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What’s Gaussian Process?

What’s Reinforcement Learning?

Introduction
CERN AWAKE Environment 

● Probability theory and Statistics Concept
● Represent distribution over a class of functions
● Predict mean values along with uncertainties (confidence 

intervals)

source: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://medium.com/geekculture/what-is-gaussian-process-intuitive-explaination-fcee3c78c587

● Machine learning technique 
● An agent to learn an interactive environment by trial and error
● Using feedback from its own actions and experiences.

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://medium.com/geekculture/what-is-gaussian-process-intuitive-explaination-fcee3c78c587
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Benchmark: AWAKE electron beam line 
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PCG (Problems, Challenges & Goal) 

Problems: Applying Reinforcement Learning to control accelerator system using Gaussian Process 
Model-Predictive Control (GP-MPC) algorithm. 

- Use GPs to make models of the real world
- 1) Transition model: (state, action) -> next_state
- 2) Reward model: next_state -> reward

- Combine the models to plan ahead and choose the best action with an optimizer (maximize rewards, 
minimize risks)

Challenges: 1. High sample efficiency (how much training data you need)
2. Include uncertainty and risk estimates

       3. Not sufficient beam instrumentation available to define the state.

Goal: Implement and test GP-MPC algorithm overcoming the challenges and making it compatible with 
CERN's Generic Optimisation Framework.
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Process
CERN AWAKE Environment 

Transition Model: Given state & action (state_action) learn to predict next_states, i.e. how the environment 
changes when agent takes particular actions. 
Purpose: For agent to plan and optimize its action effectively (reward and safety), without applying the 
action in the real world yet.

Transition model: (state, action) -> next_state
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Reward Model: Given the next state learn to 
predict the Expected Reward. 
Purpose: For agent to make informed decision and 
optimize its behavior to achieve highest rewards. 

Reward model: next_state -> reward
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Methodology: acq = OurAcqFunc(self.transition_gp, self.reward_gp, self.beta)

Combined transition & reward models -> best action (maximize rewards, minimize risks)

FIRST ITERATION: 

AFTER 18th ITERATION: 

GP-MPC Based RL
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Result

random_steps_array = np.arange(1, 51, 1)
n_steps_max = 30
n_episodes_eval = 30
horizon = 1

High Sample Efficiency: only 13 random initial 
samples needed to have successful controller.

Successful Controller –> agent can solve an 
episode in one step, i.e. from any beam trajectory 
it only needs one iteration to reach the objective.

Simulation Variables
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Thanks!

QUESTIONS? 
saye@cern.ch

suaye@ucsd.edu 

mailto:su.lei.nay.chi.aye@cern.ch
mailto:suaye@ucsd.edu

