News from ATLAS New Standard Model measurements with sensitivity to PDFs

Miha Muškinja on behalf of the ATLAS Collaboration

University of Ljubljana Faculty of Mathematics and Physics

PDF4LHC meeting Friday, November 17, 2023

Jožef Stefan Institute, Ljubljana, Slovenia

Introduction

- Many new Standard Model precision measurements released by ATLAS in the last year
 - See the <u>ATLAS SM public page</u> for a complete list (about 30 since November 2022)
 - Great understanding of the Run 2 dataset with precision calibrations and <1% luminosity uncertainty
- Today will focus on **new results that can be used to constrain PDFs**:
 - W+D(*)[±] cross section at 13 TeV: <u>Phys. Rev. D 108 (2023) 032012</u>
 - Inclusive photon production at 13 TeV: JHEP 07 (2023) 086
 - $p_T(Z)$ and y(Z) at 8 TeV in the full decay phase space: STDM-2018-05 (submitted to JHEP)
 - $p_T(Z)$ and $p_T(W)$ from low mu data (5.02 and 13 TeV): <u>ATLAS-CONF-2023-028</u>
 - ttbar/Z cross section ratio at 13.6 TeV (Run 3 data): TOPQ-2023-21 (submitted to PLB)
- Maarten's talk will discuss the impact of PDFs on SM precision measurements (m_W , $a_S(m_Z)$, $sin^2\theta_W$)
 - https://indico.cern.ch/event/1311146/#12-precision-measurements-of-s

Miha Muškinja

November 17, 2023

W+D(*)± cross section measurement at 13 TeV

W+D(*)[±] cross section measurement at 13 TeV

- The main goal is to measure the sg \rightarrow W+c process and thus gain sensitivity to the s-quark PDF
 - Relies on the charge correlation to remove the gluon splitting component of $pp \rightarrow W+cc$
- The "OS-SS subtraction" performed both at the truth and detector level:
 - Statistically removes the W+cc component (verified up to NNLO¹); not sensitive to PDFs
 - Removes most of the combinatorial backgrounds from other sources
- Crucial to identify c-quarks and determine their electric charge
- Perform Secondary Vertex fit using Inner Detector tracks to reconstruct two D-meson decay chains:

-
$$D^{\pm} \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\pm}$$
 and $D^{*\pm} \to D^0 \pi^{\pm} \to (K^{\mp} \pi^{\pm})^{\pm}$

1: M. Czakon, A. Mitov, M. Pellen, and R. Poncelet: 2011.01011 November 17, 2023

 $^{\pm})\pi^{\pm}$ — excellent p_T resolution and charge determination

Cross section extraction and unfolding

- The invariant D-meson mass is fitted in each differential bin simultaneously
 - With the available statistics up to five bins per observable— split into W+ and W- (2×5 bins)
- Measured observables:
 - $d\sigma/dX$ for X = $p_T(D)$ or $|\eta(\ell)|$
 - Rc = $\sigma(W+D-) / \sigma(W-D+)$ potentially sensitive to s-sbar asymmetry
- Achieved better than 5% precision on absolute cross section
 - 1-3% precision on normalized differential cross sections and percent-level on Rc

Miha Muškinja

W+D(*)[±] results

- - Latest state-of-the-art PDFs used— nominally NNLO PDFs but also checked NLO PDFs
- Systematic uncertainties considered in predictions:
 - Scale, PDF, and $\alpha_{\rm S}$ uncertainties
 - Charm hadron production fractions
 - Shower uncertainty— compare Pythia8 vs Herwig7 and A14 vs Monash tune in Pythia8

November 17, 2023

Predictions calculated with NLO **aMC@NLO+Pythia8** with finite $m_c = 1.55$ GeV and full CKM matrix

Matching uncertainty— compare aMC@NLO vs PowHeI [G. Bevilacqua, M.V. Garzelli, A. Kardos, L.Toth: 2106.11261] Uncertainty in predictions generally about $2 \times$ larger than the measurement precision for absolute x-sec

Miha Muškinja

Differential cross sections

- Differential $p_T(D)$ cross section useful for **MC tuning**
 - Generally a trend seen in all predictions (Sherpa2.2.11, NLO MG, MG+Py8 (FxFx))
- Differential $|\eta(l)|$ cross section potentially useful for constraining the s-quark PDF
 - All NNLO PDFs overshoot the data in the central region and undershoot in the forward region
 - NLO PDFs generally better match the $|\eta(l)|$ cross sections
 - Covered well by the PDF systematic uncertainty (p-values on next page)

