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Motivation & Review




Motivation

* M(atrix) theories are interesting models of holography:
* Simpler than QFT; finite d.o.t..

* More accessible to numerical methods: Monte Carlo, Bootstrap, Hamiltonian
truncation, quantum computation (in the near future), etc.

* We focus on the model of Berenstein, Maldacena and Nastase (BMN)[Berenstein, Maldacena,
Nastase '02]

* The SUSY-preserving mass deformation of the model of Banks, Fischler, Shenker,
Susskind (BFSS). [Banks, Fischler, Shenker, Susskind ’96]}
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The BMN model

* The Hamiltonian reads (everything dimensionless except for u):

H/p fn %(PI)Q 942 X1 X7 = S0anlslX . 05] || Harss
_ 12 _
P[0 30 et 2t
g = ‘g;;” is a dimensionless coupling, i is the mass deformation parameter.
X' and (:)a are N X N hermitian matrices./ =1,2,....9, a=1,2,....16.
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The BMN model %

e Symmetries: SO(3) X SO(6) X SUN), /' = 16 supersymmetry

 Features from the mass deformation:

* IR regulator: discrete spectrum; easier for numerics

* Degenerate vacua labelled by integer partitions of NV (size of the matrices)
[Dasgupta et al '02; Kim, Plefa '02; Lin, Maldacena 03]

* Dimensionless tunable coupling g and a two-dimensional phase diagram
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The BMN phase diagram (large N)

2A7\1/3
T/ ~ (&7°N) Also See [ltzhaki, Maldacena,
Sonnenschein, Yankielowicz 98]
for BFSS
11D black string
MQM

~ (g2N)BN—

E ~ N°T
Gregory-Laflamme
instability
[Gregory, Laflamme 93]
.......... “’llllllilili
o {| _e==*" 7
N Hawking-Page Focus of this talk:

[Furuuchi, Schreiber,| Hagedorn

Semenoff ’03] transition :[Costa, Greenspan, : T'=0,g > oo, fixed N
in 11D

Penedones, Santos '14}
SR . / Goal: find a EFT
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Two Approaches to EF'T



The toy model

* In the strong coupling limit ¢ — oo the potential term in the BMN model

—g2 Tr <[XI’ Xj]z) ~ 2 gzzngéZéZlngBEfCDE + oo
1J

» Off-diagonal matrices are suppressed.

* Consider a toy model:

| | Vix, y) y
L g L3 2 2 2
H = 5Pz + 5Py T 97Ty
Classical flat directions
[Simon ’83] uplifted by quantum effect

X (zero-point energy)
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The toy model

1
(pz +2° =1) + 3 (2 + 97 + g%y = 1+ g%

Vix,y) y

* A better toy model is H = %

Flat direction along x is
(almost) restored

 Atlarge g, y-frequency is ~¢ | x|, much larger than x-frequency.
* x mimics diagonal matrix elements in BMN and y mimics off-diagonal ones.

* QQ: What'’s the effective Hamiltonian/actionat g — oo??
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The naive path integral approach

| |
H=2p:+o —1)+3 (p§+y2+92x2y2—\/1+92:62>

* To integrate out the fast modes, it seems natural to define the effective action (in

Euclidean time 7)
/D:EDye_SE[x’y] = /Daze_sﬂeff[x]
with

1 5/2 1 5/2
Sglr,y| = 5/5/2 dt y(T) (—(?3 + g%x® + 1) y(T) + 5/5/2 dT (:)’32 gt —1— \/1 —|—92x2>

* The path integral for y is Gaussian and we get

1 B/2 , ,
S eli] = 2 / a/sz (i2 + 22 — 1+ 0(1/g))
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The Born-Oppenheimer approach

* Idea: solve the Schrodinger equation order by order in g
HY(z,y) = EV(z,y) = Hegto(z) = Ey()

» Rescaley — v/\/8, SO that y = 0(1), and the expansion of H is

1 1
H=gHY+H" +0(1/g), HY =@} +a’ ), H =5 (pl+a2"-1)

* The ground state of HV is a gaussian, denoted as Q (y): HMQ,(y) = 0

* Ansatz for the wavefunction: put y on its ground state plus corrections

U(r,y) =0 (z,y) + g0 (@ 9)+..., VO(z,9) = ()0 (y)
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The Born-Oppenheimer approach

* Sch.Eq.at0(g):  gHMW O (2, y) = gHWp(2)Q0 (y) = 0

« At O(1):  (Qu(y), HVT ) +(Q,(y), HOW ), = B(Q,(y), ¥, = Ey()

— — Inner product in
=0 e (@) B
) , o _ 1o o o
The final result: Heg = 9 (pa: +a” — 14 8552) Comes from acting pZ on Q ()
“~_

* Recall from naive path integral: Hy = = (p2 + 2% — 1)

1
2
* Which one is correct??
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Compare B-O result with numerics
- 2+6
4

. 1 1 . |
* Solving the spectrum of #{ = (pi + 2%~ 14 812) gives E:

- (subleading), n=0,1,2,...

