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Abstract

‘We explore the efficacy of the novel use of parametrised quantum circuits (PQCs)
as quantum neural networks (QNNs) for forecasting time series signals with sim-
ulated quantum forward propagation. The temporal signals consist of several
si 1 comp (deterministic signal), blended together with trends and
additive noise. The performance of the PQCs is compared against that of classi-
cal bidirectional long short-term memory (BiLSTM) neural networks. Our results
show that for time series signals consisting of small amplitude noise variations (up
to 40 per cent of the amplitude of the deterministic signal) PQCs, with only a
few parameters, perform similar to classical BILSTM networks, with thousands
of parameters, and outperform them for signals with higher amplitude noise vari-
ations. Thus, QNNs can be used effectively to model time series having, at the
same time, the significant advantage of being trained significantly faster than a
classical machine learning model in a quantum computer.

Quantum
Computing

QML for
Time Series

1 Introduction

In a genuine quantum computing infrastructure (i.e. an environment which performs
computations using quantum phenomena such as superposition, entanglement, tun-
nelling etc.) quantum algorithms [22] can run significantly faster with respect to their
classical equivalents. These algorithms cover many application areas such as optimi-
sation problems, combinatorics, cryptography, solution of partial differential equations,
simulations e.g. [36].

In the field of machine learning quantum enhancement can come in two different
flavours e.g. [19]. The first flavour concerns is around the training process which can
be significantly accelerated, even for classical machine learning models, using quantum
optimisation algorithms. In some cases, involving complex loss functions with multiple
minima, these algorithms can even yield more accurate results by localising more effec-
tively the global minimum. The second flavour concerns the identification of complex
patterns since, in a quantum computing environment, the data as they can be sampled
more efficiently from probability distributions that are exponentially difficult to sample
using classical methods on classical computers.
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Mean Squared Error

Results
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Results

Loss and Predictions
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Hyperparameters

Data

Model: Training

e Sample size

e Ising e Threshold: 50 e Sampling strategy: random

e Layers: 2 e Noise * Max steps: 10
* MPS coefficient: 0-1 e Epochs: 300
e Trend: FLQ,
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Try it yourself and Thank You!

https://github.com/CERN-IT-INNOVATION

Data
Training

e Finance
e Weather e Sampling strategy: Chronological

Model:

e Architecture: Ising, MPS, TTN, SEL
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