)?)
= —4 Q,, B, = 2 ), -+ .
Le A WAL, 2, < T Z) A, (dot: rd,, prime: 9.)

D2- and NS5-charges reside on (r,z) w/ y =V =0,
and each config. of the charges corresponds to a BMN vacuum.

It depends only on V(7, z), which satisfies the Laplace eaq.

..
—V+V'=0
. r2




Theory on 5-branes

V(r, 2) can be regarded as an axisymmetric electrostatic potential.

1 ..
- Laplace eq.: —2V+ V=0
r

2
* Positivity of the metric: ~ background potential V,, (r,z) =V, <r2z — §z3>

- Regularity at y = V=0: configuration of conducting disks

height of the disk s =73
s =2

A s
V(r,2) = Vp o (r,2) + Z qbs@ N:, r, 7] e 1

s=1 “electric density” a

infinite conducting plate

The Laplace eq. is rewritten as

1 & (" 7(N5 + N5) 7 | N5 = N5
Jw)=— 2[ du’ | — ) T . — [/ =G - VoNiu?
=1 V=R, TWNs+ N>+ (u—u)> (N5 =N+ (u—u)
R, 22
" du f(u) = ?Ng C.: constant value of the potential on the sth disk
_Rs



Theory on 5-branes

On the gauge theory side

?) [ S s i s
SN MK da’ N5 + Ns B | N5 — Ns | won P 2Ns
P (q) Z q — " — =P @)= 2q
i g [(NVEEND=+(g—q) (NS=NY)“+(g—-q)° T 7
On the gravity side
L& (5 5 (N5 + N5) 7 |1Ns = Ns| , 2
f == [ du f(u)) = C, = VoNu
T J-r —(NS + N>+ (u—u )2 —(NS N>+ (u—u )2

They are Completely the same equations!

fiw) = —p“)( 1)

|dentification: R, = _%gf) [Y.A., Ishiki, Okada, Shimasaki ‘14,
2 Y.A., Ishiki, Shimasaki ’14]

2
72g2

Eigenvalues construct a geometry.

VO:




Theory on 5-branes

There’s a double scaling limit to obtain the gravity solution for

NS5-branes on the gravity side:
sol. for NS5-branes

7 For general A, -
5 =3 A [ = f) + g
s =2
s =1
>
r r
infinite conducting plate
For A = 1, 1
V="V, + ¢ Lf(w);Ns,r,2] > V:—sm—IO( )— VNSssb.g
| (R £(2N5) 80
f(u)——[ du’ Jfw)
T J_r —(21\’5)2 + (u—u')?
= C — V,Nsu*
expl 5|
DSL: R V ith X ;
S — 00, Vy = 00 with & V(RN

[Ling, Mohazab, Shieh, Anders, Raamsdonk ’'06]



Theory on 5-branes

According to the gauge/gravity duality,
the double scaling limit on the gauge theory side is

2 A7 )5/8 - 2 A7 1747

N 3¢°N

N, — 0, g% = 0 with &™) exp JZ'( )
N, N

coupling of the theory on NS5-branes
A= g*N, ~ N.*(In N,)* > oo

: fixed

For general A, the DSL to obtain a theory on NS5-branes
around a vacuum with D2 charges is to take the same limit

only for the irrep. with the largest dim. Ng\.

> . . Py 2Ns ,
p¥(g)— Z (interactions with p®¥) = 22 — q
- T mg?
A-1 3
(s) : : - (f) p s 1. 2 2r
> 0 (q)— Z (more 1nteractions with p'/) = — — —sin ~ cosh ~
T 8o ’ ’

=1

[Y.A., Ishiki, Matsumoto, Shimasaki, Watanabe ’22]



Theory on 5-branes

(@)

= exp |z
8s N, P[

(8g2N2)1/4
Ns

]: fixed

So far, the DSL was checked at the planar sector, but
usually, a DSL is expected to keep all orders of 1/ N expansion.

The expectation value of a function of ¢ is

(O(@)) = Z di(g*N,)N;"

If g, is the coupling of the theory on NS5-branes (LST),

2 dhp1  Cugl (8¢°N 2)1/4
(0(@) = C(g N2>Zch g el S g ep |

Finiteness of c¢i1/co was checked numerically
[Y.A., Ishiki, Matsumoto, Shimasaki, Watanabe ’22]

DSL beyond the planar sector



Summary

* Branes in the matrix model get to be understood better.
We see emergent geometry in the brane picture and
the gauge/gravity picture; both pictures are consistent so far.

- Unfortunately, the emergence of the geometry we’ve seen is
incomplete. We highly relied on symmetry of the geometry.

* The susy localisation technique is powerful.
In this talk, the localisation technique was applied to a theory
on the infinite real line. This type of localisation computation
would be useful for a test of the matrix-model conjecture and

the gauge/gravity conjecture.



