

Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS[†] PDF4LHC meeting

Florian Lorkowski on behalf of the ZEUS collaboration

florian.lorkowski@physik.uzh.ch

Deutsches Elektronen-Synchrotron DESY[‡]

ZEUS

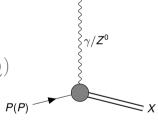
November 17, 2023

[†]accepted by EPJC. arXiv:2309.02889

Now at University of Zürich

Motivation Deep inelastic scattering

Jet production DIS at ZEU


Florian Lorkowsł 2023-11-17

Jet production
Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Summary

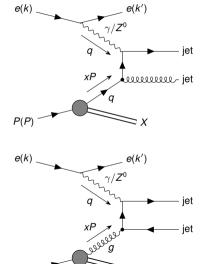
Deep inelastic scattering

Inclusive deep inelastic scattering (DIS) measurements in lepton-hadron collisions ($ep \rightarrow eX$) are essential to determine the parton distribution functions (PDFs) of the proton (xf). At leading order:

$$\frac{\mathrm{d}^{2}\boldsymbol{\sigma_{\mathrm{NC DIS}}^{\pm}}}{\mathrm{d}x_{\mathrm{Bj}}\mathrm{d}Q^{2}} = \frac{2\pi\alpha^{2}}{x_{\mathrm{Bj}}Q^{4}} \left(\underbrace{Y_{+}F_{2}(x_{\mathrm{Bj}},Q^{2})}_{\sim \boldsymbol{x}\boldsymbol{q} + \boldsymbol{x}\boldsymbol{\bar{q}}} \mp \underbrace{Y_{-}x_{\mathrm{Bj}}F_{3}(x_{\mathrm{Bj}},Q^{2})}_{\sim \boldsymbol{x}\boldsymbol{q} - \boldsymbol{x}\boldsymbol{\bar{q}}} - \underbrace{y^{2}F_{L}(x_{\mathrm{Bj}},Q^{2})}_{\sim \boldsymbol{x}\boldsymbol{g} \times \boldsymbol{\alpha_{s}}} \right)$$

- \Rightarrow By measuring F_2 and F_3 , the quark- and antiquark-distributions, xq and $x\bar{q}$, can be probed
- ▶ By measuring F_L or using scaling violations in DGLAP equations the product of the gluon distribution xg and the strong coupling constant α_s can be determined
- Using higher-order terms, the two can be disentangled to some extent, but a strong correlation remains

MotivationInclusive jet production


Jet production in DIS at ZEUS

Florian Lorkows 2023-11-17

DIS
Jet production
Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis

Jet measurements

- ► Already at leading order,[†] jet production in DIS is sensitive to the strong coupling independently of the gluon distribution (upper graph)
- Additionally, jet production can also be used to further constrain the gluon distribution (lower graph)
- Inclusive jet measurements are especially well suited for precision determinations of the strong coupling constant due to their small uncertainties on both the experimental and theoretical side

[†]Leading order in the Breit frame; see slide 5

Theory of deep inelastic scattering Definitions

Jet production in DIS at ZEU:

Florian Lorkowsk 2023-11-17

Motivation
Theory of DI
Definitions
PDFs
Breit frame
Experiment

Breit frame
Experiment
Measurement
Cross sections
QCD analysis
Summary

Deep inelastic scattering

 Scattering of leptons off hadrons at high momentum transfer Q²

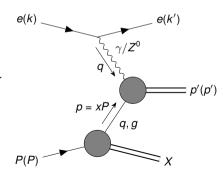
$$e(k) + P(P) \rightarrow e(k') + p'(p') + X$$

Boson acts as point-like probe of the hadron

Kinematic quantities

$$Q^2 = -q^2 = -(k'-k)^2$$

 $x_{\rm Bj} = \frac{Q^2}{2P \cdot q}$


$$y = \frac{P \cdot q}{P \cdot k}$$

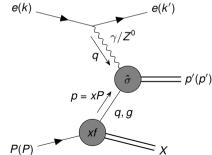
Boson virtuality/ Momentum transfer

Bjorken scaling parameter

Inelasticity

p' ... Scattered hadronic system X ... Proton remnant

Theory of deep inelastic scattering Parton distribution functions



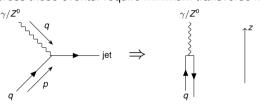
Jet production in DIS at ZEUS

Florian Lorkowsł 2023-11-17

Theory of DIS
Definitions
PDFs
Breit frame
Experiment
Measurement
Cross sections
QCD analysis
Summary