S

2

* Solving the original Hamiltonian numerically:

- 2+4\@ -2n |
El’l o E(+) lII
L Suut ot Sty St St " Y
R4 * o o o ¢ ¢ * Er(z_) *\\
D R S ) PO 0.5 \*\\
6 « o o °* ° * \*\\
e e N NN e S S S S \*\\*
4] o o o o " 0.0 TRk
B T B S et St SR USRS Y Wanalyric
e o ® (+)
2_ °® ) ll/z
R B S S 05 - ‘l/(_)
0{° * | | | | | | , |
2.5 5.0 7.5 10.0 12.5 15.0 0 1 2 3 4 5
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The path integral done right

* The naive path integral approach assumed x(7) to be a smooth function, but there

are also fast modes in x.

» The proper way is to split x(7) = x,(7) + x«(7) and the effective action is defined as:

Seft|T] = log/Dy e PEBY 5 G glx] = log/Dyngf e~ SE[Ts,T Y]

« One way to do the split x(7) = x,(7) + XA(7) is

Ts(7) = Z a,e?™ /P Ty(T) = Z a2/ P (a_p, = a)

In|<A In|>A
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The path integral done right
» One way to do the split x(7) = x,(7) + x{(7) is

xs(,]_) _ Z an627rin’r/ﬁ7 ZCf(T) __ Z an€27rin'r/5 (a—n _ a;kz)

In|<A In|>A

* The cutoff A should be that x, is much slower than y:
We, ~ NP wy ~glrs|, q=wy/we, = glrs|S/A>1]
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The path integral done right

» The split of the actionis  Sp = S + 5 + Sqow

int

Seff|Ts]| = log/DyDa:f e PF = S ow — 108 Zpast — log(e Sfast>f <t

N—— ———
T \
T2 / 5/2 Ir (i + 2 =14 0(1/9)) Expectation value under Sgs‘%,
compute by perturbation
* The expansion in g gives
— gint int 1 int int 1 B/ 1 ,
— 10g<€ faSt>faSt — <Sfast> (<(Sfa,st) > <Sfast> ) T =5 aT 9 oo
2 2 —5/2 8CCS

* The final result agrees with the Born-Oppenheimer approach exactly!
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Comments on the pathintegral approach

* Going to subleading orders properly seems difficult even for the toy model.

* Naive path integral approach may work sometimes e.g. due to supersymmetry. But
it’s not clear to what extent this works...

» Ordering ambiguity from path integral. E.g. v*/r’ term in the BFSS model.
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The BMN model at strong
coupling




Two notable differences in the BMN model

 To obtain the effective description at g — oo, we will adopt the Born-Oppenheimer

approach explained above.

* The procedure of finding the H. ¢ is mostly the same, with two differences:

 SU(N) symmetry. We focus on SU(N) singlet states. Also possible to consider
non-singlet states.

e /N = 16 supersymmetry. This can simplify computation.
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Change of coordinates

* We are interested in SU(/V) singlets, so we need to separate out SU(/NN) invariant
variables: [Lin, Yin ’14]

& Y12//9

L L, (Y12)"/\/9 T

X =U U with (fq —7) Yap=0 a,b=1,...,N,a#b

* Fermions become

* Overall SU(N) rotations only act on U matrix.
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Finding the H_;

« Expansion in large g gives H = gH® + /gHY/? + ..

