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Motivation
• M(atrix) theories are interesting models of holography: 

• Simpler than QFT; finite d.o.f.. 

• More accessible to numerical methods: Monte Carlo, Bootstrap, Hamiltonian 
truncation, quantum computation (in the near future), etc. 

• We focus on the model of Berenstein, Maldacena and Nastase (BMN) 

• The SUSY-preserving mass deformation of the model of Banks, Fischler, Shenker, 
Susskind (BFSS).
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[Berenstein, Maldacena, 
Nastase ’02]

[Banks, Fischler, Shenker, Susskind ’96]
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The BMN model
• The Hamiltonian reads (everything dimensionless except for ): 

•  is a dimensionless coupling,  is the mass deformation parameter. 

•  and  are  hermitian matrices. 

μ

g2 =
g2

YM

μ3
μ

XI Θ̂α N × N I = 1,2,…,9 , α = 1,2,…,16.
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The BMN model
• Symmetries: ,  supersymmetry 

• Features from the mass deformation: 

• IR regulator: discrete spectrum; easier for numerics 

• Degenerate vacua labelled by integer partitions of  (size of the matrices) 

• Dimensionless tunable coupling  and a two-dimensional phase diagram

SO(3) × SO(6) × SU(N) 𝒩 = 16

N

g

6

[Dasgupta et al ’02; Kim, Plefa ’02; Lin, Maldacena ’05]



/32

The BMN phase diagram (large )N

7

T/μ

g2N

O(1) {

1 N5/3

∼ (g2N)1/3

∼ (g2N)1/3N−5/9

Hagedorn 
transition

Gregory-Laflamme 
instability

Graviton gas 
in 11D

Perturbative 
MQM

E ∼ μ

E ∼ N2T

“Hawking-Page”
transition

10D black hole/
11D black string

Focus of this talk: 
, , fixed  

Goal: find a EFT

T = 0 g → ∞ N[Furuuchi, Schreiber, 
Semenoff ’03] [Costa, Greenspan, 

Penedones, Santos ’14]

[Gregory, Laflamme ’93]

Also See [Itzhaki, Maldacena, 
Sonnenschein, Yankielowicz ’98] 

for BFSS
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The toy model
• In the strong coupling limit  the potential term in the BMN model

 

• Off-diagonal matrices are suppressed. 

• Consider a toy model:

g → ∞
−g2 Tr ([XI, XJ]2) ∼ ∑

I,J

g2zI
AzI

CZJ
BZJ

D fABE fCDE + …

9

[Simon ’83]
x

y

Classical flat directions 
uplifted by quantum effect 

(zero-point energy)

V(x, y)
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The toy model
• A better toy model is 

• At large , -frequency is ~ , much larger than -frequency. 

•  mimics diagonal matrix elements in BMN and  mimics off-diagonal ones.  

• Q: What’s the effective Hamiltonian/action at 

g y g |x | x

x y

g → ∞?

10

x

y

Flat direction along  is 
(almost) restored

x

V(x, y)
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The naive path integral approach

• To integrate out the fast modes, it seems natural to define the effective action (in 
Euclidean time ) 

with 

• The path integral for  is Gaussian and we get

τ

y
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The Born-Oppenheimer approach
• Idea: solve the Schrödinger equation order by order in  

• Rescale , so that , and the expansion of  is 

• The ground state of  is a gaussian, denoted as :  

• Ansatz for the wavefunction: put  on its ground state plus corrections

g

y → y/ g y = O(1) H

H(1) Ωx(y)

y

12
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The Born-Oppenheimer approach
• Sch. Eq. at : 

• At : 

• The final result: 

• Recall from naive path integral:  

• Which one is correct??

O(g)

O(1)
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Comes from acting  on p2
x Ωx(y)

Inner product in y
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Compare B-O result with numerics
• Solving the spectrum of                                            gives 

• Solving the original Hamiltonian numerically: 

14
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The path integral done right
• The naive path integral approach assumed  to be a smooth function, but there 

are also fast modes in . 

• The proper way is to split  and the effective action is defined as: 

• One way to do the split  is

x(τ)
x

x(τ) = xs(τ) + xf(τ)

x(τ) = xs(τ) + xf(τ)
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The path integral done right
• One way to do the split  is 

• The cutoff  should be that  is much slower than : 

x(τ) = xs(τ) + xf(τ)

Λ xs y

16
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The path integral done right
• The split of the action is 

• The expansion in  gives 

• The final result agrees with the Born-Oppenheimer approach exactly!

g

17

Expectation value under , 
compute by perturbation

Skin
fast
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Comments on the path integral approach
• Going to subleading orders properly seems difficult even for the toy model. 

• Naive path integral approach may work sometimes e.g. due to supersymmetry. But 
it’s not clear to what extent this works… 

• Ordering ambiguity from path integral. E.g.  term in the BFSS model.v4/r7

18
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coupling
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Two notable differences in the BMN model
• To obtain the effective description at , we will adopt the Born-Oppenheimer 

approach explained above. 

• The procedure of finding the  is mostly the same, with two differences: 

•  symmetry. We focus on  singlet states. Also possible to consider 
non-singlet states. 

•  supersymmetry. This can simplify computation.

g → ∞

Heff

SU(N) SU(N)

𝒩 = 16

20
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Change of coordinates
• We are interested in  singlets, so we need to separate out  invariant 

variables: 

• Fermions become 

• Overall  rotations only act on  matrix.

SU(N) SU(N)

SU(N) U
21

[Lin, Yin ’14]
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Finding the Heff

• Expansion in large  gives  

• In particular 

• The g.s. satisfies                        and the leading w.f. is 

• Through                                                                                                         we get

g

22

SUSY harmonic oscillators in off-diagonal modes

The diagonal modes in the full BMN Hamiltonian,  
again SUSY oscillators
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Comments on Heff
• Validity regime: 

• We also used the BMN SUSY algebra to get . Then  is obtained from 

 and the two results agree.

