

News from LHCb:

Measurement Results with Z Boson as Probe

Yuhao Wang

on behalf on the LHCb collaboration

Overview

Only concentrate on the most recent results from LHCb since the last PDF4LHC meeting:

- Measurement of Z boson angular coefficient @ 13 TeV

 Phys. Rev. Lett. 129 (2022) 091801
- Measurement of Z boson production cross-section @ 5.02 TeV arXiv:2308.12940 (submitted to JHEP)

The summary of completed cross-section measurements for W/Z (+jets) production in pp collisions :

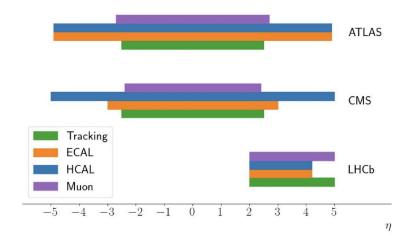
Z + jets @ 7 TeV	<u>JHEP 01 (2014) 33</u>
Z + b - jets @ 7 TeV	<u>JHEP 01 (2015) 064</u>
W + b/c - jets @ 7 TeV	PRD92 (2015) 052001
W+jets and $Z+jets$ @ 8 TeV	JHEP 05 (2016) 131
Z+c-jets @ 13 TeV	PRL 128 (2022) 082001

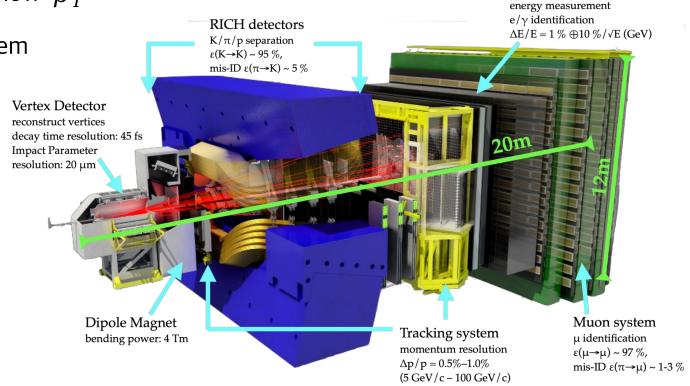
W and Z @ 7 TeV (partial dataset)	JHEP 06 (2012) 58
W and Z @ 8 TeV	JHEP 01 (2016) 155
W @ 7 TeV (full dataset)	JHEP 12 (2014) 079
$W \rightarrow e \nu$ @ 8 TeV	JHEP 10 (2016) 030
$Z \rightarrow \mu\mu$ @ 7 TeV (full dataset)	JHEP 08 (2015) 039
$Z \rightarrow ee$ @ 7 TeV	JHEP 02 (2013) 106
$Z \rightarrow ee @ 8 \text{ TeV}$	JHEP 05 (2015) 109
$Z \rightarrow \tau \tau$ @ 7 TeV	JHEP 01 (2013) 111
$Z \rightarrow \tau \tau$ @ 8 TeV	JHEP 09 (2018) 159
Z @ 13 TeV (partial dataset)	JHEP 09 (2016) 136
$Z \rightarrow \mu\mu$ @ 13 TeV (full dataset)	JHEP 07 (2022) 26

Working in progress at 13 TeV !

LHCb detector

 \triangleright A single-arm forward spectrometer down to very low- p_T


Excellent performance of tracking and muon system

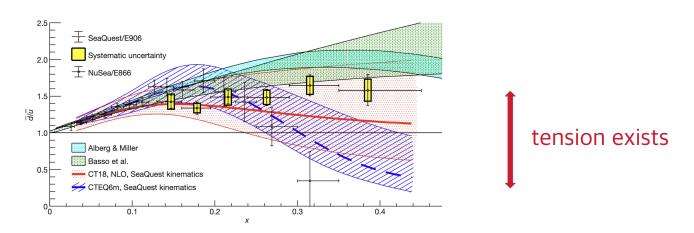

Excellent particle ID and vertex reconstruction

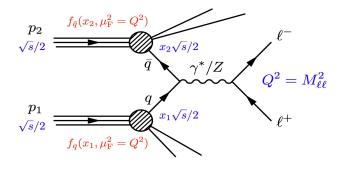
 \triangleright Complementary η range to ATLAS and CMS.

