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This talk is based on:
arXiv:2302.04416 [HL '23]

work in progress w/ Gauri Batra
work in progress w/ Zechuan Zheng

See also:
[Han, Harmoll, Kruthoff 20] (reviewed in David Berenstein's talk)

[Kazakov & Zheng '21] [Anderson & Kruczenski '16, HL '20, ..]
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Bootstrap: a timeline
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today

CFT bootstrap [Ferrara '73], [Polyakov '74], [Belavin, Polyakov, Zamolodchikov '84]
Lattice Yang Mills bootstrap [Anderson & Kruczenski '16, Kazakov & Zheng '22]
Matrix bootstrap [HL '20]

Quantum mechanical bootstrap [Han, Hartnoll, Kruthoff '20]

Virial bound [Polchinski '99]

BFSS [today]
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Why bootstrap?

» Solve black holes. Two ingredients:
> Large N: large semi-classical entropy
> Strong coupling: maximal chaos/sub-AdS locality
» Strong coupling makes analytical methods hard. Large N
makes numerics hard.
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Why bootstrap?

» Monte Carlo is a general purpose tool
> physics simplifies at large N but the computation gets harder
> sign problem &
> metastability: some problems ill-defined at finite N/

» Bootstrap works N = co; doesn't have a sign problem.

Rigorous. ©

> for multi-matrix models, exponentially many constraints ®
> naturally microcanonical, whereas MC is naturally canonical
> MC * bootstrap: complementary tools
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Matrix model

Z= lim [ dMe M trV(M)
N—oo

(tr M?) = lim Z_l/dMe_'\F“ VM) ¢y P
— 00

0. Does it exist?

1. Determine its values as a function of couplings
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Bootstrapping matrices

1. Guess the value of some simple correlator, e.g. <tr I\/12>
2. Feed it through the loop eqns to generate more correlators

3. Demand that <tr oto > O>. E.g., <tr I\/I16> < 0 would rule
out the guess.
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Bootstrapping matrices

1. Guess the value of some simple correlator, e.g. (tr M?)

2. Feed it through the loop eqns to generate more correlators

3. Demand that <tr oto > O>. E.g., <tr I\/I16> < 0 would rule
out the guess. More systematically, assemble all the
correlators into a big matrix M and test if M > 0.

N Tr A Tr B
M=| TrA TrA?> TrAB
TrB TrBA TrB?

For a single matrix model A= M,B= M?, ...
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Loop equations

s - - " ‘@

> relates lower-pt correlators to higher-pt correlators

» uses large N factorization ('t Hooft)
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Review of the matrix bootstrap
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Review of the matrix bootstrap

3.0

-0.08 -0.06
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9

1
V(M) = §M2+§M4

For —g, < g < 0 the model still makes sense at N = oo
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Review of the quantum mechanical bootstrap

> naive idea: discretize Euclidean path integral
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Review of the quantum mechanical bootstrap

> naive idea: discretize Euclidean path integral
> better idea: Hamiltonian approach (Han Hartnoll Kruthoff]

1. Replace loop eqns with O’ = [O, H]. In energy eigenstates
<O/> = 0. Supplement with canonical commutation relations.

2. (E[tr OTO|E) > 0. Positivity of measure replaced w/ Hilbert
space positivity (fermions ©)

3. handily solves single particle QM and single matrix QM.
Strong constraints on 2-matrix QM with tr[A, B]® interaction.
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D0-brane quantum mechanics

Hilbert space: 9 bosonic matrices and 16 fermionic matrices.
Transform as a fundamental and spinor of SO(9).

H= ; <g2P2 — ? [XI; XJ] %ﬁéﬂ [lel/}l?})

Most of what we know due to heroic Monte Carlo simulations [kabat

et al., Anagnostopoulos et al., Hanada et al., .., Berkowitz et al., Pateloudis et al.]
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed 3> = g2 Np3.
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed 3> = g2 Np3.

