= PRINCETON (g iris
UNIVERSITY hep

Tiled-Uproot: a use of Awkward Arrays in Tiled
and a possible Tiled Adapter

Jim Pivarski

Princeton University — IRIS-HEP

October 25, 2023

1/13

Finding data in a ROOT file involves several round-trips

TFile || TDirectory || list of TKeys (| TTree, TBranches || TBasket || TBasket || TBasket
#HHHH
I I L I

1. Request initial bytes of ROOT file.

2. With the response, find the root TDirectory and request its bytes.

3. With that response, find its list of TKeys and request its bytes.

4. With that response, find the desired TTree and request its bytes.

5. With that response, find all desired TBaskets and request all of their bytes.

2/13

Finding data in a ROOT file involves several round-trips

TFile || TDirectory || list of TKeys (| TTree, TBranches || TBasket || TBasket || TBasket

Database of TBasket positions and sizes?

2/13

Finding data in a ROOT file involves several round-trips

TFile || TDirectory || list of TKeys (| TTree, TBranches || TBasket || TBasket || TBasket

Database of TBasket positions and sizes?

Why would you want to do that?

> Replace the latency of 4 round trips with the latency of a (nearby) database.
» Specialized TTree/RNTuple access for large sets of files.

P Leave a set of ROOT files in place, so they don't need to be converted and can be
accessed in traditional ways as well.

» Can be made to look the same as a database of user-contributed Awkward Arrays.

2/13

Nick Smith’s columnservice prototype

¥ Fermilab @ENERGY

Metadata thoughts
And some coffea tools

Nick Smith
HSF DAWG
17 February 2021

https://github.
com/CoffeaTeam/
columnservice

(last activity: Mar 2021)

Columnservice prototype

* Manage the metadata of individual
column objects and help clients build
array chunks for processing

* Originally a k8s service with integrated
dask cluster, now considering more
lightweight solutions
* |deally ship columnservice with

coffea, with e.g. SQLite for local
and Postgres for site installs
« User provides dask cluster, site

provides object store (off the
shelf)

1

Feb. 17,2021 Nick Smith | Metadata discussions

[
.
i
.
'
i
B
)
[y
)
1

4% Fermilab

3/13

https://github.com/CoffeaTeam/columnservice
https://github.com/CoffeaTeam/columnservice
https://github.com/CoffeaTeam/columnservice

Nick Smith’s columnservice prototype

Columnservice case study: avoiding ingestion

* All inputs eventually come from ROOT files
* True for the foreseeable future
* Reading and interpreting files with uproot is expensive
+ Even just opening and getting branch names can be significant
* File byte-range caches take time to kick in, bad for small work packages

Open, read Coffea NanoEventsProcessor

branch metadata,
build lazy arrays
» O =

Read
Read second array array 3-5
b——————0

Read first array

45 Fermilab
12 Feb. 17,2021 Nick Smith | Metadata discussions

4/13

Nick Smith’s columnservice prototype

Columnservice case study: avoiding ingestion

* All inputs eventually come from ROOT files
* True for the foreseeable future

Rpackages

Open, read Coffea NanoEventsProcessor

branch metadata,
build lazy arrays
» O =

Read

Read first array Read second array array 3-5
—

45 Fermilab
12 Feb. 17,2021 Nick Smith | Metadata discussions

4/13

ROOT metadata is Awkward: large and complex structured A

Typical ROOT file (CMS NanoAOD, DoubleMuon):

> 2.343 GB (13 GB uncompressed)

» 1405 TBranches; 413 for non-triggers (29%)

> 594364 TBaskets; 252496 for non-triggers (42%)

> 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

5/13

ROOT metadata is Awkward: large and complex structured A

Typical ROOT file (CMS NanoAOD, DoubleMuon):

> 2.343 GB (13 GB uncompressed)

» 1405 TBranches; 413 for non-triggers (29%)

> 594364 TBaskets; 252496 for non-triggers (42%)

> 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

— 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)

5/13

ROOT metadata is Awkward: large and complex structured A

Typical ROOT file (CMS NanoAOD, DoubleMuon):

> 2.343 GB (13 GB uncompressed)

» 1405 TBranches; 413 for non-triggers (29%)

> 594364 TBaskets; 252496 for non-triggers (42%)

> 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

— 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)

— uncompressed metadata is 0.6% as large as the data itself

5/13

ROOT metadata is Awkward: large and complex structured L

Typical ROOT file (CMS NanoAOD, DoubleMuon):

> 2.343 GB (13 GB uncompressed)

» 1405 TBranches; 413 for non-triggers (29%)

> 594364 TBaskets; 252496 for non-triggers (42%)