Overlap for cross check : $2.0 < \eta < 2.5$

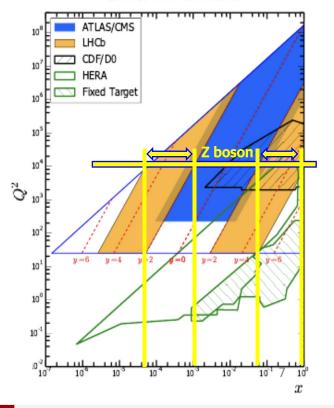
■ Unique to LHCb : $2.5 < \eta < 5.0$

JINST 3 (2008) S08005

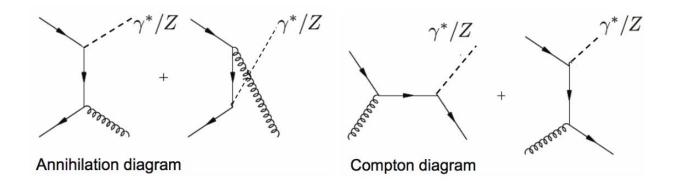

Int. J. Mod. Phys. A 30 (2015) 1530022


Calorimeters

Z boson probe and PDF Measurement


- ➤ Ideal probe of the initial and final states:
 - clean final states, unaffected by hadronic activities
 - contributes to the measurement of proton PDFs, nuclear modifications, etc
- LHCb can provide important information in unique Bjorken-x regions with $Q^2 \sim m_Z^2 \sim 10^4 \, (\text{GeV}^2)$:
 - Bjorken- $x: x_{min} \sim 5 \times 10^{-5}$, $x_{max} \sim 0.8$
 - the only clean data to clarify the inconsistency in SeaQuest and NuSea results

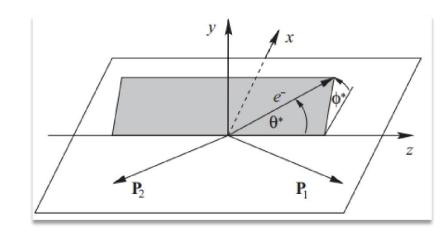
 Nature volume 590, pages 561–565 (2021)



Z Angular Coefficients Measurement

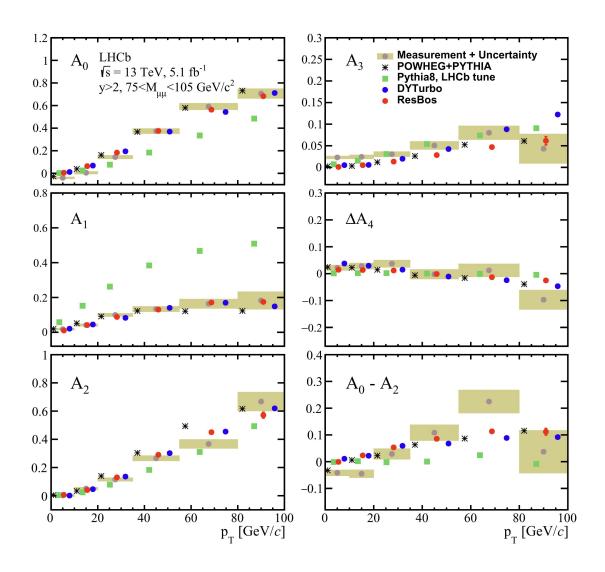
- ightharpoonup LHCb pp data @ 13 TeV (2016-2018), $L = 5.1 \pm 0.1 \; \mathrm{fb^{-1}}$
 - High signal purity : $N_{bkg}/N_{sig} \sim 0.2\%$
- \blacktriangleright The QCD process of $pp \longrightarrow \gamma^*/Z + X \longrightarrow \ell\ell + X$ can be described by a set of angular coefficients $A_i (i = 0...7)$:
 - → more complex variables, providing precise validation of QCD production mechanisms
- > Kinematic distribution: a direct probe of the polarization of the intermediate gauge boson
 - ⇒ sensitive to the underlying QCD production mechanisms