W+D(*)[±] summary and conclusions

- Most precise W+D(*)[±] measurement so far using the exclusive D-meson reconstruction
- Generally the predictions describe the data well within the PDF uncertainties
 - Central values are typically outside the experimental error bands
 - About 2x smaller uncertainty in the data— expect to constrain s-quark PDFs with the $|\eta(l)|$
- **Outstanding issue** with parton-level and particle-level matching for W+c
 - For PDF fits likely need a NLO / NNLO particle-level calculation including charm hadronization
 - Encouraging development for B-hadron production in ttbar: [M. Czakon, et. al.: 2102.08267]
 - How far away from actually including W+c measurements in PDF fits? -(without parton-level / particle-level smearing or approximations)

		$D^{\pm} \to K^{\exists}$	$\pi^{\pm}\pi^{\pm}$ NNLO	PDFs				
Channel		D°	+ $ \eta(\ell) $					
<i>p</i> -value for PDF [%]	Exp. Only	$ \oplus QCD$ Scale	\oplus Had. and Matching	⊕ PDF			$D^{\pm} \rightarrow K$	$T^{\mp}\pi^{\pm}\pi^{\pm}$ NLO F
ABMP16_5_nnlo	7.1	11.8	12.9	19.8		1		
ATLASpdf21_T3	9.0	9.7	11.5	84.7	Channel		D^{-}	$ \eta(\ell) $
CT18ANNLO	0.7	1.0	1.1	76.0	<i>p</i> -value for PDF [%]	Exp. Only	⊕ QCD Scale	\oplus Had. and Matching
CT18NNLO	1.4	6.1	6.3	87.6	ABMP16 3 nlo	917	97 7	97.9
MSHT20nnlo_as118	2.7	2.9	3.3	45.6	CT18ANLO	67.8	82.9	83.4
PDF4LHC21_40	3.9	5.3	5.6	75.8	CT18NLO	19.0	53.5	53.6
NNPDF31_nnlo_as_0118_hessian	1.5	2.6	2.8	50.7	MSHT20nlo_as118	75.4	87.8	87.9
NNPDF31_nnlo_as_0118_strange	9.1	14.7	15.2	59.9	NNPDF31_nlo_as_0118_hessian	1.0	2.4	2.5
NNPDF40_nnlo_as_01180_hessian	9.9	10.2	10.2	43.7	NNPDF40_nlo_as_01180	8.3	10.7	10.7

November 17, 2023

Miha Muškinja

November 17, 2023

Inclusive photon production at 13 TeV

Inclusive photon production at 13 TeV

- Main objective is to measure the production of high-p_T prompt photons
 - Testing ground for pQCD with a hard colorless process
 - Sensitive to the gluon density in the proton (via $qg \rightarrow q\gamma$) and input for global QCD fits
- The main experimental challenges:
 - Precise photon identification and energy scale calibrations (percent-level precision needed) Separate prompt photons from photons originating form neutral hadron decays Prompt photons selected by applying isolation requirements in a cone around the photon
- Measurement provided for two different cone sizes (R = 0.2 and 0.4) to study dependencies

Truth fiducial phase space (including particle-level isolation)

Requirement	Phase-space region				
E_{T}^{γ}		$E_{\mathrm{T}}^{\gamma} > 250 \; \mathrm{GeV}$			
Isolation	$E_{\rm T}^{\rm iso} < 4.2 \cdot 10^{-3} \cdot E_{\rm T}^{\gamma} + 4.8 \; {\rm GeV}$				
η^{γ}	$ \eta^{\gamma} < 0.6$	$0.6 < \eta^{\gamma} < 0.8$	$0.8 < \eta^{\gamma} < 1.37$	$1.56 < \eta^{\gamma} < 1.81$	$1.81 < \eta^{\gamma} < 2.01$

Miha Muškinja

Signal extraction and unfolding

- In each pseudo-rapidity (η) bin the multijet background is subtracted using the ABCD method
- ABCD regions constructed with photon ID and isolation
 - Assumed no correlation ($R^{bg} = 1$)
 - systematic uncertainty applied to cover the difference between Sherpa and Pythia8