- ► To predict cross sections of lepton-hadron collisions, one needs
 - ▶ The boson-parton cross sections $\hat{\sigma}$ (calculable using perturbative QCD)
 - ► The parton content of the hadron (unknown but assumed to be universal for each hadron); parameterised using PDFs xf
- PDFs can only be determined from fits to measurements
- ▶ Adding jet data to the fit allows a simultaneous determination of α_s and the PDFs

Theory of deep inelastic scattering Breit frame



Jet production in DIS at ZEUS

Florian Lorkowsl 2023-11-17

Theory of DIS
Definitions
PDFs
Breit frame
Experiment
Measurement
Cross sections
QCD analysis

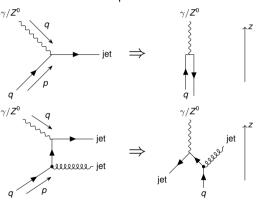
- ► Single jets may arise purely from QED, which is uninteresting for studies of QCD
- ► To suppress these events: require minimum transverse momentum in Breit frame

In the **Breit frame**, the parton and boson collide head-on

$$q^{\mu}=egin{pmatrix} 0 \ 0 \ 0 \ -Q \end{pmatrix}$$

$$p^\mu = egin{pmatrix} Q/2 \ 0 \ 0 \ Q/2 \end{pmatrix}$$

Theory of deep inelastic scattering Breit frame



Jet production in DIS at ZEUS

Florian Lorkowsł 2023-11-17

Theory of DIS
Definitions
PDFs
Breit frame
Experiment
Measurement
Cross sections
QCD analysis

- ► Single jets may arise purely from QED, which is uninteresting for studies of QCD
- ► To suppress these events: require minimum transverse momentum in Breit frame

In the **Breit frame**, the parton and boson collide head-on

$$egin{align} q^{\mu} &= egin{bmatrix} 0 \ 0 \ -Q \end{pmatrix} \ p^{\mu} &= egin{bmatrix} Q/2 \ 0 \ 0 \end{bmatrix}$$

- ► Lowest order process: produce two jets of equal transverse momentum ("dijet")
- ► Inclusive jets: count each jet individually; events can contribute multiple times

Experiment HERA and ZEUS

Jet production in DIS at ZEUS

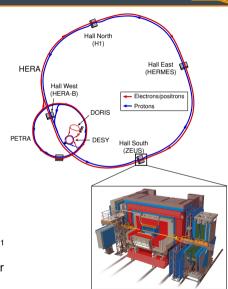
Florian Lorkowsł 2023-11-17

Motivation

Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis

HERA accelerator

- World's only lepton-hadron collider so far
- Located at DESY in Hamburg, Germany
- Two run periods:


► HERA I: 1992 – 2000

► HERA II: 2003 – 2007

- Circular collider of length 6336 m
- ▶ Collide electrons/positrons at 27.5 GeV with protons at 920 GeV $\rightarrow \sqrt{s} = 318$ GeV

ZEUS detector

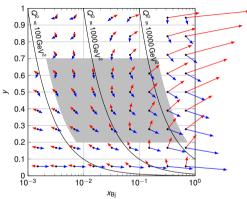
- General purpose particle detector
- ► Integrated luminosity during HERA II: 347 pb⁻¹
- High-resolution uranium-scintillator calorimeter allows precise measurement of jet energies

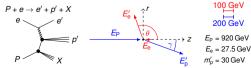
MeasurementCross section definition

Jet production in DIS at ZEU:

Florian Lorkowsk 2023-11-17

Motivation
Theory of DIS
Experiment

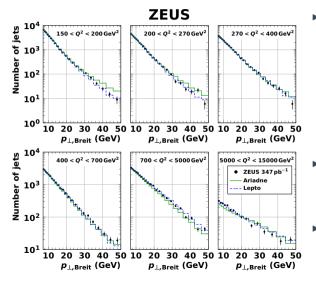

Measuremer


Simulation
Systematics
NNLO prediction
Cross sections
QCD analysis
Summary

- Inclusive jets, clustered using k_{\perp} algorithm and p_{\perp} -weighted scheme in Breit frame
- ► Use entire HERA II dataset (347 pb⁻¹)
- Analysis phase space

$$150\,\mathrm{GeV}^2 < Q^2 < 15\,000\,\mathrm{GeV}^2$$
 $0.2 < y < 0.7$
 $7\,\mathrm{GeV} < p_{\perp,\mathrm{Breit}} < 50\,\mathrm{GeV}$
 $-1 < \eta_{\mathrm{lab}} < 2.5$

- ► Hadron-level jets
- Weak-boson exchange included
- QED Born-level (higher-order radiative effects removed)

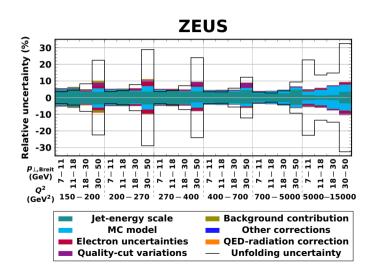

Measurement Simulation

Jet production in DIS at ZEU:

Florian Lorkowsl 2023-11-17

Theory of DIS
Experiment
Measurement
Simulation
Systematics
NNLO prediction
Cross sections
QCD analysis
Summary

- Reconstructed jets corrected to hadron level via two-dimensional matrix unfolding procedure using response matrices obtained from Monte Carlo samples
 - ARIADNE: colour-dipole model
 - ► LEPTO: leading-log parton cascade
- After reweighting, the models give a good description of the data across the entire phase space
- Performed cross-check using bin-by-bin correction; results are very consistent


MeasurementSystematic uncertainties

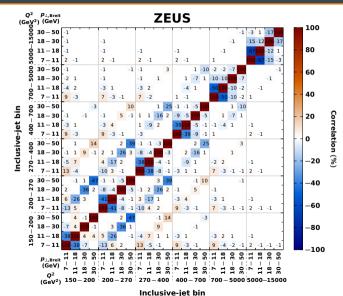
Jet production in DIS at ZEU:

Florian Lorkowsk 2023-11-17

Motivation
Theory of DIS
Experiment
Measurement
Simulation
Systematics
NNLO prediction
Cross sections
QCD analysis

- Systematic uncertainty mostly dominated by jet-energy scale (uncertainty of MC detector simulation)
- In high-p_{⊥,Breit} or high-Q² region, other uncertainties become relevant/dominant
- Unfolding uncertainty appears large in low-statistics region
- Bins with large unfolding uncertainty usually strongly anti-correlated

MeasurementSystematic uncertainties



Florian Lorkowsk 2023-11-17

Theory of DIS
Experiment
Measurement
Simulation
Systematics

Cross sections
QCD analysis
Summary

- Systematic uncertainty mostly dominated by jet-energy scale (uncertainty of MC detector simulation)
- In high-p_{⊥,Breit} or high-Q² region, other uncertainties become relevant/dominant
- Unfolding uncertainty appears large in low-statistics region
- Bins with large unfolding uncertainty usually strongly anti-correlated

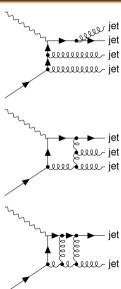
Measurement Theoretical predictions

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

Theory of DI Experiment Measuremer

Systematics
NNLO prediction


QCD analysis

Theoretical predictions

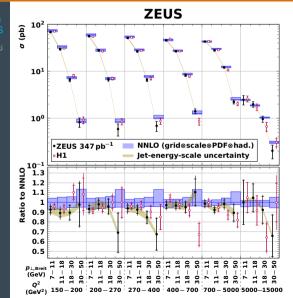
- Cross section predictions are calculated at NNLO
- ► Matrix elements calculated using NNLOJET[†]
- ► PDFs taken from HERAPDF2.0Jets NNLO‡
- ho $\alpha_{
 m s}(M_Z^2)=0.1155,\,\mu_{
 m r}^2=\mu_{
 m f}^2=Q^2+p_\perp^2$
- ► Predictions corrected for hadronisation and Z⁰-exchange