Tree-level digrams for Z-boson with finite p_T


$$\frac{d\sigma}{d\cos\theta d\phi} \propto (1+\cos^2\theta)
+ \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin2\theta\cos\phi
+ \frac{1}{2}A_2\sin^2\theta\cos2\phi + A_3\sin\theta\cos\phi
+ A_4\cos\theta + A_5\sin^2\theta\sin2\phi
+ A_6\sin2\theta\sin\phi + A_7\sin\theta\sin\phi.$$

General expression for angular distribution

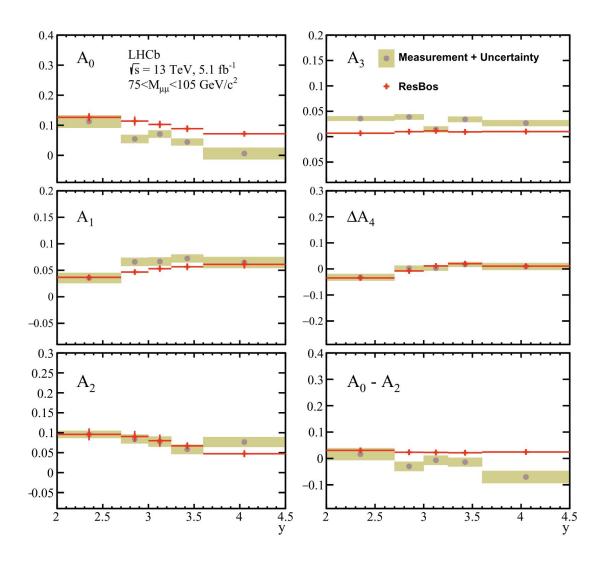
Z Angular Coefficients Measurement


 \triangleright Differential cross-section of lepton decay angle (θ,ϕ) in CS frame is parametrized by angular coefficients:

$$\begin{array}{c|c} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{P_{T}^{2}\mathrm{dyd}}\cos\theta\mathrm{d}\phi} & \propto & (1+\cos^{2}\theta) & \longrightarrow & LO \ term \\ \\ & + & \frac{1}{2}A_{0}(1-3\cos^{2}\theta) & \longrightarrow & \cos^{2}\theta: \\ & + & A_{1}\sin2\theta\cos\phi + \frac{1}{2}A_{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi & \longrightarrow & (\theta,\phi) \ terms \\ \\ & + & A_{4}\cos\theta & \longrightarrow & LO \ term: \ determine \ A_{fb} \\ \\ & + & A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi & \longrightarrow & very \ small \ terms \\ \end{array}$$

- \triangleright A_i , the ratio of helicity dependent cross-section over the unpolarized cross-section
 - \square A_1 : the difference in the probability of emission of gluons by low x and high x patrons
 - Lam-Tung relation : $A_0 = A_2$
 - \square A_2 : sensitive to the Boer-Mulders transverse momentum dependent PDFs
 - \blacksquare A_3 : is expected to be small
 - \square A_4 : sensitive to the weak mixing angle (investigate its variation $\triangle A_4$)

A_i at LHCb - p_T Dependent

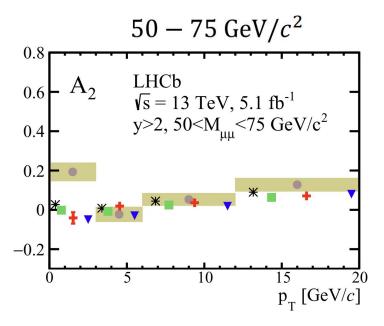


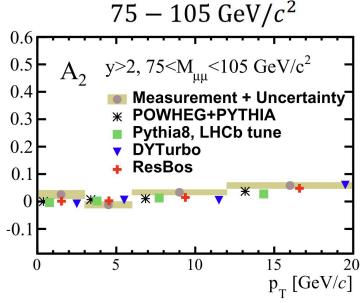
The first measurements of the angular coefficients of Drell-Yan $\mu^+\mu^-$ pairs in the forward rapidity region of pp collisions at 13TeV

