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Introduction

CERN AWAKE Enwronme t

What’s Reinforcement Learning? Enwronment
C
® Machine learning technique Reward %
® An agent to learn an interactive environment by trial and error Interpreter <
® Using feedback from its own actions and experiences.
Slate \ J
o
Agent

What’s Gaussian Process?

Gaussian Process

® Probability theory and Statistics Concept
e Represent distribution over a class of functions N
® Predict mean values along with uncertainties (confidence o

intervals) 2
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Benchmark: AWAKE electron beam line
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PCG (Problems, Challenges & Goal)

Problems: Applying Reinforcement Learning to control accelerator system using Gaussian Process
Model-Predictive Control (GP-MPC) algorithm.
- Use GPs to make models of the real world
- 1) Transition model: (state, action) -> next_state
- 2) Reward model: next_state -> reward
- Combine the models to plan ahead and choose the best action with an optimizer (maximize rewards,
minimize risks)

Challenges: 1. High sample efficiency (how much training data you need)
2. Include uncertainty and risk estimates
3. Not sufficient beam instrumentation available to define the state.

Goal: Implement and test GP-MPC algorithm overcoming the challenges and making it compatible with
CERN's Generic Optimisation Framework.
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Process

Position (norm)

Position (norm)

Transition model: (state, action) -> next_state

Act- [0.57,0.47,069,0.79,-043,-0.64,-064,-04,-0.16,-0.83)
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State {observed)
- = Next state (observed)
= Next state (pred. mean)
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Act [0.62,0.44,-064,-10,076,-057,-0.25, 0.26, 0.23, -0.78]
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Act [-0.96,-0.72,-098,-042,-0.11,-0.1,0.77,-0.04, -0.2, 0.03]
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Act [0.92,-0.3,-0.88,0.04,0.99,-04,093, -065, -049,-0.52]
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Agent

Transition Model: Given state & action (state_action) learn to predict next_states, i.e. how the environment
changes when agent takes particular actions.

Purpose: For agent to plan and optimize its action effectively (reward and safety), without applying the

action in the real world yet.
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Reward model: next_state -> reward

50 training, 36 testing samples
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Reward Model: Given the next state learn to
predict the Expected Reward.

Purpose: For agent to make informed decision and
optimize its behavior to achieve highest rewards.
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GP-MPC Based RL

Combined transition & reward models -> best action (maximize rewards, minimize risks)

Methodology: acq = OurAcqFunc(self.transition_gp, self.reward_gp, self.beta)

FIRST ITERATION: ‘

AFTER 18th ITERATION: ‘
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Result

Controller Evaluation vs Random Steps
n_episodes_eval 30, n_steps_max 30, horizon 1

14 A
517 High Sample Efficiency: only 13 random initial
; 1: samples needed to have successful controller.
& 61
F 4l Successful Controller —> agent can solve an
- episode in one step, i.e. from any beam trajectory
0 it only needs one iteration to reach the objective.
204 @
© 1.5
] Simulation Variables
§ - s random_steps_array = np.arange(1, 51, 1)
S s n_steps_max = 30
n_episodes_eval = 30
0.0] ©00000000000000000000000000000000000000000000000 horizon = 1
0 10 20 30 40 50
Random Steps
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Thanks!

QUESTIONS?
saye@cern.ch
suaye@ucsd.edu
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