
Tiled-Uproot: a use of Awkward Arrays in Tiled
and a possible Tiled Adapter

Jim Pivarski

Princeton University – IRIS-HEP

October 25, 2023

1 / 13

Finding data in a ROOT file involves several round-trips

TTree, TBranches TBasketlist of TKeysTDirectoryTFile TBasket TBasket ...

#

1. Request initial bytes of ROOT file.
2. With the response, find the root TDirectory and request its bytes.
3. With that response, find its list of TKeys and request its bytes.
4. With that response, find the desired TTree and request its bytes.
5. With that response, find all desired TBaskets and request all of their bytes.

Why would you want to do that?

▶ Replace the latency of 4 round trips with the latency of a (nearby) database.

▶ Specialized TTree/RNTuple access for large sets of files.

▶ Leave a set of ROOT files in place, so they don’t need to be converted and can be
accessed in traditional ways as well.

▶ Can be made to look the same as a database of user-contributed Awkward Arrays.

2 / 13

Finding data in a ROOT file involves several round-trips

TTree, TBranches TBasketlist of TKeysTDirectoryTFile TBasket TBasket ...

Database of TBasket positions and sizes?

Why would you want to do that?

▶ Replace the latency of 4 round trips with the latency of a (nearby) database.

▶ Specialized TTree/RNTuple access for large sets of files.

▶ Leave a set of ROOT files in place, so they don’t need to be converted and can be
accessed in traditional ways as well.

▶ Can be made to look the same as a database of user-contributed Awkward Arrays.

2 / 13

Finding data in a ROOT file involves several round-trips

TTree, TBranches TBasketlist of TKeysTDirectoryTFile TBasket TBasket ...

Database of TBasket positions and sizes?

Why would you want to do that?

▶ Replace the latency of 4 round trips with the latency of a (nearby) database.

▶ Specialized TTree/RNTuple access for large sets of files.

▶ Leave a set of ROOT files in place, so they don’t need to be converted and can be
accessed in traditional ways as well.

▶ Can be made to look the same as a database of user-contributed Awkward Arrays.

2 / 13

Nick Smith’s columnservice prototype

https://github.
com/CoffeaTeam/
columnservice

(last activity: Mar 2021)

3 / 13

https://github.com/CoffeaTeam/columnservice
https://github.com/CoffeaTeam/columnservice
https://github.com/CoffeaTeam/columnservice

Nick Smith’s columnservice prototype

4 / 13

Nick Smith’s columnservice prototype

4 / 13

ROOT metadata is Awkward: large and complex structured

Typical ROOT file (CMS NanoAOD, DoubleMuon):

▶ 2.343 GB (13 GB uncompressed)

▶ 1405 TBranches; 413 for non-triggers (29%)

▶ 594 364 TBaskets; 252 496 for non-triggers (42%)

▶ 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

−→ 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)

−→ uncompressed metadata is 0.6% as large as the data itself

−→ 6.7 TB dataset (2040 files) requires 41 GB of metadata in the database

5 / 13

ROOT metadata is Awkward: large and complex structured

Typical ROOT file (CMS NanoAOD, DoubleMuon):

▶ 2.343 GB (13 GB uncompressed)

▶ 1405 TBranches; 413 for non-triggers (29%)

▶ 594 364 TBaskets; 252 496 for non-triggers (42%)

▶ 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

−→ 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)

−→ uncompressed metadata is 0.6% as large as the data itself

−→ 6.7 TB dataset (2040 files) requires 41 GB of metadata in the database

5 / 13

ROOT metadata is Awkward: large and complex structured

Typical ROOT file (CMS NanoAOD, DoubleMuon):

▶ 2.343 GB (13 GB uncompressed)

▶ 1405 TBranches; 413 for non-triggers (29%)

▶ 594 364 TBaskets; 252 496 for non-triggers (42%)

▶ 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

−→ 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)

−→ uncompressed metadata is 0.6% as large as the data itself

−→ 6.7 TB dataset (2040 files) requires 41 GB of metadata in the database

5 / 13

ROOT metadata is Awkward: large and complex structured

Typical ROOT file (CMS NanoAOD, DoubleMuon):

▶ 2.343 GB (13 GB uncompressed)

▶ 1405 TBranches; 413 for non-triggers (29%)

▶ 594 364 TBaskets; 252 496 for non-triggers (42%)

▶ 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

−→ 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)

