
1

Accelerator Control Using Gaussian
Process-Model Predictive Control (GP-MPC)

Based Reinforcement Learning (RL)

Su Lei Aye
BE-CSS-DSB
Aug 16th, 2023
Supervised By Michael Schenk, Verena Kain

2

Table of Contents

Process Result

Introduction PCG (Problems,
Challenges & Goal)

04

02

03

01

3

What’s Gaussian Process?

What’s Reinforcement Learning?

Introduction
CERN AWAKE Environment

● Probability theory and Statistics Concept
● Represent distribution over a class of functions
● Predict mean values along with uncertainties (confidence

intervals)

source: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://medium.com/geekculture/what-is-gaussian-process-intuitive-explaination-fcee3c78c587

● Machine learning technique
● An agent to learn an interactive environment by trial and error
● Using feedback from its own actions and experiences.

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://medium.com/geekculture/what-is-gaussian-process-intuitive-explaination-fcee3c78c587

4

Benchmark: AWAKE electron beam line

5

PCG (Problems, Challenges & Goal)

Problems: Applying Reinforcement Learning to control accelerator system using Gaussian Process
Model-Predictive Control (GP-MPC) algorithm.

- Use GPs to make models of the real world
- 1) Transition model: (state, action) -> next_state
- 2) Reward model: next_state -> reward

- Combine the models to plan ahead and choose the best action with an optimizer (maximize rewards,
minimize risks)

Challenges: 1. High sample efficiency (how much training data you need)
2. Include uncertainty and risk estimates

 3. Not sufficient beam instrumentation available to define the state.

Goal: Implement and test GP-MPC algorithm overcoming the challenges and making it compatible with
CERN's Generic Optimisation Framework.

6

Process
CERN AWAKE Environment

Transition Model: Given state & action (state_action) learn to predict next_states, i.e. how the environment
changes when agent takes particular actions.
Purpose: For agent to plan and optimize its action effectively (reward and safety), without applying the
action in the real world yet.

Transition model: (state, action) -> next_state

7

Reward Model: Given the next state learn to
predict the Expected Reward.
Purpose: For agent to make informed decision and
optimize its behavior to achieve highest rewards.

Reward model: next_state -> reward

8

Methodology: acq = OurAcqFunc(self.transition_gp, self.reward_gp, self.beta)

Combined transition & reward models -> best action (maximize rewards, minimize risks)

FIRST ITERATION:

AFTER 18th ITERATION:

GP-MPC Based RL

9

Result

random_steps_array = np.arange(1, 51, 1)
n_steps_max = 30
n_episodes_eval = 30
horizon = 1

High Sample Efficiency: only 13 random initial
samples needed to have successful controller.

Successful Controller –> agent can solve an
episode in one step, i.e. from any beam trajectory
it only needs one iteration to reach the objective.

Simulation Variables

10

Thanks!

QUESTIONS?
saye@cern.ch

suaye@ucsd.edu

mailto:su.lei.nay.chi.aye@cern.ch
mailto:suaye@ucsd.edu