* In particular

1 0, 0, 1
1) IJ | 1
gH( ) — E , (_§gHab 8y£b 8y[;]a ! g‘r@ ‘ yabyba -+ Qgrab@ab/y @ba)

SUSY harmonic oscillators in off-diagonal modes

* The g.s. satisfies FV|Q) = 0 and the leading w.f. is [#©) = |4 (r, 0)) |Q)

» Through H'?|y) == (QH/2|w 12y 4 QI HO WO = Ely(r,0)) we get

N
1 07 11 11
H(O) — | 2 | P (9 1236)@
eft Z( 2 Orlorl 232( o) 262(T) 8 ¢

a=1

The diagonal modes in the full BMN Hamiltonian,
again SUSY oscillators
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Commentson H._;

* Validity regime:
7, — 7| > g3

» We also used the BMN SUSY algebra to get Q. ,. Then H g is obtained from

{ Octi o> Oefr o} and the two results agree. Also see [Smilga '87]
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M-theory dual of BMN MOM

* Consider 11D plane wave background with DLCQ (x™ ~ x™ + 2zR) implemented:

2 2
ds? = —2dtdx~ + dz'dz® + dxPdxP — (g—Q:UZmZ | gQ :Ep:cp> dt? Fy = pdt Adz' Adz® A dx?

* The strong coupling limit in BMN corresponds to g — o0, with

2 932(1\4 _ R’
s sy

» Conjecture: The DLCQ of M-theory in plane wave with fixed —p_ = N/R is dual to
U(N) BMN MQM.
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Comparison of the spectra

* Gravity side:
* The total momentum —p_ = N/R is distributed to g (< N) gravitons, each with £

units of momentum: k; + ky + ... + k, = N.

» The spectrumis Ey =& + ... +&.

3 9
H T Y P H : .
E — — T | /4 | E 9
3 Z 6 Z 9 0 [Kimura, Yoshida '03]
1=1 p:4
Vacuum energy of 0 0 % 1 % > g 2 % 1
supergraviton modes Tof 118 98 156 170 56 (23 [ & 11
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Comparison of the spectra

» The supergraviton spectrum: Ey = &+ ... + £,

3 9
M L p
H L E : + —e
~ 3 Z_l 6 £ ’ | |
= = [Kimura, Yoshida '03]
Vacuum energy of _____ o |O0]2l 1] 2] 2213 ]%Z2]4
. 2 2 2 2
supergraviton modes dof 1181283156170 1 561281 8|1

» The Hé?f) can be written explicitly as oscillators
N 3 3
(0) H itz | M M
Heﬁazl(?);b )bl + prfbp Zz:: )

» Our H_ 4 is simply N decoupled copies of H ¢ ny—1, with the spectrum

Ey =€+ & + ... + €. Matches one momentum distribution case in SUGRA.
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Comparison of the spectra

* To match with the other configurations on the gravity side, we postulate the
existence of bound states of D0 branes.

» Each bound state moves freely in the harmonic trap. They should have size ~ g=!/°
and internal excitations ~ g#°u.

Harmonic trap
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Bound state postulation

* Bound states are not controversial :)

» Take the BFSS ground state (with fixed N) and put it in the harmonic trap of BMN:

slightly deformed.

More generally, multiple bound states
* For ground states this postulation makes matching work: BMN has p(/V) vacua;

there are p(N) configurations of momentum distribution for gravitons.
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The Main Claim

* Inthe g — oo limit, the energy spectrum of the SU(N) singlet sector of the BMN
MQOM matches the free supergraviton spectrum on the 11D plane wave geometry

with total momentum —p_ = N/R.

 Wavefunction also matches.

PP-wave

Harmonic trap —p_=kI/R

AVLVAVAVRRVITATAP YU\
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Conclusion & Outlook



Conclusion

» Path integral approach is more subtle than one might have thought.

Seft| ] = IOg/Dy e Pyl 5 Seglry] = log/Dy e BT T 1Y

* We explained a scenario where finite NV duality works:

* The leading-order H ¢ of BMN MQM in g — oo limit is found.

* The spectrum is consistent with linearised 11D SUGRA on the DLCQ plane wave
background.
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Outlook

» Subleading corrections to BMN H ¢

» Match with loop expansions in DLCQ SUGRA? (Mismatches exist in BFSS)

. E.g. [Helling, Plefka, Serone, Waldron '99]
* Turning up N:

* T =0: find Lin-Maldacena geometry from MQM? [Lin, Maldacena '05], also see [Asano "14]

T/u

* Finite 7: find black hole from MQM?
MQM

10D black hole/
11D black string 35
~ (g°N)""N

» Non-singlets? (Not special at finite N) o
* Is the strong form of BMN conjecture true? )

...... i.’............/.....................
o {] =*" 7 4 :

“Hawking- Graviton
Hagedoms Page” oas in 11D
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The path integral done right

» The split of the actionis  Sp = S + 5 + Sqow

int

Seff|Ts]| = log/DyDazf e PF = S ow — 108 Zpast — log(e Sfast>f <t
N e’

5/ \

~ 2 /_5 /2 a7 (& +2, 1+ 0(1/9) Expectation value under Sflgsll

compute by perturbation

—1/2

» Withx; ~ 1, x,~y~g ~ A~12 the expansion in g gives

. 1 [B/2 i
S%;l;t - 9 / T 292$5$fy2 — gaﬁsxf/\/ Zl?? + gQQj?ByQ + .

