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• Gauged matrix quantum mechanics are theories of 
“strings”: planar diagrams.


• Most theories of strings are of theories of “quantum 
gravity” in extra dimensions.


• Best known example is              being dual to N=4 SYM.AdS5 × S5



Dualities

The two dual theories are the same: must be able to go back and forth.


The “dictionary” is the lookup table for how to do this.


Our goal is to interpret aspects of phase diagram in dual YM 

and say something about it.


 



Phase diagram in AdS
T
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First order phase transition 

Hawking-Page = confinement/deconfinement (Witten)

For global AdS transition occurs only at infinite N

Large BH

Small 5d BH

Hagedorn

Small 10 D BH
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IT IS IN THE MICROCANONICAL ENSEMBLE

S(E) NEED TO COMPUTE DENSITY OF STATES

TdS = dE → T = 1/(dS/dE)

First law of thermo:



T>0 means that as energy increases 

we have more states (phase space) available.



C = 1/(dT/dE) ≡ 1/(d2S/dE2)

Specific heat deals with convexity properties of Entropy



No singularity in gravity

• There is no phase transition (discontinuity) in the family of solutions for 
small black holes and large black holes.


• If large black holes are deconfined, the small black holes should also be in 
the same (similar) phase.


• The topology of spacetime (Black hole) is roughly the order parameter for 
confinement/deconfinement. The entropy of small black hole is also of 
order  .  Problem: we don’t know how to think about this (too low for 
naive scaling field theory arguments with T).

N2



No transition between strings 
 and black hole.

As we increase coupling, a crumpled string becomes a

black hole smoothly. 


A very stringy black hole is just a long crumpled string before it 
eventually evaporates by string perturbative interactions. 


Susskind, Horowitz, Polchinski.



“Solution:” restore naive scaling
N2 → N2

eff(E)
Make the number of colors depend on energy and say that 


only a sub matrix is “deconfined”.

N − Neff ∼ O(N) ≫ 0



History

• D.B., C. Asplund 0809.0712 (something like this was argued for small 10D 
BH)


• Hanada, Maltz, 1608.03276


• D.B. 1806.05729  (Calculable model, solved in more detail later on)


• Hanada, Ishiki, Watanabe 1812.05494


• …



How to count states?



Simplest gauge theory

H = tr(Ẋ2) + tr(V (X))

Invariant under U(N): take singlet sector.

1-matrix model quantum mechanics

Solved by free fermions. 

There is no phase transition 
No Hagedorn behavior

V (X) = X2



Two matrix model (Next simplest)
H = Tr(Ẋ2) + Tr(Ẏ 2) + V (X,Y )

V (X,Y ) = Tr(X2) + Tr(Y 2)

With X,Y in adjoint of U(N): a 2 matrix model.

In free theory at large N, there is a 

confinement/deconfinement first order phase transition

•Aharony, Minwalla, Papadodimas, van Raamsdonk: hep-th/0310285 

https://arxiv.org/abs/hep-th/0310285


Phase diagram

Free energy

Energy

Hagedorn

Deconfined



Sconf ' O(1)

Sdeconf ' O(N2)

To get the phase transition we need to study the density of states 

with the energy: we need to count states.

(low T)

(high T)

The “order parameter” is the dependence with N of the entropy.



Write states in an oscillator basis: 

(a†)ij = A

(b†)ij = B

All states are produced by matrix valued raising operators. 

Gauge invariance  requires upper indices be contracted with lower indices

tr(ABA . . . )

For example: traces and multitraces (strings — copied from AdS/CFT dictionary)



# States1�string ⇠ 2`/`

For single traces.

` = #Letters

S ' ` log 2

The entropy is the log

T =
1

dS/d`
=

1

log 2

From first law

Multi-traces only add subleading corrections to the entropy: same T.



This is the Hagedorn density of 
states S ∝ E



Protocol

• Study at large energy but much less than the number of 
degrees of freedom of deconfined phase

1 << E << N2



How do these excitations 
fit in the matrix?



In the  model there is an extra 
  symmetry.U(N)4



Another counting of states
(a†)i1j1(a

†)i2j2 . . . (a
†)ikjk

Transforms as tensor of U(N) x U(N) (upper and lower indices)

Decompose into irreps: Young diagrams (symmetrize/amtisymmetrize)

Same diagram on upper and lower indices: bose statistics of a oscillator.