Miha Muškinja

Comparison to predictions

Program	Order in α_s	Fragmentation	Parton	I
			shower	n
JETPHOX	NLO	yes	no	f
SHERPA 2.2.2	NLO for γ + (1, 2)-jet	no	yes	h
	LO for γ + (3, 4)-jet			
Nnlojet	(N)NLO	yes	no	fi

November 17, 2023

Results compared to three predictions: Sherpa2.2.2 and two fixed-order predictions (Jetphox / NNLOJET)

Miha Muškinja

Comparison of different PDFs in Jetphox

$p_T(Z)$ and y(Z) at 8 TeV in the full decay phase space

November 17, 2023

pT(Z) and y(Z) at 8 TeV in the full decay phase space

- 22,528 4D detector-level bins in $(p_T(Z), y(Z), \cos\theta, \phi)$
- Extrapolated to full decay phase space by measuring the angular coefficients and $d^2\sigma/(dp_T dy)$
- Provides a framework for clean interpretations of rapidity and p_T cross sections
 - No polarization and decay efficiency uncertainties, at the cost of larger statistical uncertainty
- Heroic experimental effort— Run 1 forward electron calibration needed to be re-done due to slight tension with the central calibration.

Miha Muškinja

Cross section results

- Results can be interpreted / used in various ways:

 - Integrate over $p_T(Z)$ to get a precise |y| distribution— sensitive to PDFs!

Integrate over |y| to get a precise $p_T(Z)$ differential cross section— was used to extract $\alpha_S(m_Z)$

More about $\alpha_{\rm S}(m_Z)$

Miha Muškinja

Sensitivity to PDFs

- Excluding luminosity uncertainty (correlated across bins), permille-level precision in the central region, sub-percent uncertainties up to |y| < 3.6
- First comparison to N3LO QCD predictions
- DYTurbo with the aN3LO MSHT20 PDF set
- Comparisons with NNLO PDFs: NNLO QCD + NLO EW DYTurbo calculation
- **NNPDF4.0** mostly within the luminosity uncertainty, but poor p-value due to small PDF uncertainty and the discrepancy in the |y| cross section shape

set	Total χ^2 / d.o.f.	χ^2 p-value	Pull on luminosity
T20aN ³ LO [<mark>58</mark>]	13/8	0.11	1.2 ± 0.6
A [<mark>59</mark>]	12/8	0.17	0.9 ± 0.7
T20 [<mark>60</mark>]	10/8	0.26	0.9 ± 0.6
DF4.0 [<mark>61</mark>]	30/8	0.0002	0.0 ± 0.2
P16 [<mark>62, 63</mark>]	30/8	0.0002	1.8 ± 0.4
APDF2.0 [64]	22/8	0.005	-1.3 ± 0.8
ASpdf21 [65]	20/8	0.01	-1.1 ± 0.8

pT(Z) and pT(W) from low mu data (5.02 and 13 TeV)

$p_T(Z)$ and $p_T(W)$ from low mu data (5.02 and 13 TeV)

- Uses the **hadronic recoil** to access $p_T(W)$

November 17, 2023

Miha Muškinja

PDF sensitivity

- Predictions calculated with DYTurbo at NNLO + NNLL accuracy using NNLO PDF sets
- Central values of tested PDFs generally undershoot the cross section by 1-2 experimental error
- Sizable difference (compared to exp. error) between the PDF sets (NNPDF3.1 vs others)
-