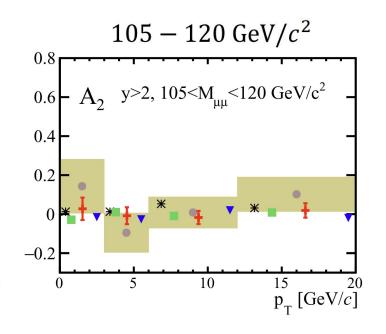
Measurement are corrected to the Born level

The uncertainty is dominated by statistical uncertainty

A_i at LHCb - y Dependent

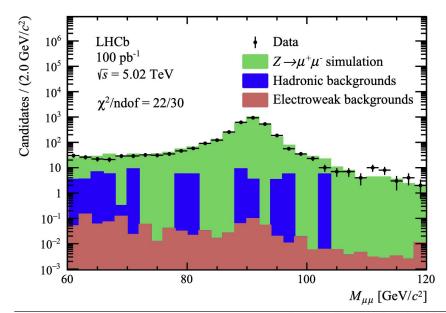



Reasonable agreement between the measurements and ResBos calculations for A_0 to ΔA_4


- The A_0 A_2 (Lam-Tung relation) has noticeable differences in the highest y region
 - ⇒ indicate a y dependence in the QCD resummation or higher-order effects

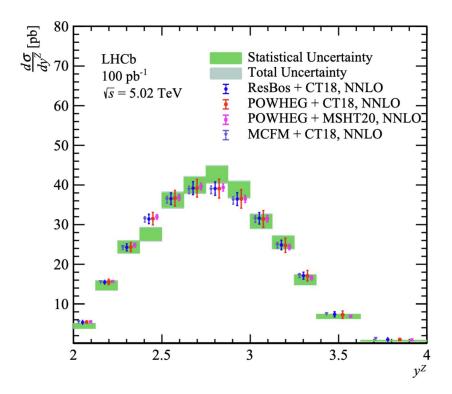
A_i at LHCb - Boer-Mulders TMD

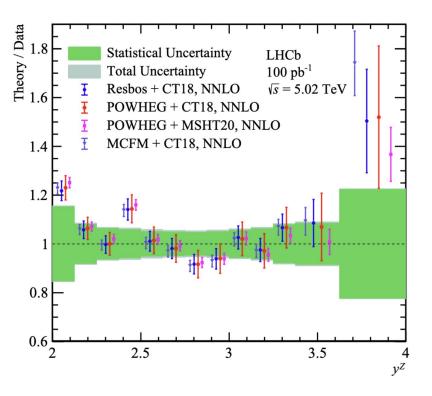
- $ightharpoonup A_2$ is sensitive to the TMD
- \succ The measured A_2 deviates significantly from all predictions in the lowest p_T region for the low-mass region
- > None of the predictions include nonperturbative spin-momentum correlations
- The total uncertainty (shown in the figure) is dominated by the statistical component.

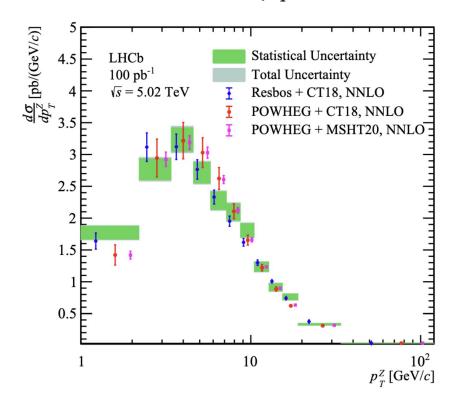


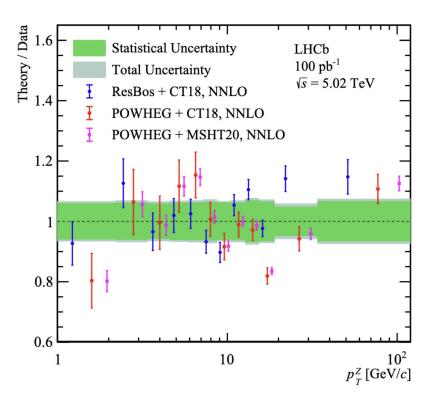
- > LHCb pp data @ 5.02 TeV (2017), $L = 100 \pm 2 \ pb^{-1}$
 - High signal purity : $N_{bkq}/N_{sig} \sim 2\%$
 - Fiducial region :