Same works with B: we count all states this way.

YA ⌦ YB ' �YA+B

Take tensor product on upper (and lower indices) and decompose again on diagonal.

For fixed energy E, we need E boxes 

E = `

This still counts all states: but there might be multiplicities in products.

To get a singlet: upper index boxes of final Young diagram need to have same shape  
as lower index boxes.



Counting of states
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This result also appears in this form in [36, 37] (see also [38, 39]). There are other ways of

generating the states using

Two important observations are in order. First, if the Young diagram � = R3 has more

than N rows, then we do not count it, as it is not an allowed representation of U(N). In that

case, we set the corresponding c�µ⌫ to zero. Second, the Littlewood-Richardson coe�cients

are otherwise independent of N . This means that at finite N and infinite N the numbers c�µ⌫

are the same if they are allowed. As a corollary, the counting of states at finite N and infinite

N agree if the total number of boxes nx+ny  N . The partition function given by equation

2, interpreted combinatorially in terms of these sums of squares of Littlewood Richardson

coe�cients is also known in the mathematics literature, a result that is attributed to Harris

and Willenbring [40].

B. The typical Young tableaux

We have two results concerning the counting of states. First, we have the infinite N

counting and we also have the finite N counting, whose essential constraint is that all the

Young tableaux ⌥ must be allowable for U(N). If we combine both results, we get that

when both countings are allowed then

N(nx, ny) =
X

⌫=⌥(nx),µ=⌥(nx),�=⌥(nx+ny)

(c�µ⌫)
2 ' exp(�q(nx + ny)) (11)

At this stage, we want to ask what Young diagrams dominate the sum and how large do the

c�µ⌫ become. Basically, we want to ask if maximizing over c�µ⌫ and e↵ectively reducing the

problem to one term is su�ciently representative of the entropy or not. If the answer is yes

(a statement that we will argue later), we can then study how the shape of the dominant

Young diagrams behaves as we take nx+ny large. The main idea we want to advance is that

if � is the dominant shape and it is allowed for U(N), then for all intents and purposes the

entropy at finite N and infinite N at energy E = nx + ny are the same. Their di↵erence in

entropy will be small and suppressed. If the shape is not allowed for U(N), then the state

counting for U(N) and U(1) is substantially di↵erent at energy E. The energy at which

the dominant shape for E = nx + ny ceases to be allowed is then associated with a change

of thermodynamic behavior away from the result at infinite N . This is the critical point in

E that we are looking for.

There are not  enough young diagrams. (Scale as partitions of n). This means that the LR coefficients must be large.

The largest c can dominate the ensemble.

After al the Young diagrams are specified, we count degeneracies of representations.

Count degeneracy on upper index multiplicities and lower index multiplicities



Asymptotics of LR coefficients

Estimating largest LR coefficients is done in papers by mathematicians,

there is a dominant shape of all the Young diagrams appearing in the problem.

Calculating LR coefficients is a hard math problem (NP)
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New result

In the typical state all three Young tableaux have the same typical shape (VKLS shape)
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as follows. Consider the region in between the two curves

f(s) =
2
⇣p

2� s2 + s sin�1
⇣

sp
2

⌘⌘

⇡
(21)

f̃(s) = |s| (22)

in the interval s 2 (�
p
2,
p
2). If we think of the curve given by |s| as the labels of the

rows and columns of the Young diagram, the curve f(s) rotated so that it lies in the lower

right quadrant is the VKLS shape. Importantly, the f(s) curve intersects the |s| curve at

s = ±
p
2. The distance from the origin in geometric units is 2. In the asymptotic calculation

of [21], all three shapes have the VKLS shape, properly scaled to the corresponding number

of boxes.

The VKLS shape, as described above, is depicted in figure 1.

FIG. 1. A schematic representation of the VKLS shape. Boxes of the Young diagram must fill the

corner defined by the function |s| with sides parallel to the |s| lines.

We need to convert the area to the correct number of boxes to restore units: the area is

nx + ny rather than one. The length of the legs must be scaled by
p
nx + ny to accomplish

this. Therefore, the depth of the VKLS shape Young diagram in proper units is 2
p
nx + ny 

N , and it must be bounded by N as that specifies the maximum allowed depth of the Young

diagram columns. We find that the VKLS shape is allowed only if E = nx + ny  N2/4.