Qeff,α Heff

{Qeff,α, Qeff,α}

23

Also see [Smilga ’87]
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M-theory dual of BMN MQM
• Consider 11D plane wave background with DLCQ ( ) implemented: 

• The strong coupling limit in BMN corresponds to , with 

                                       

• Conjecture: The DLCQ of M-theory in plane wave with fixed  is dual to 
 BMN MQM.

x− ∼ x− + 2πR

g → ∞

−p− = N/R
U(N)

24
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Comparison of the spectra
• Gravity side:  

• The total momentum  is distributed to  gravitons, each with  
units of momentum: .  

• The spectrum is . 

−p− = N/R q (≤ N) k
k1 + k2 + … + kq = N

EN = εk1
+ … + εkq

25

[Kimura, Yoshida ’03]

Vacuum energy of 
supergraviton modes
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Comparison of the spectra
• The supergraviton spectrum:  

• The  can be written explicitly as oscillators 

• Our  is simply  decoupled copies of , with the spectrum

. Matches one momentum distribution case in SUGRA.

EN = εk1
+ … + εkq

H(0)
eff

Heff N Heff,N=1

EN = ε1 + ε1 + … + ε1

26

Vacuum energy of 
supergraviton modes

[Kimura, Yoshida ’03]
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Comparison of the spectra
• To match with the other configurations on the gravity side, we postulate the 

existence of bound states of D0 branes.  

• Each bound state moves freely in the harmonic trap. They should have size  

and internal excitations .
∼ g−1/3

∼ g2/3μ

27

k1 = 3 k2 = 1 kq = 2

1 2 3 4 NN − 1

⋯
Harmonic trap
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Bound state postulation
• Bound states are not controversial :) 

• Take the BFSS ground state (with fixed ) and put it in the harmonic trap of BMN: 
slightly deformed. 

• For ground states this postulation makes matching work: BMN has  vacua; 
there are  configurations of momentum distribution for gravitons.

N

p(N)
p(N)

28

( )⋱( )
More generally, multiple bound states
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The Main Claim
• In the  limit, the energy spectrum of the  singlet sector of the BMN 

MQM matches the free supergraviton spectrum on the 11D plane wave geometry 
with total momentum . 

• Wavefunction also matches.

g → ∞ SU(N)

−p− = N/R

29

k1 = 3 k2 = 1 kq = 2

1 2 3 4 NN − 1

⋯
k1 = 3 k2 = 1 kq = 2

⋯

PP-waveHarmonic trap −p− = k/R
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Conclusion
• Path integral approach is more subtle than one might have thought. 

• We explained a scenario where finite  duality works: 

• The leading-order  of BMN MQM in  limit is found.  

• The spectrum is consistent with linearised 11D SUGRA on the DLCQ plane wave 
background.

N

Heff g → ∞

31
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Outlook
• Subleading corrections to BMN  

• Match with loop expansions in DLCQ SUGRA? (Mismatches exist in BFSS) 

• Turning up : 

• : find Lin-Maldacena geometry from MQM? 

• Finite : find black hole from MQM? 

• Non-singlets? (Not special at finite ) 

• Is the strong form of BMN conjecture true?

Heff

N

T = 0

T

N

32

[Lin, Maldacena ’05], also see [Asano ’14]
T/μ

g2N

O(1) {

1 N5/3

∼ (g2N )1/3

∼ (g2N )1/3N−5/9

Hagedorn

Gregory-
Laflamme

Graviton 
gas in 11D

Perturbative 
MQM

“Hawking-
Page”

10D black hole/
11D black string

E.g. [Helling, Plefka, Serone, Waldron ’99]
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The path integral done right
• The split of the action is 

• With , the expansion in  givesxs ∼ 1, xf ∼ y ∼ g−1/2 ∼ Λ−1/2 g

34

Expectation value under , 
compute by perturbation

Skin
fast
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Two-point function for path integral approach 

35
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BFSS-like regime
• For , rescale , then the BMN Hamiltonian 

becomes
X ∼ O(g−1/3) X = g−1/3X̃, P = g1/3P̃

36
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SUSY algebra of the BMN model
• The BMN model has 16 (real) supercharges 

• The SUSY algebra is

37

 generators SU(N) generators SO(3)  generators SO(6)



Hamiltonian truncation for 
the minimal BMN model
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The minimal BMN model
• Minimal BFSS:   SYM dimensionally reduced to  

• Minimal BMN is the mass deformation of minimal BFSS: 

• Why study it? — Similar to the BMN model (but has a unique vacuum, so no bound 
state): 

• No flat directions and has a discrete spectrum. 

• Also becomes SUSY oscillators at . 

• Simpler because of fewer matrices.

2 + 1d 𝒩 = 1 0 + 1d

g → ∞

39
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Setup with N = 2
• Symmetry: ,  SUSY 

• SUSY algebra:  BPS condition: .  is  charge. 

•  

• Charge sectors:  

•   

• Build the  invariant oscillator basis from , 

SU(2) × SO(2) 𝒩 = 2

{Q, Q†} = 2(H − M) → E = M M SO(2)

[H, M] = 0 , [H, Q(†)] = ( − )
1
2

Q(†) , [M, Q(†)] = ( − )
1
2

Q(†)

M = 2n, 2n + 1/2, 2n + 1, 2n + 3/2

SU(2) H |g=0 Λ/μ = 200

40

Focus of the numerics
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Hamiltonian truncation results

41
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straight lines: analytic prediction at g → ∞



/32

Hamiltonian truncation results

42
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Hamiltonian truncation results

43

M = − 2
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