$$\begin{array}{|c|c|c|}\hline \mu^{\pm} & \text{di-muon} \\ \hline p_{\rm T} > 20\,{\rm GeV}/c \\ 2 < \eta < 4.5 & 60 < M_{\mu^{+}\mu^{-}} < 120\,{\rm GeV}/c^{2} \end{array}$$

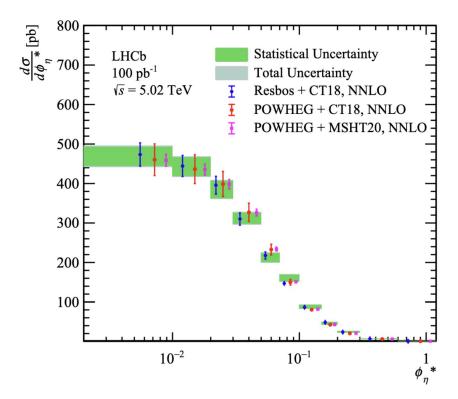

- Provide important tests of the QCD and the EW sectors
- Constrain the uncertainties of PDFs and nuclear modification factors
- ightharpoonup Differential cross-section in bins of $a=y^Z$, p_T^Z , ϕ_η^* :

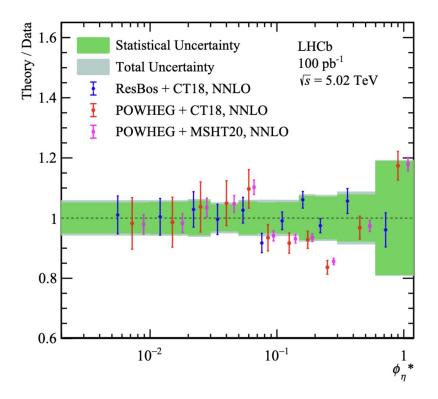

$$rac{d\sigma_{Z
ightarrow\mu^+\mu^-}}{da}(i) = rac{N_Z(i)\cdot f^Z_{FSR}(i)}{\mathcal{L}\cdot arepsilon^Z(i)\cdot \Delta a(i)},$$


Source	$\Delta\sigma[\mathrm{pb}]$	$\Delta\sigma/\sigma$ [%]
Luminosity	0.79	2.00
Statistical	0.70	1.77
Tracking	0.40	1.01
Efficiency Closure	0.24	0.61
Trigger	0.21	0.54
Background	0.19	0.48
Identification	0.10	0.25
FSR	0.07	0.18
Calibration	$<4.0\times10^{-3}$	< 0.01
Total Systematic (excl. lumi.)	0.56	1.42


- \succ Single differential cross-section Z boson rapidity y^Z :
 - ☐ Consistent with theoretical predictions.
 - Difference observed at lowest and highest rapidity bins due to the statistical fluctuations

- \succ Single differential cross-section Z boson transverse momentum p_T^Z
 - Consistent with theoretical predictions.
 - \square Difference observed at low p_T^Z region

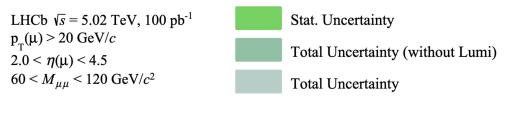


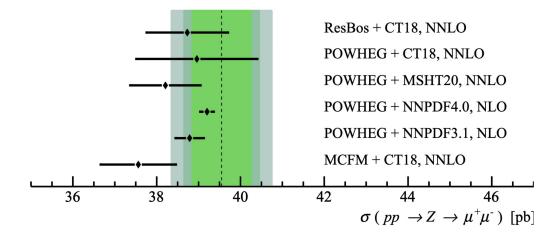

- \triangleright Single differential cross-section ϕ_{η}^* :
 - Consistent with theoretical predictions.