Our prediction for the transition from partial deconfinement to full deconfinement based

on this argument is that it occurs exactly at energy E = N2/4, regardless of the value of

q. The value N2/4 is also reported in [41], by using di↵erent means. This is the asymptotic

large N statement, so there can be corrections that are subleading in N that we can not

account for from the arguments above. To test this statement, we do numerical calculations

to see if the change of behavior occurs at fixed energy per degree of freedom ✏ = E/N2 = 1/4.

The shape arises from minimizing the hook-length formula.

Roughly, one maximizes the dimensions of the 


representations at large N

D.B., Kai Yan, 2307.06122



VKLS:         Vershik, Kerov, Logan, and Shepp


Problem for the shape: minimize the hook 

length product formula in the large Young diagram limit


Roughly, this is maximizing the dimension of all

the involved representations at large N, fixed number of boxes



Even though problem is in principle computationally hard (asymptotic statement), 

 there are good math resources to compute them for “small” Young diagrams 

LR coefficients:



IN PICTURES
FREE ENERGY/N2

ENERGY/N2

LR COEFF.

LOG(HOOK LENGTH)



TRANSITION ENERGY IS INDEPENDENT OF THE CHARGE (different number of boxes on the sub diagrams).



When the shape dominates.
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Must be allowed Young diagram for U(N): depth less than N.


When it becomes disallowed there is a transition.



Nomenclature
Shape of Young diagram can be related


 to eigenvalues in a 1-matrix model.


Number of rows is number of eigenvalues

 excited.



Young diagram is also in correspondence with a highest 
 weight state of the corresponding representation.

HWS leaves unbroken U(N-#rows)



We  call partial deconfinement the Hagedorn phase. The U(X) with X the 
depth of the tableaux is deconfined (excited). The unbroken symmetry of 

h.w.s. is called confined (same as ground state). 

Full deconfinement occurs when the typical tableaux reaches 
the maximal depth allowed by U(N): that is the end of the hagedorn behavior.

E ≡ N2/4 + O(N)

Comes from area of the VKLS shape: theory prediction.



Gauge invariant characterization

• We are actually using the shape of Young diagrams for a Global auxiliary  
symmetry to pin a notion of eigenvalues 


• The Cassimirs of all the global symmetries commute with the U(N) that is 
gauged: good gauge invariant observables.


• This means that the shapes can be determined from a measurement.

U(N)4 ≠ U(N)



Interactions

• The potential causes transitions between states. X,Y add or subtract 
boxes. The dynamics of all these additions and subtractions are on edge 
of all Young diagrams.


• Edge dynanics?



Hope: shape hints at  
“geometry” of “eigenvalues”

Some local edge dynamics at strong coupling?

There is a lot of entropy in these configurations, and the  transitions generated by 

perturbations mostly keep the shape. 


Hopefully there is some remnant of the dominant shape when the global symmetries

that were used to anchor it are broken.


In this sense, there is a notion of partial deconfinement in the sense of “eigenvalues of the matrix”

 that survives the breaking of the global symmetries.



Entropy  transition
The transition from Hagedorn (partial deconfinement) to deconfined phase is an 


entropy transition; the counting of states starts differing from infinite N

In the language that Denjoe O’Connor uses, the reduction of available phase space 

is represented in the basis ofbtraces as an increase in relations between them. The number of relations becomes so


 large that it reduces the entropy growth substantially: the specific heat becomes positive (not infinite).

S ≃ ETH → S ≃ N2 log(E)



Conclusion

• The idea of partial deconfinemnet makes sense in some models.


• Roughly this is the idea that small black holes can be traced as a 
deconfined phase for a subgroup (in some EFT sense)


• In the simplest model it is also the Hagedorn phase.


• Tha transition to full deconfiment occurs when partial deconfined 
subgroup becomes everything. This is a large N transition in the simplest 
model.



Extra comments

• Masanori and collaborator have extended these ideas to other gauge 
theories.


• They can relate the partial deconfined phase to other ideas (Polyakov 
loop, etc).


• It is hard to pin down  in models where there are no extra U(N)-like 
global symmetries that can easily produce a notion of Young diagram (or 
some notion of generalized eigenvalues)

Neff


