Muon Chicane

C. T. Rogers Rutherford Appleton Laboratory

Chicane Revisited

- Chicane is needed to protect the longitudinal capture/cooling
 - Spallation protons would irradiate downstream equipment
 - Feasibility issue
 - Electrons would cause extra heating
 - Cost/technology issue
- Conventional chicane does not have sufficient acceptance
 - Typical pion/muon beam emittance 10-20 mm
 - Need to transport both sign muons
- Solenoid chicane does have a good acceptance
 - Pure solenoids, no dipoles
 - Induce vertical dispersion
 - MAP baseline design includes solenoid chicane
- MAP assumed a solenoid chicane for charge separation
 - +/- has vertical dispersion in opposite direction
- Considering chicane as an option to remove primary protons
 - MAP assumed they would be absorbed in solenoid shielding

- Characterise chicane by
 - (Field in chicane) determined by acceptance vs RF cavity radius
 - (Coil aperture) never really studied
 - Radius of curvature r_{curv}
 - Bending angle θ
 - Nb at this point I am not concerned with realistic coils
 - I use 1 metre full aperture to better understand dynamics

IDS Neutrino Factory concept

- Points correspond to a shell at 50 mm A_t
 - At is ~ "distance from axis" in position-momentum space
 - Conserved quantity in accelerators
- Reminder, RMS emittance is mean A_t/4
- 50 mm corresponds to 1 sigma for 12.5 mm emittance beam

MAP concept

Stratakis and Berg, Design and optimization of a particle selection system for muon based accelerators, IPAC2014

 CChicane Half Length (m) Figure 4: *K* downstream of the chicane as a function of *L* and θ . Points correspond to the colored points in Fig. 3. The curve shows the geometric parameters from Eq. 1.

Chicane angle (mrad)

Figure 3: Muon and pion transmission (as defined in text) and K for the chicane parameters we scanned. Magenta points were used to fit the chicane geometry parameters as a function of the K. The square blue point was also originally selected, but was removed from the fit.

Figure 5: Each point shows, for a given chicane geometry and absorber position and thickness, the muons with kinetic energies in the range of 20 to 390 MeV and the proton power at a position 31 m from the beginning of the chicane. Each color is for a different chicane geometry, as defined by K (shown in the figure key) and Eq. 1. The absorber is positioned at the end of the chicane for filled circles, and with its upstream face 30 m from the beginning of the chicane for open circles. For each symbol, points for different absorber thicknesses in 1 cm, starting at 1 cm in the top right.

Optimised in terms of pareto front

Maximum Proton KE

 Extra pion decays → better to put proton absorber 30 m downstream of chicane

Trajectory in the chicane

- Consider IDS-NF chicane design
 - Beam returns to axis for KE <~300 MeV

Amplitude in the chicane

- Want a quick metric for where the momentum cut-off is
 - Plot A_t for central trajectory, relative to solenoid centre
 - Reminder At is normalised "distance" from solenoid centre in phase space, and is conserved
 - Difficult to calculate in chicane and I have not done so
 - Assume "matched" beam in upstream/downstream solenoids
 - KE >= 400 MeV → significant amplitude growth
 - KE <= $300 \text{ MeV} \rightarrow \text{see}$ little or no amplitude growth
 - Almost consistent with IDS-NF result

Another metric

- Concerned with end point of particles having different energy
 - In particular protons with energy 5 GeV or more
- Aim to kick protons \rightarrow exit window downstream of a chicane
- Look at "z position of particles that hit the walls"
 - Relative to chicane end, normalised to chicane length
- Also use "At for particles that survived to the end"

Scalings - θ

- Concerned with end point of particles having different energy
 - In particular protons with energy 5 GeV or more
- Aim to kick protons \rightarrow exit window downstream of a chicane
- Introduce metric
 - "z position of particles that hit the walls"

Science & Technology Facilities Council

Scalings - B_z

Try varying B_s

Scalings - r_{curv}

- Concerned with end point of particles having different energy
 - In particular protons with energy 5 GeV or more
- Aim to kick protons \rightarrow exit window downstream of a chicane
- Introduce metric
 - "z position of particles that hit the walls"

Science & Technology Facilities Council

Adding a straight

- Nb: adding a straight in the middle of the chicane makes a mess of everything
 - Dispersion vector rotating with Larmor angle ~ 1/pz
 - Vertical dispersion becomes horizontal for some particles
 - Cancelling horizontal dispersion not possible

- Schematic of proton dump concept
 - Take 1.0 m pipe diameter as largest "reasonable" chicane aperture
 - What about space for shielding?
 - Seek transverse displacement of beamline by ~ 0.4 m
- Coil radius in the chicane determines maximum proton displacement
- Lower transverse displacement \rightarrow stronger B_z required

Concept 1

Bz	-4 T
Theta	9 degrees
r _{curv}	20 m

- We can get about 450 mm proton displacement from meson beam
- Does that leave enough space?
 - Superconducting solenoids
 - Radiation shielding
 - Etc

- Take protons out inside chicane
- In principle can get much more separation between proton and muons
 - i.e. some of the chicane bend contributes to separation
- In principle can use lower B-field \rightarrow normal conducting
- Making gaps in hardware/etc may be easier
 - Fewer forces, cryogenics, support structure concerns
 - But need awkward solenoid juggling inside the chicane

To be continued