Metastable b|aCk h0|e |n Type IIA [ltzhaki, Maldacena, Sonneschein, Yankielowicz].

ds? ar N\

Sg shrinks with r. At r ~ \/3 = string scale curvature.
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Euclidean cigar r> ry T2/5 At E/N* ~ /3 geometry is
nowhere reliable.
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Lower bounds on <tr )(L>

combined
------ bosonic
— — fermionic
/ Tt --- g<s
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— first explain the red curve that extends the Polchinski point.
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Lower bounds on <tr X4>

([H,XP]) =0, (H) = 0 — first explain the red curve that extends
the Polchinski point.
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Bosonic constraints: round 1

Commutator constraints:
([H,Tr X*]) = 0 = (Tr X'P; + P'X;) = 0.
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Tr[X, P| = iN? = (Tr XP) = iN?/2.
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Bosonic constraints: round 1

Commutator constraints:
([H,Tr X*]) = 0 = (Tr X'P; + P'X;) = 0.
Tr[X, P| = iN? = (Tr XP) = iN?/2.

Positivity:

Tr X2 Tr XP
e >
M < Tr PX Tr P? > =0

N N=]

T 2 ' /
N Z(T X><T (PP,)>2

N
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Bosonic constraints: round 1

Commutator constraints:
([H,Tr X*]) = 0 = (Tr X'P; + P'X;) = 0.
Tr[X, P| = iN? = (Tr XP) = iN?/2.

Positivity:

Y

2
M:<TrX TrXP> 0

TrPX TrP?

9
- ZI:<TrX2> (Te(PP)) = TN

Next: replace Tr P? (kinetic energy) with potential energy.
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Bosonic constraints: round 2

Commutator constraints:
(HTeXP) =0, (H)=E
—2(K)+4(V) + (A =0, (K)+(V)+(F)=E
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Bosonic constraints: round 2

Commutator constraints:
(HTeXP) =0, (H)=E
—2(K)+4(V) + (A =0, (K)+(V)+(F)=E

Eliminate (F):
2(K)y=2E+2(V).
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Bosonic constraints: round 2

Commutator constraints:
(HTeXP) =0, (H)=E
—2(K)+4(V) + (A =0, (K)+ (V) +(F) =

Eliminate (F):

2(K) = 3E+2(V).
Positivity:
Recall V= —-L; Tr[X!, X/]*. Relate to Tr X* using

Tr Xt TrX?Y? <0 T X2Y?2  Tr XYXY 0
T X2Y2 TrXxt Tr XYXY TrX2Y?

(Tr X*) (144 (Tr X*) + ) > g2N4

18 /32



Bosonic constraints: round 2

N (Te X >(144<TrX4> )> 9 2

Comments:

» Setting E = 0 recovers Polchinski point. Assuming parametric
saturation of the bd implies that * “typical eigenvalue"
r~ A/3, which is the size of the gravity region.

> Scale at which the bd varies is £/N? ~ \!/3, regime of validity
of gravity.

» No good bound on <TrX2>.
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Fermionic constraints

Had 2 eqns:
2K +4V)+(F =0, (K+V)+(F=E

In addition to solving for V, can solve for F:

(A =2(3(B) = (V)
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Fermionic constraints

Had 2 eqgns:
2K +4V)+(F =0, (K+V)+(F=E
In addition to solving for V, can solve for F:
(A =2(3(E) (V)
Fermionic term F ~ 1 X. The operator 11 is bounded because it

is made of Majorana fermions 92 = 1. Therefore, if F> 0, X
cannot be too small.
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Constraints on <tr X2>

1
050 . ]
Y % e 00, et ’\ — lower bd
(;< Smssessessssssedgennn e e m .
= : [Berkowitz et al]
2 0.10}
=< 0.05 [Pateloudis et al]
0.1 05 1 5 10 50 100

& =E/(N°AY?)

Large N extrapolation of Monte Carlo simulations [pateioudis et 2] are
~ 1/2 from the lower bound.
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Lower bounds on <tr)&>
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In the remainder of the talk, | will comment on 2 questions:
1. Is there hope that numerics will lead to precision estimates?