Theoretical uncertainties

- Six point scale variation by factor 2
- ► PDF uncertainty (fit, model, parameterisation)
- Statistical uncertainty of matrix element generation
- Hadronisation correction uncertainty

[†]JHEP 2017, 18 (2017). arXiv:1703.05977

[‡]EPJC 82, 243 (2022). arXiv:2112.01120


Cross sections Measured inclusive jet cross sections

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

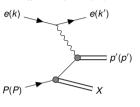
Theory of DIS
Experiment
Measurement
Cross sections
QED radiation
QCD analysis
Summary

- Measured cross sections are compatible with previous measurement from H1 collaboration[‡] and uncertainties are comparable
- Measurements are compatible with NNLO QCD predictions and show similar trends relative to the theory
- Inner error bars: unfolding uncertainty; outer error bars: total uncertainty

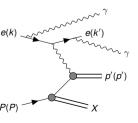
[‡]EPJC 75, 65 (2015). arXiv:1406.4709

Cross sections **QED** radiation

Jet production in DIS at ZEU


Florian Lorkowsł 2023-11-17

Motivation
Theory of DIS
Experiment
Measurement
Cross sections
QED radiation
QCD analysis
Summary


Treatment of QED radiation

- ► Predictions for jet production available at QED Born-level (running coupling included, but no radiative corrections)
- In the data, have initial- and final-state QED radiation, especially on the electron line
- Standard procedure: apply 'correction' to the data, to convert it to QED Born-level
- Usually, this cannot be undone, such that data can only ever be compared to QED Born-level predictions
- This analysis: apply correction in a reversible way and provide additional, alternative correction that facilitates more comprehensive comparisons
- $\rightarrow\,$ Data can be compared to NNLO QCD+NLO EW predictions, when they become available in the future †

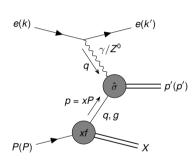
QED Born-level

QED radiation

[†]DIS at NLO EW already available: CPC 94, 2 p.128 (1996). arXiv:hep-ph/9511434

QCD analysis

QCD analysis


Summary

▶ Simultaneous fit of PDF parameters and $\alpha_s(M_Z^2)$ at NNLO

- Datasets used
 - H1+ZEUS combined inclusive DIS[†]
 - ► ZEUS HERA I inclusive jets at high Q^{2‡}
 - ► ZEUS HERA I+II dijets at high Q²§
 - ► ZEUS HERA II inclusive jets at high Q²
- Inclusion of additional jet data is expected to reduce uncertainty of $\alpha_s(M_z^2)$
- Statistical correlations between ZEUS HERA II jet datasets taken into account via correlation matrix
- ▶ Use HERAPDF parameterisation of PDFs ($f = g, u_v, d_v, \bar{U}, \bar{D}$)

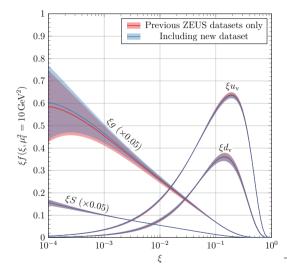
$$xf(x) = A_f x^{B_f} (1-x)^{C_f} (1+D_f x+E_f x^2)$$

► Use settings similar to HERAPDF2.0Jets NNLO (central scales, cuts, model parameters, treatment of hadronisation and theory grid uncertainty)

EPJC 75, 580 (2015) arXiv::1506.06042

[‡]PLB 547, 164 (2002) arXiv::hep-ex/0208037

[§]EPJC 70, 965 (2010) arXiv::1010.6167


QCD analysis Parton distribution functions

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running couplir
Summary

- Perform two fits and compare PDFs:
 - HERA inclusive DIS dataset+ previous ZEUS jet datasets
 - Also include newly measured ZEUS HERA II inclusive jet datasets
- Shown is experimental/fit uncertainty
- Gluon distribution is slightly constrained
- As expected, quark distributions are not significantly affected/constrained
- Uncertainty of gluon distribution appears much larger than in HERAPDF, † because $\alpha_{\rm S}(M_Z^2)$ is left free in the fit

