CT18 update

J. Huston (for the CTEQ-TEA collaboration) PDF4LHC meeting Nov. 17, 2023

...borrowing liberally from slides from P. Nadolsky, T. Hobbs, ... especially from DIS talks

Some recent publications

- 1. Exploring the impact of high-precision top-quark pair production data on the structure of the proton at the LHC; A. Ablat, M. Guzzi, K. Xie, S. Dulat, T-J Hou; arXiv: 2307.11153
- 2. Quantifying the interplay of experimental constraints in analyses of parton distributions; ATLASpdf, CT and MMHT authors; *Phys.Rev.D* 108 (2023) 3, 034029
- Precision studies of the post-CT18 LHC Drell-Yan data in the CTEQ-TEA global analysis;
 I. Sitiwaldi, K. Xie et al; Phys. Rev. D 108 (2023) 3, 034030
- 4. The persistent nonperturbative charm enigma, M. Guzzi, T. Hobbs et al; *Phys. Lett. B* 843 (2023), 13975
- Parton distributions need representative sampling, A. Courtoy et al; Phys. Rev. D 107 (2023) 3, 034008
- 6. CT18 global PDF fit at leading order in QCD; M. Yan et al; *Phys. Rev. D* 107 (2023) 11, 116001
- General heavy-flavor mass scheme for charged-current DIS at nnlo and beyond; J. Gao, T. Hobbs et al; *Phys. Rev D* 105 (2022) 1, L011503
- 8. Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and ttbar data; J. Gao, T. Hobbs et al; arXiv:2211.01094
- 9. Parton distributions and lattice-QCD calculations: Towards 3D structure, A. Courtoy et al; *Prog. Part. Nucl. Phys.* 121 (2021) 103908

Since 2018, we have examined the impact of new LHC data, new parametrizations, joint PDF+EFT fits, as well as the impact of lattice constraints (especially on the strange quark).

CTEQ-TEA presentations at DIS'2023

Toward a new generation of CT202X PDFs

	1.Impact of Drell-Yan data on post-CT18 global fits	Keping Xie	WG3
	2. Constraints from $t\bar{t}$ production at LHC 13 TeV	Marco Guzzi	WG1
	3. Epistemic uncertainty quantification in PDF fits	P. Nadolsky	WG1
4.	CT18 NNLO fitted charm PDFs [arXiv:2211.01387]	Tim Hobbs	WG1
5.	Prospects for using lattice-QCD constraints in the global PDF analysis	TJ. Hou	Plenary
6.	CTEQ-TEA NNLO predictions for high-energy neutrino cross sections	Dan Stump	WG3
7.	Simultaneous CTEQ-TEA extraction of PDFs and SMEFT contributions	Tim Hobbs	WG3
8.	Small-x dynamics in CTEQ-TEA fits and Forward Physics Facility	Keping Xie	WG2

Impact of top/jet data->see talk of Marco Guzzi

- L2 sensitivity->see talk of Aurore Courtoy
- Replicability->see talk of Pavel Nadolsky

• The CT18 family of PDFs includes LHC data available up to 2018, i.e. mostly 7 and 8 TeV data

• CT18 is the primary PDF; CT18A includes the ATLAS 7 TeV W/Z data (excluded from CT18 due to very poor fit); CT18X includes scale to simulate effects of low x resummation for DIS; CT18Z includes both effects

- CT18As (new) allows a more flexible parametrization for strange
- CT18As_Lat (new) adds lattice constraint

New CT 18 NNLO grids for precision calculations

- Available on ct.hepforge.org
- Contain more x and Q points improved interpolation at the expense of slightly slower evaluation

• Crossing of quark mass thresholds implemented with multiple Q grids. Complement the published (less dense) CT 18 grids on LHAPDF that remain sufficient for most applications