−→ uncompressed metadata is 0.6% as large as the data itself

−→ 6.7 TB dataset (2040 files) requires 41 GB of metadata in the database

5 / 13

ROOT metadata is Awkward: large and complex structured

Metadata as an Awkward Array (showing its type):

1 * {
offsets: var * int64,
era: var * {

treename: string,
names: var * string,
interpretations: var * bytes // pickle

},
prefix: var * string,
file: var * {

filename: string,
tree: {

run: var * {
seek: int64, // must be int64
stop: int64, // could be int32
bytes: int64 // could be int32

},
luminosityBlock: var * {

seek: int64,
stop: int64,
bytes: int64

},

event: var * {
seek: int64,
stop: int64,
bytes: int64

},
CaloMET_phi: var * {

seek: int64,
stop: int64,
bytes: int64

},
CaloMET_pt: var * {

seek: int64,
stop: int64,
bytes: int64

},
... // 1405 TBranches

},
era: int64, // lookup era
prefix: int64 // lookup prefix

}
} 6 / 13

Why is this structure useful?

▶ Global offsets to lookup files for a given range of entries.

▶ Small number of eras allows treename, TBranch names, and (pickled)
interpretations to vary in the dataset (e.g. new trigger lines).

▶ prefix for filename avoids duplicated characters in long path URLs.

▶ Separate records for each TBranch allows TBranches to be queried
independently. (TBranches that aren’t in all files have option type.)

▶ Same number of TBasket seek positions, local entry stop values, and
number of bytes share a variable-length list (var).

7 / 13

A perfect match for Tiled’s slice-based predicate push-down
>>> awkward_client
<AwkwardClient>

>>> awkward_client[0, "offsets"]
<Array [0, 3271302] type='2 * int64'> // just one file for now

>>> awkward_client[0, "prefix"]
<Array ['/home/jpivarski/storage/data/'] type='1 * string'>

>>> awkward_client[0, "file", ["filename", "prefix", "era"]][0].show()
{filename: 'Run2018D-DoubleMuon-Nano25Oct2019_ver2-v1-974F28EE-0FCE-4940-92B5-870859F880B1.root',
prefix: 0,
era: 0}

>>> awkward_client[0, "file", "tree", ["nMuon", "Muon_pt", "Muon_eta"]][0].show()
{nMuon: [{seek: 386614, stop: 1000, bytes: 587}, ..., {seek: 2511484157, ...}],
Muon_pt: [{seek: 467837, stop: 1000, bytes: 8305}, ..., {seek: ..., ...}],
Muon_eta: [{seek: 405661, stop: 1000, bytes: 6018}, ..., {seek: ..., ...}]}

>>> awkward_client[0, "file", "tree", 0, "nMuon", 100:103].show()
[{seek: 728247824, stop: 951800, bytes: 3223},
{seek: 735505290, stop: 961318, bytes: 3243},
{seek: 742659604, stop: 970836, bytes: 3195}]

8 / 13

Prototype: populate Tiled database, Uproot drop-in replacement

9 / 13

After populating the database. . .

>>> tree = tiled_uproot.extract.TiledUproot("root_metadata", awkward_client)
>>> tree
<tiled_uproot.extract.TiledUproot object at 0x7fceb06c2d70>

>>> tree.show()
name | typename | interpretation
---------------------+--------------------------+-------------------------------
run | uint32_t | AsDtype('>u4')
luminosityBlock | uint32_t | AsDtype('>u4')
event | uint64_t | AsDtype('>u8')
CaloMET_phi | float | AsDtype('>f4')
CaloMET_pt | float | AsDtype('>f4')
CaloMET_sumEt | float | AsDtype('>f4')
ChsMET_phi | float | AsDtype('>f4')
ChsMET_pt | float | AsDtype('>f4')
ChsMET_sumEt | float | AsDtype('>f4')
nCorrT1METJet | uint32_t | AsDtype('>u4')
CorrT1METJet_area | float[] | AsJagged(AsDtype('>f4'))
CorrT1METJet_eta | float[] | AsJagged(AsDtype('>f4'))
CorrT1METJet_muon... | float[] | AsJagged(AsDtype('>f4'))
CorrT1METJet_phi | float[] | AsJagged(AsDtype('>f4'))
CorrT1METJet_rawPt | float[] | AsJagged(AsDtype('>f4'))
nElectron | uint32_t | AsDtype('>u4') 10 / 13

After populating the database. . .