 Cross section ratios nowever, are spot-on within the percent-level precision 	PDF set	$W^- \to \ell \nu$	W^+	$\rightarrow \ell \nu$	$Z \to \ell \ell$		
 Expected to have constraining nower 	Ratio $\sigma_{\rm fid}(13{\rm TeV})/\sigma_{\rm fid}(5.02{\rm TeV})$						
L'Apecieu lo nave constraining power	CT18	2.499	2.	029	2.337		
	MSHT20 NNPDF3.1	2.515 2.500	2.0 2.0	$\begin{array}{c} 040\\ 022 \end{array}$	$2.362 \\ 2.339$		
PDF set $W^- \to \ell \nu W^+ \to \ell \nu Z \to \ell \ell$	Data	2.517 ± 0.03	38 2.047 :	± 0.031 2	2.340 ± 0.036		
Cross-section at $5.02 \mathrm{TeV} \mathrm{[pb]}$							
CT18 1364 - 1.25 σ 2199 - 1.16 σ 320.9 - 2.95 σ	PDF set	W^+/W^-	W^-/Z	W^+/Z	W^{\pm}/Z		
MSHT20 1351 -2.06σ 2185 -2.69σ 324.3 -2.12σ	Cross-section ratios at $5.02 \mathrm{TeV}$						
NNPDF3.1 1381 -0.19σ 2232 +0.16σ 329.8 -0.78σ	CT18	1.612	4.25	6.85	11.10		
Data 1384 ± 16 2228 ± 25 333.0 ± 4.1	MSHT20 NNPDF3.1	$\begin{array}{c} 1.618\\ 1.616\end{array}$	$\begin{array}{c} 4.16 \\ 4.19 \end{array}$	$\begin{array}{c} 6.74 \\ 6.77 \end{array}$	$\begin{array}{c} 10.90 \\ 10.95 \end{array}$		
Cross-section at $13 \mathrm{TeV} \mathrm{[pb]}$	Data	1.611 ± 0.005	4.16 ± 0.05	6.69 ± 0.08	10.85 ± 0.12		
CT18 3410 -2.00σ 4462 -2.22σ 749.8 -2.93σ		Cross-sect	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
MSHT203397 -2.34σ4457 -2.33σ766.1 -1.37σNNPDF3.13452 -0.89σ4513 -1.18σ771.4 -0.86σ	CT18 MSHT20 NNPDF3.1	$1.309 \\ 1.312 \\ 1.307$	$\begin{array}{c} 4.55 \\ 4.43 \\ 4.48 \end{array}$	$5.95 \\ 5.82 \\ 5.85$	$10.50 \\ 10.25 \\ 10.33$		
Data $3486 \pm 38 4571 \pm 49 780.3 \pm 10.4$	Data	1.312 ± 0.003	4.46 ± 0.07	5.84 ± 0.09	10.31 ± 0.15		

Miha Muškinja

PDF sensitivity from $p_T(V)$ shape?

- Only a small difference in the normalized cross section between the tested PDF sets
 - Do we expect to be able to constrain PDFs from the $p_T(W)$ shape?
 - Would be interesting to see the PDF errors / eigenvectors

Miha Muškinja

ttbar/Z cross section ratio at 13.6 TeV (Run 3 data)

November 17, 2023

ttbar/Z cross section ratio at 13.6 TeV

- Cross section measurements with initial early Run 3 data limited by luminosity uncertainty
 - Mostly cancels out in a cross section ratio— measure $\sigma(\text{ttbar}) / \sigma(Z)!$
- Results given both for separate cross sections and the cross section ratio

In 3 data limited by luminosity uncertainty easure σ (ttbar) / σ (Z)! nd the cross section ratio

Comparison to PDF sets

- Ratio calculated in a fiducial phase space
 - $p_T(\ell) > 27 \text{ GeV}, |\eta(\ell)| < 2.5$
 - Invariant mass 66 GeV < $m(\ell \ell)$ < 116 GeV
- ttbar x-sec prediction: NNLO + NNLL
- Z x-sec prediction: NNLO QCD + NLO EW
- Scale uncertainty in predictions fully **uncorrelated** between ttbar and Z x-sec
- PDF uncertainty assumed fully correlated
- Predictions agree with the data within the uncertainties
- Relatively large spread of central values with different PDF sets
 - Up to 10% relative difference
 - About 2% experimental precision

Miha Muškinja

November 17, 2023

Summary

- - W+D(*)[±] cross section at 13 TeV: <u>Phys. Rev. D 108 (2023) 032012</u>
 - Inclusive photon production at 13 TeV: JHEP 07 (2023) 086
 - $p_T(Z)$ and y(Z) at 8 TeV in the full decay phase space: <u>STDM-2018-05 (submitted to JHEP)</u>
- $p_T(Z)$ and $p_T(W)$ from low mu data (5.02 and 13 TeV): <u>ATLAS-CONF-2023-028</u>
- ttbar/Z cross section ratio at 13.6 TeV (Run 3 data): TOPQ-2023-21 (submitted to PLB)
- Open question regarding the inclusion of W+c datasets in PDF fits
- How can we maximally exploit this new data to reduce the PDF uncertainties?

Many new SM measurements in the last year and several of them **important for PDF interpretation**:

Most results accompanied with **HEPData** and **Rivet** routines— feedback from theory community welcome!

Backup