

Accelerator Control Using Gaussian Process-Model Predictive Control (GP-MPC) Based Reinforcement Learning (RL)

Su Lei Aye BE-CSS-DSB Aug 16th, 2023 Supervised By Michael Schenk, Verena Kain

Table of Contents

What's Reinforcement Learning?

- Machine learning technique
- An agent to learn an interactive environment by trial and error
- Using feedback from its own actions and experiences.

What's Gaussian Process?

- Probability theory and Statistics Concept
- Represent distribution over a class of functions
- Predict mean values along with uncertainties (confidence intervals)

source: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292 https://medium.com/geekculture/what-is-gaussian-process-intuitive-explaination-fcee3c78c587

Benchmark: AWAKE electron beam line

PCG (Problems, Challenges & Goal)

Problems: Applying Reinforcement Learning to control accelerator system using Gaussian Process Model-Predictive Control (GP-MPC) algorithm.

- Use GPs to make models of the real world
 - 1) Transition model: (state, action) -> next_state
 - 2) Reward model: *next_state -> reward*
- Combine the models to plan ahead and choose the best action with an optimizer (maximize rewards, minimize risks)

Challenges: 1. High sample efficiency (how much training data you need)

- 2. Include uncertainty and risk estimates
- 3. Not sufficient beam instrumentation available to define the state.

Goal: Implement and test GP-MPC algorithm overcoming the challenges and making it compatible with CERN's Generic Optimisation Framework.

CERN AWAKE Environment

Transition model: (*state, action*) -> *next_state*

Transition Model: Given state & action (state_action) learn to predict next_states, i.e. how the environment changes when agent takes particular actions.

Purpose: For agent to plan and optimize its action effectively (reward and safety), without applying the action in the real world yet.

Reward model: *next_state -> reward*

50 training, 36 testing samples

Reward Model: Given the next state learn to predict the Expected Reward. **Purpose:** For agent to make informed decision and optimize its behavior to achieve highest rewards.

CERN CERN

GP-MPC Based RL

Combined transition & reward models -> best action (maximize rewards, minimize risks)

Methodology: acg = OurAcgFunc(self.transition gp, self.reward gp, self.beta)

ITERATION: 18

AFTER 18th ITERATION:

Controller Evaluation vs Random Steps n_episodes_eval 30, n_steps_max 30, horizon 1

High Sample Efficiency: only 13 random initial samples needed to have successful controller.

Successful Controller -> agent can solve an episode in one step, i.e. from any beam trajectory it only needs one iteration to reach the objective.

Simulation Variables

random_steps_array = np.arange(1, 51, 1)
n_steps_max = 30
n_episodes_eval = 30
horizon = 1

QUESTIONS? saye@cern.ch suaye@ucsd.edu