>>> array = tree.arrays(["nMuon", "Muon_pt"], entry_start=100, entry_stop=10000)
>>> array.show(type=True)
type: 9900 * {

nMuon: uint32,
Muon_pt: var * float32

}
[{nMuon: 2, Muon_pt: [10.4, 5.3]},
{nMuon: 3, Muon_pt: [15.1, 9.15, 5.99]},
{nMuon: 1, Muon_pt: [14.8]},
{nMuon: 2, Muon_pt: [17.6, 12.9]},
{nMuon: 0, Muon_pt: []},
{nMuon: 2, Muon_pt: [49, 38.7]},
{nMuon: 4, Muon_pt: [15.4, 6.3, ..., 5.15]},
{nMuon: 3, Muon_pt: [15.5, 14.5, 12.8]},
{nMuon: 1, Muon_pt: [20.1]},
{nMuon: 1, Muon_pt: [9.4]},
...,
{nMuon: 2, Muon_pt: [19.8, 12.2]},
{nMuon: 1, Muon_pt: [3.14]},
{nMuon: 1, Muon_pt: [13.1]},
{nMuon: 1, Muon_pt: [19.6]},
{nMuon: 2, Muon_pt: [17.4, 10.4]},
{nMuon: 3, Muon_pt: [9.66, 4.06, 3.85]},
{nMuon: 3, Muon_pt: [10.6, 6.78, 5.43]},
{nMuon: 2, Muon_pt: [61.7, 11.8]},
{nMuon: 2, Muon_pt: [45.1, 31.9]}]

11 / 13

After populating the database. . .

>>> array = tree.arrays(
... ["px", "py", "pz"],
... cut="nMuon == 2",
... aliases={
... "px": "Muon_pt * cosh(Muon_eta) * cos(Muon_phi)",
... "py": "Muon_pt * cosh(Muon_eta) * sin(Muon_phi)",
... "pz": "Muon_pt * sinh(Muon_eta)",
... },
... entry_start=100,
... entry_stop=10000,
...)
>>> array.show(type=True)
type: 4922 * {

px: var * float32,
py: var * float32,
pz: var * float32

}
[{px: [-11.3, 1.18], py: [5.23, -5.32], pz: [6.89, ...]},
{px: [14.9, 31], py: [10.3, 55.7], pz: [3.93, ...]},
{px: [-46.3, 63.8], py: [-19.3, 7.58], pz: [10.5, ...]},
{px: [16.3, -36.6], py: [51, -18.5], pz: [20.5, ...]},
{px: [27.9, 3.71], py: [40.4, 18.8], pz: [-41.8, ...]},
{px: [29.4, 15.1], py: [24.5, 5.01], pz: [-34.2, ...]},
{px: [-4.81, 6.34], py: [-3.09, 4.58], pz: [-1.32, ...]},
{px: [17.7, -33.3], py: [-46.7, 52.2], pz: [33.5, ...]},
{px: [-56.3, -4.2], py: [-19.1, -4.7], pz: [58.2, ...]},
{px: [-16, -2.01], py: [26.8, 21.8], pz: [29.8, ...]},
...,
{px: [8.14, -17.8], py: [-27.3, 6.53], pz: [13.4, ...]},
{px: [-30.8, -20.6], py: [-5.27, -2.15], pz: [7.41, ...]},
{px: [30.8, 48.5], py: [-13.2, -4.79], pz: [-28.4, ...]},
{px: [103, -20.3], py: [-21.7, 4.21], pz: [103, ...]},
{px: [2.5, 11.9], py: [-58.2, 38.9], pz: [-35.2, ...]},
{px: [12, -3.35], py: [-55.4, 13.6], pz: [53.1, ...]},
{px: [5.19, -16], py: [-16.7, 6.37], pz: [1.09, ...]},
{px: [68.4, 13.6], py: [-47.1, -9.65], pz: [55.5, ...]},
{px: [16, -6.43], py: [80.4, -31.3], pz: [68.5, ...]}]

12 / 13

Possible configuration: as an Adapter within Tiled

source of
ROOT files

Uproot Adapter
for Tiled

Awkward Array
store in Tiled

Client

get "Muon_pt * sinh(Muon_eta)"
from primary dataset

get "corrected_muons"
from user 12345's derived datasetAnalysis Facility

ServiceX?

13 / 13