[†]E.g. fig. 4 of arXiv:2112.01120

QCD analysis Strong coupling

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running coupling
Summary

For reference, HERAPDF2.0Jets NNLO found

$$\alpha_{\rm s}(M_Z^2) = {0.1156} \pm 0.0011$$
 (exp/fit) $^{+0.0001}_{-0.0002}$ (model/parameterisation) ± 0.0029 (scale)

This analysis

$$lpha_{\rm s}(\textit{M}_{\it Z}^2) =$$
 0.1143 \pm 0.0014 (exp/fit) $^{+0.0004}_{-0.0008}$ (model/parameterisation) $^{+0.0012}_{-0.0005}$ (scale)

- ► Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

QCD analysis Strong coupling

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running coupling
Summary

For reference, HERAPDF2.0Jets NNLO found

$$\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$$
 (exp/fit) $^{+0.0001}_{-0.0002}$ (model/parameterisation) ± 0.0029 (scale)

This analysis

$$lpha_{\rm s}(\textit{M}_{\it Z}^2) = 0.1143 \pm 0.0014 \; ({\rm exp/fit}) ^{+0.0004}_{-0.0008} \; ({\rm model/parameterisation}) \; ^{+0.0012}_{-0.0005} \; ({\rm scale})$$

- ► Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

QCD analysis Strong coupling

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running coupling
Summary

For reference, HERAPDF2.0Jets NNLO found

$$\alpha_{\rm s}(M_Z^2) = 0.1156 \pm 0.0011$$
 (exp/fit) $^{+0.0001}_{-0.0002}$ (model/parameterisation) ± 0.0029 (scale)

This analysis

$$lpha_{\rm s}(\textit{M}_{\it Z}^2) = 0.1143\,\pm 0.0014$$
 (exp/fit) $^{+0.0004}_{-0.0008}$ (model/parameterisation) $^{+0.0012}_{-0.0005}$ (scale)

- Central value is compatible with HERAPDF and with PDG world average
- Increased experimental uncertainty, due to fewer jet datasets used
- ▶ Significantly decreased scale uncertainty, due to absence of low- Q^2 jet data
 - Cross-section scale-dependence assumed as fully correlated between all jet measurements
 - When fitting points far away from each other in phase space, the cross-section scale-dependence can be much less correlated or even anti-correlated

QCD analysis Alternative treatment of scale uncertainty

Jet production in DIS at ZEUS

Florian Lorkowsł 2023-11-17

Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis

PDFs
Strong coupling
Running coupling
Summary

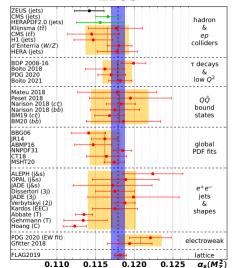
 Alternative treatment: assume scale dependence is half correlated between all measurements

Despite absence of low-Q² jet data in the fit, additional reduction is significant

$$lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1143 \pm \ldots ^{+0.0012}_{-0.0005} \, {
m (scale)}$$
 \downarrow $lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1142 \pm \ldots ^{+0.0006}_{-0.0004} \, {
m (scale)}$

QCD analysis Alternative treatment of scale uncertainty

QCD analysis Summary

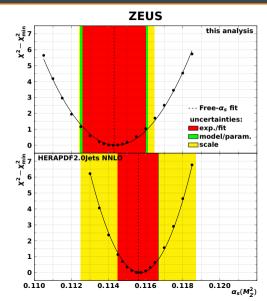

Alternative treatment: assume scale dependence is half correlated between all measurements

Despite absence of low- Q^2 jet data in the fit, additional reduction is significant

$$lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1143 \pm \ldots ^{+0.0012}_{-0.0005} \, ({
m scale})$$
 \downarrow $lpha_{
m s}(\emph{M}_{\it Z}^2) = 0.1142 \pm \ldots ^{+0.0006}_{-0.0004} \, ({
m scale})$