New post-CT18 LHC Drell-Yan data

Boson	\sqrt{s}	Lumi	Observable	Ref.					
ATLAS									
W, Z	2.76	$4.0 \ { m pb}^{-1}$	$\sigma^{ m fid,tot}$	1907.03567					
W, Z	13	81.0 pb ⁻¹	$\sigma^{ m fid}$	1603.09222					
W,Z	5.02	$25.0 \ { m pb}^{-1}$	$(oldsymbol{\eta}_\ell,y_{\ell\ell})$	1810.08424					
Z	8	$20.2 \ {\rm fb}^{-1}$	$(m_{\ell\ell},y_{\ell\ell})$	1710.05167					
$W \rightarrow \mu \nu$	8	$20.2 { m ~fb^{-1}}$	η_{μ}	1904.05631					
\overline{Z}	13	$36.1~{ m fb}^{-1}$	$p_T^{\ell\ell}$	1912.02844					
CMS									
Z	13	$2.8 { m ~fb^{-1}}$	$m_{\ell\ell}$	1812.10529					
Z	13	$35.9~{ m fb}^{-1}$	$(y, p_T, {\pmb{\phi}}^*)$	1909.04133					
W	13	$35.9 { m ~fb^{-1}}$	$\sigma^{ ext{fid}}$, ${y}_W, (oldsymbol{\eta}_\ell, {p}_T^\ell)$	2008.04174					
LHCb									
$W ightarrow e \mathbf{v}$	8	$2.0 { m ~fb^{-1}}$	${m \eta}_e$	1608.01484					
Z	13	294 pb^{-1}	$oldsymbol{\sigma}^{ ext{fid}}$, $(y, p_T, oldsymbol{\phi}^*)$	1607.06495					
$Z ightarrow \mu \mu$	13	$5.1 { m ~fb^{-1}}$	$oldsymbol{\sigma}^{ ext{fid}}$, $(y, p_T, oldsymbol{\phi}^*)$	2112.07458					

Multiple candidate fits to explore the impact of 8 and 13 TeV Drell-Yan data using NNLO and resummed N3LL-NNLO cross sections

- Most of the post-CT18 LHC Drell-Yan data are consistent with the ATLAS 7 TeV W, Z precision measurement, which enhance the strangeness (CT18A).
- Exceptions for ATLAS and LHCb 8 TeV W data, which push the $d(\bar{d})$ PDFs to the opposite direction.
- The post-CT18 LHC Drell-Yan data shrink the error bands.
- The joint impact of these new data sets pull the PDFs and predictions from CT18 to CT18Z direction.

Parton Luminosities

- The new Drell-Yan data increases (decreases) the quark-related luminosity at low (high) invariant mass
- ...with a reduction in the size of the error bands
- The more flexible strangeness parameterization in CT18As can enlarge the uncertainty bands for quark-related parton luminosities

Small-x dynamics in CTEQ-TEA PDFs

K. Xie, WG2

- Both the BFKL resummation (CT18sx) and saturation (CT18X) models improve the description of HERA DIS data, which enhances gluon PDF at small x and low Q^2 .
- F_L at $x \rightarrow 0$ is enhanced (stays \approx constant) with resummation (saturation) models.
- Forward charm production at CERN FPF gets large uncertainty from small-*x* dynamics.

pQCD only very weakly breaks $c=\bar{c}$ through HO corrections

- Jarge(r) charm asymmetry would signal nonpert dynamics, IC
- \rightarrow MBM breaks $c = \overline{c}$ through hadronic interactions

consider two MBM models as examples (not predictions)

→ asym. small but ratio (left) can be bigger; will be hard to extract from data

conclusion: require more data/input to resolve FC

EIC + <u>lattice QCD</u> will constrain FC scenarios

enhanced FC momentum implied by EMC data \rightarrow small high-*x* effects in structure function; need high precision

> essential complementary input from LHC; CERN FPF

EIC will measure precisely in the few-GeV, high-x region where FC signals are to be expected

One slide on ttbar

Global fit: impact from new baseline with $t\bar{t}@13 TeV$

Differences related to different scale choices are well within the CT18 PDF error band.

Optimal baselines consists of combinations of 1D absolute Xsec from

- ATLAS all hadronic, ytt
- ATLAS lepton + jets, ytt and stat. comb. {ytt, Mtt, yBtt, HTtt} have very similar impact
- CMS dilepton, ytt
- CMS lepton + jets, Mtt

Reduction in scale uncertainty for gg observed in ggF Higgs region

0

Simultaneous CTEQ-TEA extraction of PDFs and SMEFT parameters from jet and $t\bar{t}$ data

T.J. Hobbs DIS	motivation	arXiv:2211.01094

strong recent interest: <u>model-independent</u> BSM analyses

EFT-based parametrizations: *e.g.*, <u>SM effective field theory (SMEFT</u>)

- EFT global analyses often assumed *fixed* SM calculations
 → PDFs not actively fitted alongside SMEFT parameters
 → could potentially bias resulting SMEFT analysis
- some recent studies: preliminary attempts at joint SMEFT/PDF fits

 \rightarrow this work: explore in context of CTEQ-TEA (CT) framework

 \rightarrow demonstration study focusing on select data: jet, $t\bar{t}$ production