—B/2 ——
O(g'/?) O(1)
I < —S}nt > <Sint > 1 (<(Smt ) > <Smt > ) 4+ 1 /ﬁ/2 d 1
— log(e ast s — as . . e s s T — T I
g fast fast 9 fast fast 9 _g/o 833%
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Two-point function for path integral approach

<$f T1 Cl?f 7'2 Z 2min(T1—72)/P 6 5
(27mn)

In|>A

1

o 9w (xs(T))|T1—T2
2960(333 (T»

(y(m1)y(12)) ~
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BEFSS-like regime

e For X ~ O(g™17), rescale X = g7 13X, P = ¢!°P, then the BMN Hamiltonian
becomes

1 ~r ~q712 14 ~ A
H/u —g3 Tr (5 XI,XJ 2@T”yl X' e )
—,—/

a4 (] ~ o ~

8
2 N2
_% (X'L> { 11 (Xp
232 2 62
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SUSY algebra of the BMN model

* The BMN model has 16 (real) supercharges

- : - a=1,..., 16
Qo = Tr PIVI@—%Q [XI,XJ] 7”(:)—%XWlQSvi@—Févamgvp@ I.J=1,..., 9
L - o 1=1,2,3; p=4,..., 9
* The SUSY algebra is
1 ¥ PP |
{Qu, Qs} = 20asH — 5 (*97) .5 1}4 T (V) ]\T4 Pd 4 29Tr(X ICT?)%L;
SO(3) generators SO(6) generators  SU(N) generators
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Hamiltonian truncation for
the minimal BMN model




The minimal BMN model

e Minimal BFSS: 2 + 1d /" = 1 SYM dimensionally reduced to O + 1d

 Minimal BMN is the mass deformation of minimal BFSS:

o
H =Tr §(PZ)2

9

2

v Y J

Z_Qé)—r

2

1

A

y _Xi,@

_|_

1
2

(X7)°

37 -

4

O

A

T,le@

)

i =12

* Why study it? — Similar to the BMN model (but has a unique vacuum, so no bound

state):

* No flat directions and has a discrete spectrum.

 Also becomes SUSY oscillators at g — 0.

» Simpler because of fewer matrices.
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Setupwith N =2

e Symmetry: SU2) X SO2), /' = 2 SUSY

o SUSY algebra: {Q, 07} = 2(H — M) — BPS condition: E = M. M is SO(2) charge.

. [HM] =0, [H 0" = (- )%Q(‘r) M, 0] = (- )%Q(J{)

e Charge sectors: M = 2n+1/2, 2n+ 1, 2n+ 3/2  Focus of the numerics
Q
o Ve M(=2n)) 5 WEii/2,M41/2) (for any g)

+ Build the SU(2) invariant oscillator basis from | _,, A/u = 200
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Hamiltonian truncation results

M=0 straight lines: analytic prediction at g — oo

‘........'................oooo.oooo.oooo.oooo.o0
oo.o". ...
e THTeeeeeeoe
& & T T T 0000000cees0c00000000 e
.- . .............a.ooc-..na..oc--.nn.o.'--..'--..nu..... 4
P
12 )_-'...'.
f................-oo.oooo.-ooa.ooo-.ooao.oo--.o.....................

10
8.
6 7 , [\- ........................................
4
2 —
2 4 6 8 y<3 J / 10 20 30 40 50 J
BPS state

41 /32



Hamiltonian truncation results

M =72 straight lines: analytic prediction at g — oo
E
6/ﬁ\hh- RAAAEILL L LT T T YT P PGPPPPPPTT S !Iiiiiiiiiii{{
4/\ ~0 00000000600 .
4 @
& T T T e g 8

BPS state
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Hamiltonian truncation rults

M=-2 straight lines: analytic prediction at g — o0

E /g

15

13 0

11

9

7 3

5

3

**************** 8 g
2 . 6 3 10 10 20 30 40 50

No BPS state
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