Reduced scale uncertainty leads to one of the most precise collider measurements of $\alpha_{\rm s}(M_z^2)^{\dagger}$

ZEUS


QCD analysis Comparison to HERAPDF

Jet production in DIS at ZEU:

Florian Lorkows 2023-11-17

Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running coupling
Summary

- ▶ Upper panel: $\chi^2(\alpha_s(M_Z^2))$ -scan, alongside result from $\alpha_s(M_Z^2)$ -free fit \rightarrow excellent agreement
- Lower panel: analogous figure from HERAPDF2.0Jet NNLO
- Need better treatment of scale uncertainty, so that we can combine small scale uncertainty from ZEUS with small experimental uncertainty from HERAPDF

QCD analysis Running of the strong coupling

Jet production in DIS at ZEUS

2023-11-17

Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running couplin
Summary

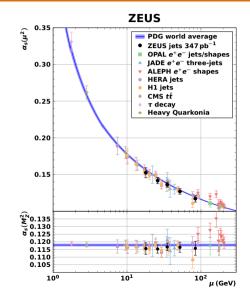
Strong coupling depends on the scale at which it is evaluated. At leading order

$$\alpha_{s}(\mu^{2}) = \frac{\alpha_{s}(\mu_{0}^{2})}{1 + \alpha_{s}(\mu_{0}^{2})b_{0}\log\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)}$$

- 'Measure' this curve to test if QCD is the correct theory to describe strong interaction
 - Assign each jet point a scale
 - Form subsets of jet points with similar scales
 - For each subset, perform a single-parameter α_s fit using fixed PDFs

QCD analysis Running of the strong coupling

Jet production in DIS at ZEUS


Florian Lorkowsł 2023-11-17

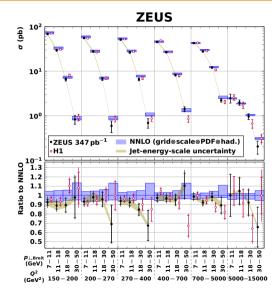
Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Strategy
PDFs
Strong coupling
Running coupling
Summary

 Strong coupling depends on the scale at which it is evaluated. At leading order

$$\alpha_{\rm s}(\mu^2) = \frac{\alpha_{\rm s}(\mu_0^2)}{1 + \alpha_{\rm s}(\mu_0^2)b_0\log\left(\frac{\mu^2}{\mu_0^2}\right)}$$

- 'Measure' this curve to test if QCD is the correct theory to describe strong interaction
 - ► Assign each jet point a scale
 - Form subsets of jet points with similar scales
 - For each subset, perform a single-parameter α_s fit using fixed PDFs
- Observe no deviation from QCD prediction

Summary Cross section measurement


Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

Motivation
Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Summary

Cross section measurement

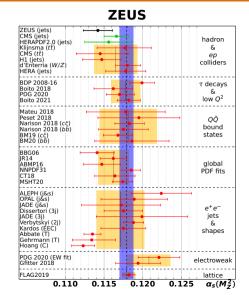
- Performed precision measurement of inclusive jet cross sections in deep inelastic scattering at ZEUS
- Used more than 70% of the entire available luminosity at ZEUS
- Cross sections are compatible with the corresponding H1 measurement and NNLO QCD theory
- New dataset is an ideal ingredient for precision determinations of α_s(M_Z²) in QCD fits

Summary NNLO QCD analysis

Jet production in DIS at ZEUS

Florian Lorkowsł 2023-11-17

Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Summary


QCD analysis

- ▶ Dataset used in $\alpha_s(M_Z^2)$ determination at NNLO
- Achieved very precise measurement of $\alpha_s(M_Z^2)$

$$\alpha_{\rm s}(M_Z^2)=0.1142\pm0.0019$$

due to

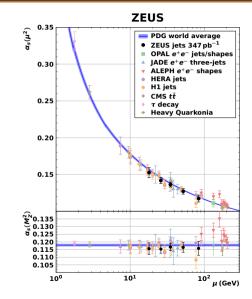
- ► Newly measured inclusive jet dataset
- ► Restriction to high-Q² jet data in the fit
- Improved treatment of theoretical uncertainty
- Investigated scale-dependence of strong coupling and found results consistent with NNLO QCD prediction