2. What could we hope to learn by measuring <tr X2> precisely?
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w/ Zechuan Zheng, we are redoing the bootstrap for the much
simpler case

1 1
H:N<§TrP2+§TrX2+§TrX4>.

The ground state energy E(g) was bootstrapped in [Han, Hartnol, Kruthoff].
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Improved the HHK method by using non-linear relaxation [azakov &
Zheng '20].
Basic point: the constraints involve double traces, e.g.,

(tr XP*) = (tr PPX) + 2iN (tr P*) +i(tr P)(tr P).

Using large N factorization, we can rewrite these double traces as
products of single traces = quadratic relations amongst correlation
functions.
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Improved the HHK method by using non-linear relaxation [azakov &
Zheng '20].
Basic point: the constraints involve double traces, e.g.,

(tr XP*) = (tr PPX) + 2iN (tr P*) +i(tr P)(tr P).

Using large N factorization, we can rewrite these double traces as
products of single traces = quadratic relations amongst correlation
functions.

Introduce new variable y = p?. Relax this to y < p? which can be

written as < y P > = 0.
p 1
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0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
E/Eq
Dashed line is the exact solution g = 1. Excellent convergence near

the ground state. With more constraints, we expect rapid
convergence E > E.
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Suppose that one day we have high precision measurements of 1-pt
functions like (Tr X"). What can we learn?

The semiclassical BH geometry and its stringy corrections

In principle, this includes properties that are currently inaccessible
by W0r|dsheet methods. See [Hanada et al., Berkowitz et al., Pateloudis, et al.] for similar

discussions involving the BH thermodynamics.
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A generic SO(9) singlet

<t1“Xn> ~ ag,n <1> + ain <H> + 827n<T__> + b,'7,7 <stringy,-> + .-
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A generic SO(9) singlet
(tr X™) ~ ag,n (1) + ai,n (H) + a2,n(T__) + bip (stringy;) + - - -

The first 3 operators are the only single trace SO(9) supergravity
singlets in this IlA background. Dual to hyy, hy_, h__ in the
M-theory picture.

The mode x = h__ has scaling dimension A = 28/5. [sekino & Yoneya
'00, Biggs & Maldacena '23]
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To estimate (T__) at low energies, in principle we need the

leading o3 corrections to supergravity. Schematically of the form
n3
(o)

Gy /\/E’e_%x (#1R4 + # R +>

Using that x is an operator with dimension A = 28/5 we find that
such terms give

(T_) ~ TP
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To estimate (T__) at low energies, in principle we need the
leading o3 corrections to supergravity. Schematically of the form

(Oél\)Ig /\/E€_2¢X <#1R4 + #262¢R3F2 4. _|_>

Using that x is an operator with dimension A = 28/5 we find that
such terms give

(T_) ~ TP

We also estimated the stringy contribution =

<tr X2> ~ ap+ ai TH/5 4 cai T2/5 4 as Ti6/5
+me”exp{—2\/E’yT73/10} + -

[WIP w/ Gauri Batra]
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If we were willing to measure (T__) directly using MC/bootstrap,
we could learn about the o’3 corrections to IIA SUGRA.

Matrix model expression for T__ can be obtained by expanding
the DBI action of DO branes (van Raamsdonk and Taylor] in @ weak
background. Schematically,

T__ ~Tr PPPPIPY + Tr[ X, X)) [ Xy, Xk] PKP! + - - - 4 fermions

More complicated but doable (in principle).
However, do to operator mixing we expect that T__ makes a
contribution to <Tr X2>.
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Summary

1. solvable matrix models can also be solved by bootstrap
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Fermionic constraints

Write F=Tr O)X, Oy = 44/ {w™, 47}
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Fermionic constraints

Write F=Tr O)X, Oy = 44/ {w™, 47}

Commutator constraint: [H, F] =0 = Tr O;P' = 0.
Positivity {0, X/, P'}:

Lmroo) 2(iE-(v 0
A T e |
0

—izV F(GE+(V)
Use %<T1“ 0,0)) < 16N3.
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