 $\phi_{\eta}^* = tan[(\pi - \Delta\phi^{ll})/2]/cosh(\Delta\eta^{ll}/2)$

Eur.Phys.J.C71,1600(2011)

 \Box ϕ_{η}^{*} is equivalent to p_{T}^{Z} , but less impacted by detector resolution effects




➤ Integrated cross-section at 5.02 TeV in the forward region:


$$\sigma_{Z \to \mu^+ \mu^-} = 39.6 \pm 0.7 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.8 \text{ (lumi) pb}$$

☐ The MCFM predictions are consistent with current measurements of the Z boson at different energies

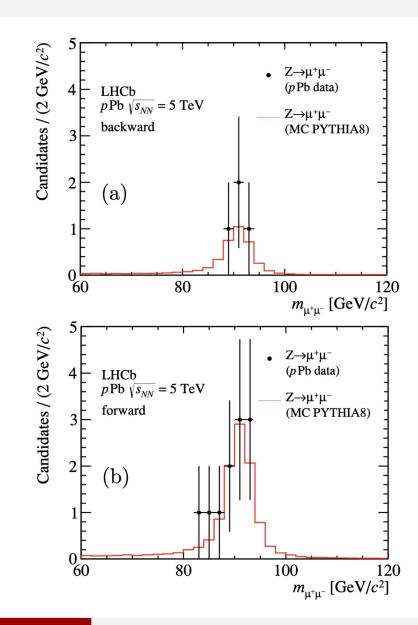
$$\sigma_{Z \to \mu^+ \mu^-} = 39.6 \pm 0.7 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.8 \text{ (lumi)} \text{ pb}$$

- > Update of nuclear modification factors at 5.02 TeV
 - ☐ The first Z boson production measurement in pPb collisions :

JHEP 09(2014)030

$$\sigma_{Z \to \mu^+ \mu^-}(\text{fwd}) = 13.5^{+5.4}_{-4.0}(\text{stat.}) \pm 1.2(\text{syst.}) \text{ nb}$$

$$\sigma_{Z \to \mu^+ \mu^-}(\text{bwd}) = 10.7^{+8.4}_{-5.1}(\text{stat.}) \pm 1.0(\text{syst.}) \text{ nb}$$


With latest results in pp collisions, the NMF in the forward $(1.53 < y_{\mu}^* < 4.03)$ and backward $(-4.97 < y_{\mu}^* < -2.47)$ region are first measured as :

$$R_{pPb}^{\rm F} = 1.2_{-0.3}^{+0.5} \,(\text{stat}) \pm 0.1 \,(\text{syst})$$
 $R_{pPb}^{\rm B} = 3.6_{-0.9}^{+1.6} \,(\text{stat}) \pm 0.2 \,(\text{syst})$

■ The theoretical predictions are :

$$R_{p\text{Pb}}^{\text{F, theo.}} = 0.906_{-0.007}^{+0.002}$$
 $R_{p\text{Pb}}^{\text{B, theo.}} = 0.929_{-0.028}^{+0.011}$

⇒ about 2.3 sigma difference mainly due the low statistics

Summary

- > Highlights of last year's LHCb measurements using Z boson as probe:
 - \checkmark The first study of the angular coefficients of Drell-Yan $\mu\mu$ pairs in pp collisions at 13 TeV in the forward region
 - ✓ The first measurement of Z boson production cross-section in pp collisions at 5.02 TeV in the forward region
 - ✓ The first measurement of nuclear modification factor in pPb collisions at 5.02 TeV in the forward region
- A lot of anlayses are working in progress for new exciting measurements!
 - W cross-section @ 13 TeV
 - Zee cross-section @ 13.6 TeV
 - Z + jets cross-section @ 13.6 TeV
 - **□** ..

Many thanks for your attention!