→ examine possible PDF-SMEFT correlations

examine SMEFT uncertainties in joint PDF fit

quantify SMEFT uncert. through Lagrange Multiplier (LM) scans:

 \rightarrow constraints to top-associated Wilson coefficient, C_{ta}^8/Λ^2

- modest increase in uncertainty when co-fitted with PDFs
- predominantly *quartic* shapes for $\Delta \chi^2$ reflect pure SMEFT contributions $\sim \frac{1}{\Lambda^4}$

- growing interest in EFT global fits, joint analyses with PDFs
- completed first simultaneous PDF-SMEFT fit within CT framework

- explore jet and $t\bar{t}$ data as a demonstration study; examine correlations \rightarrow relatively weak PDF-SMEFT correlations
 - \rightarrow evidence of correlation between high-x gluon, contact interaction
 - \rightarrow these will increase with growing expt precision; e.g., at HL-LHC
 - \rightarrow need further theory development; more operator combinations, ...
- ML-based framework; scalable to larger SMEFT parameter space

UHE neutrinos: probe matter at extreme scales, BSM sensitivity

relevant energies are those attained at *neutrino telescopes*, *e.g.*, IceCube

'high energy': $10^3 < E_{\nu} < 10^8~{
m GeV}$ 'ultra-high energy' (UHE): $E_{\nu} > 10^8~{
m GeV}$

- □ far exceed energy scales achievable at terrestrial facilities (e.g., the LHC)
 - \rightarrow potentially probe saturation physics at extremely low x
 - → test BSM scenarios: leptoquarks, hidden extra dimensions, ...
 - → provide information on 6 of 9 flavor oscillation channels
 - → yield insights into astrophysics ('multi-messenger' astronomy)
- bridge between HEP-NP research areas

CT18 NNLO high-energy neutrino DIS cross sections from 10² to 10⁷ GeV

FIG. 20. Left: The CT18 predictions for the neutrino-isoscalar charged-current cross sections divided by the (anti)neutrino energy, σ/E_{ν} , in comparison with data measured at accelerator-based experiments [88–90]. Right: The CT18 prediction of the averaged neutrino-isoscalar charged-current cross sections divided by neutrino energy in the energy gap (360 GeV $\leq E_{\nu} \leq 6$ TeV), which can be measured by the FASER and other FPFs at the LHC [15, 16]. We included cross sections below 360 GeV measured by NuTeV [88] and above 6.3 (60) TeV by IceCube upgoing $\binom{-}{\nu_{\mu}}$ [9] (HESE Bayesian [10]) analyzes.

QCD uncertainties remain challenging at high energies

combined CT18 and EPPS21 uncertainties represent a more aggressive scenario

→ nCTEQ15-based predictions enlarge high-energy uncertainties further

many additional model considerations: heavy-quark mass effects; extrapolations, ...

→ compelling arena to test QCD across HEP-NP! <u>arXiv: 2303.13607</u>

e.g., nuclear models in saturation regime could strengthen BSM sensitivity... Low-x (n)PDF and theory uncertainties form a limitation to accuracy at very high energies

Toward a new generation of CT202X PDFs

- **1. Identify sensitive, mutually consistent new experimental data sets** using preliminary fits and fast techniques (L_2 sensitivities and ePump)
- 2. Implement N3LO QCD and NLO EW contributions as they become available. N3LO accuracy is reached only when N3LO terms are **fully** implemented.
- Meanwhile, "NNLO+" PDFs: e.g., include theoretical uncertainty due to QCD scale dependence for key processes as has been done in CT18/CT18X NNLO PDFs
- 4. Explore quark sea flavor dependence: $s \bar{s}$ (CT18As), fitted charm (CT18FC),...
- 5. Include lattice QCD constraints (CT18As_Lat)
- 6. Next-generation PDF uncertainty quantification: META PDFs, Bézier curves, MC sampling, ML stress-testing, multi-Gaussian approaches, ...

Krieste, Hobbs—forthcoming study

see arXiv:2311.08447 on archive yesterday

Exploratory effort on ~n3lo PDFs at the moment, but more will come in the future

ChatGPT 3.5 ~

HU You

write a joke about Donald trump that has to do with high energy physics

ChatGPT

Why did Donald Trump apply for a job at the Large Hadron Collider?

Because he heard they were looking for someone with "tremendous energy" to lead the charge in particle politics!

write a joke about Donald trump that has to do with physics

ChatGPT

Why did Donald Trump enroll in a physics class?