Summary NNLO QCD analysis

Jet production in DIS at ZEUS

Florian Lorkowsł 2023-11-17

Theory of DIS
Experiment
Measurement
Cross sections
QCD analysis
Summary


QCD analysis

- ▶ Dataset used in α_s(M_Z²) determination at NNLO
- Achieved very precise measurement of $\alpha_s(M_Z^2)$

$$lpha_{\rm S}(\textit{M}_{\it Z}^{\rm 2}) = 0.1142 \pm 0.0019$$

due to

- ► Newly measured inclusive jet dataset
- ▶ Restriction to high- Q^2 jet data in the fit
- Improved treatment of theoretical uncertainty
- Investigated scale-dependence of strong coupling and found results consistent with NNLO QCD prediction

QCD analysis Fit settings

Jet production in DIS at ZEUS

Florian Lorkowsł 2023-11-17

Fit settings
Goodness of f

Fit settings

|--|

Model parameters

f _s	0.4 ± 0.1	
m_c [GeV]	1.46 ^{+0.04} -symmetrise	$1.41^{+0.04}_{-\text{symmetrise}}$
m_b [GeV]	$\textbf{4.3} \pm \textbf{0.10}$	$\textbf{4.2} \pm \textbf{0.10}$
Q_{\min}^2 [GeV ²]	3.5 +1.5	

Parameterisation

$\mu_{ extsf{f0}}^2 [extsf{GeV}^2]$	1.9 $^{-0.3}_{+\text{symmetrise}}$
Additional	all missing D and E parameters
parameters	$(D_g, E_g, D_{u_v}, D_{d_v}, E_{d_v}, E_{\bar{U}}, D_{\bar{D}}, E_{\bar{D}})$

Scales

μ_{f}^2	Q^2	02 + -2
$\mu_{\rm r}^2$	$(Q^2+p_\perp^2)/2$	$Q^{\scriptscriptstyle \perp}+p_{\perp}^{\scriptscriptstyle \perp}$

Parameterisation

$$\begin{split} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A_g' x^{B_g'} (1-x)^{C_g'} \\ xu_V(x) &= A_{u_V} x^{B_{u_V}} (1-x)^{C_{u_V}} (1+E_{u_V} x^2) \\ xd_V(x) &= A_{d_V} x^{B_{d_V}} (1-x)^{C_{d_V}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{split}$$

Constraints

 A_g determined by sum rules A_{u_V} determined by sum rules A_{d_V} determined by sum rules $C_a'=25$

$$B_{ar{U}} = B_{ar{D}}$$
 $A_{ar{U}} = A_{ar{D}}(1 - f_{s})$

QCD analysis Goodness of fit

Jet production in DIS at ZEUS

Florian Lorkowsk 2023-11-17

QCD analysis
Fit settings
Goodness of fi

Dataset	Partial χ^2 / Number of points
HERA NC e^+p DIS, $E_P=920\mathrm{GeV}$	447.65/377
HERA NC e^+p DIS, $E_P=820\mathrm{GeV}$	64.99/70
HERA NC e^+p DIS, $E_P=575\mathrm{GeV}$	219.16/254
HERA NC e^+p DIS, $E_P=460\mathrm{GeV}$	216.58/204
HERA NC e^-p DIS, $E_P=920\mathrm{GeV}$	219.88/159
HERA CC e^+p DIS, $E_P=920\mathrm{GeV}$	47.52/39
HERA CC e^-p DIS, $E_P=920\mathrm{GeV}$	51.73/42
HERA I inclusive jets	26.38/30
HERA I/II dijets	14.65/16
HERA II inclusive jets	14.98/24
Shifts of correlated systematics	96.24
Global χ^2 per degree of freedom	1418.93 / 1200 = 1.182
HERAPDF2.0 NNLO	1363/1131 = 1.205
HERAPDF2.0Jets NNLO	1614/1348 = 1.197