Because he wanted to learn the art of "alternative dimensions" where everything is relative, especially when it comes to polls!

C 7 4 1

ChatGPT 3.5 ~

You

write a joke about Donald trump that has to do with high energy physics

ChatGPT

Why did Donald Trump apply for a job at the Large Hadron Collider?

Because he heard they were looking for someone with "tremendous energy" to lead the charge in particle politics!

write a joke about Donald trump that has to do with physics

ChatGPT

Why did Donald Trump enroll in a physics class?

Because he wanted to learn the art of "alternative dimensions" where everything is relative, especially when it comes to polls!

CPAD

...as I was quoted in this week's Higgs XSWG meeting (re:aN3LO PDFs), chatGPT jokes about Donald Trump and physics are "informative but not definitive"

selecting dominant SMEFT operators

- this study: dim-6 operators only
 - \rightarrow dim-8 contributions small (may be relevant for future precision)
 - \rightarrow consider several SMEFT operators associated with jet, $t\bar{t}$

jet production: contact interaction

$$O_1 = 2\pi \left(\sum_{i=1}^3 \bar{q}_{Li} \gamma_\mu q_{Li}\right) \left(\sum_{j=1}^3 \bar{q}_{Lj} \gamma^\mu q_{Lj}\right)$$

Warsaw operator basis

top production

$$\begin{split} O_{tu}^{1} &= \sum_{i=1}^{2} \left(\bar{t} \gamma_{\mu} t \right) \left(\bar{u}_{i} \gamma^{\mu} u_{i} \right) \,, \\ O_{td}^{1} &= \sum_{i=1}^{3} \left(\bar{t} \gamma^{\mu} t \right) \left(\bar{d}_{i} \gamma_{\mu} d_{i} \right) \,, \\ O_{tG} &= i g_{s} (\bar{Q}_{L,3} \tau^{\mu\nu} T^{A} t) \tilde{\varphi} G_{\mu\nu}^{A} + \text{h.c.} \,, \\ O_{tq}^{8} &= \sum_{i=1}^{2} (\bar{Q}_{i} \gamma_{\mu} T^{A} Q_{i}) (\bar{t} \gamma^{\mu} T^{A} t) \,, \end{split}$$

have imposed multiple symmetries on SMEFT space

explore SMEFT constraints from range of LHC expts

included on top of default CT18 fitted experiments

 \rightarrow nominally fit ~112 fb⁻¹ of top data; ~67 fb⁻¹ for jet production

Experiments	$\sqrt{s}(\text{TeV})$	$\mathcal{L}(\mathrm{fb}^{-1})$	observable	$N_{ m pt}$
*† LHC(Tevatron)	7/8/13(1.96)		$t\bar{t}$ total cross section	8
*† ATLAS $t\bar{t}$	8	20.3	1D dis. in $p_{T,t}$ or $m_{t\bar{t}}$	15
*† CMS $t\bar{t}$	8	19.7	2D dis. in $p_{T,t}$ and y_t	16
${\rm CMS}t\bar{t}$	8	19.7	1D dis. in $m_{t\bar{t}}$	7
*† ATLAS $t\bar{t}$	13	36	1D dis. in $m_{t\bar{t}}$	7
*† CMS $tar{t}$	13	35.9	1D dis. in $m_{t\bar{t}}$	7
*† CDF II inc. jet	1.96	1.13	2D dis. in p_T and y	72
*† D0 II inc. jet	1.96	0.7	2D dis. in p_T and y	110
*† ATLAS inc. jet	7	4.5	2D dis. in p_T and y	140
*† CMS inc. jet	7	5	2D dis. in p_T and y	158
* CMS inc. jet	8	19.7	2D dis. in p_T and y	185
[†] CMS dijet	8	19.7	3D dis. in $p_T^{ave.}$, y_b and y^*	122
† CMS inc. jet	13	36.3	2D dis. in p_T and y	78

*(in nominal top fits); [†](in nominal jet fits)

cross sections sensitive to proton PDF extrapolation region

gluon and singlet PDF uncertainties become poorly controlled below

 $x \lesssim 10^{-5} - 10^{-4}$

parametrization, low-x resummation and related effects become significant

Error ellipses for new PDFs

Figure 3: The correlation ellipses in the 68% confidence level between the inclusive $t\bar{t}$ and $t\bar{t}H$, $W^{\pm}H$ and ZH production at the 14 TeV LHC.