> 2.338 GB TBasket data; 3.6 kB/basket for triggers, 9.2 for non-triggers (88%)

— 14.7 MB as Awkward metadata; 4.9 MB gzip-compressed (ROOT uses 5.1 MB)
— uncompressed metadata is 0.6% as large as the data itself

— 6.7 TB dataset (2040 files) requires 41 GB of metadata in the database

5/13

ROOT metadata is Awkward: large and complex structured

ARG

Metadata as an Awkward Array (showing its type):

1+ {
offsets: var x inté64,
era: var * {
treename: string,
names: var x string,

interpretations: var x bytes

}I
prefix: wvar * string,
file: var * {
filename: string,
tree: {
run: var x {
seek: into64,
stop: inté64,
bytes: int64
}I
luminosityBlock:
seek: int64,
stop: inté64,
bytes: int64
}I

// pickle

// must be inté64
// could be int32
// could be int32

var * {

event: var * {
seek: inté64,
stop: inté4,
bytes: int64
}l
CaloMET_phi: var = {
seek: inté64,
stop: inté4,
bytes: int64
s
CaloMET_pt: var »* {
seek: inté64,
stop: inté64,
bytes: int64
b
// 1405 TBranches
by
era: inté4,
prefix: int64

// lookup era
// lookup prefix

6/13

Why is this structure useful?

>

>

Global offsets to lookup files for a given range of entries.

Small number of eras allows t reename, TBranch names, and (pickled)
interpretations to vary in the dataset (e.g. new trigger lines).

prefix for filename avoids duplicated characters in long path URLs.

Separate records for each TBranch allows TBranches to be queried
independently. (TBranches that aren't in all files have option type.)

Same number of TBasket seek positions, local entry stop values, and
number of bytes share a variable-length list (var).

7/13

A perfect match for Tiled's slice-based predicate push-down \

>>> awkward_client
<AwkwardClient>

>>> awkward_client [0, "offsets"]
<Array [0, 3271302] type='2 * int64d'> // just one file for now

>>> awkward_client [0, "prefix"]
<Array ['/home/jpivarski/storage/data/'] type='l x string'>

>>> awkward_client [0, "file", ["filename", "prefix", "era"]][0].show/()

{filename: 'Run2018D-DoubleMuon-Nano250ct2019_ver2-v1-974F28EE-OFCE-4940-92B5-870859F880B
prefix: 0,

era: 0}

>>> awkward_client [0, "file", "tree", ["nMuon", "Muon_pt", "Muon_eta"]][0].show()
{nMuon: [{seek: 386614, stop: 1000, bytes: 587}, ..., {seek: 2511484157, ...}1,
Muon_pt: [{seek: 467837, stop: 1000, bytes: 8305}, ., {seek: ..., ...}]1,
Muon_eta: [{seek: 405661, stop: 1000, bytes: 6018}, ..., {seek: ..., ...}1}

>>> awkward_client [0, "file", "tree", 0, "nMuon", 100:103].show()
[{seek: 728247824, stop: 951800, bytes: 3223},
{seek: 735505290, stop: 961318, bytes: 3243},

{seek: 742659604, stop: 970836, bytes: 3195}] 8/13

Prototype: populate Tiled database, Uproot drop-in replacement

@ jpivarski / tiled-uproot rusic

#¥ main ~

¥ 3 branches

© 0tags

Go to file

. ipivarski fix: some issues recognized in the practice before the Tiled talks (#3)

riirBirEirEirBirEirEirBi-BE BN BN |

.github

docs
src/tiled_uproot
tests
.git_archival.txt
.gitattributes
.gitignore
.pre-commit-config.yaml
-readthedocs.yml
LICENSE
README.md
noxfile.py

nunraiert tooml

57 Pin

Add file ~

v 02d5976 4 days ago

feat: extract arrays from Tiled-Uproot database (#2)

initialize from scientific-python.org/cookie

fix: some issues recognized in the practice before the Tiled talks (#3)

Populated lookup tables as an Awkward Array.
initialize from scientific-python.org/cockie
initialize from scientific-python.org/cookie
initialize from scientific-python.org/cockie
Populated lookup tables as an Awkward Array.
initialize from scientific-python.org/cookie
initialize from scientific-python.org/cookie
initialize from scientific-python.org/cookie

initialize from scientific-python.org/cockie

faat' extrart arrave from Tiled-1 Inrant Aatahace (#2)

®© Unwatch 2

<> Code -

0 11 commits

5 days ago
3 weeks ago

4 days ago
3 weeks ago
3 weeks ago
3 weeks ago
3 weeks ago
3 weeks ago
3 weeks ago
3 weeks ago
3 weeks ago
3 weeks ago

8 dave arnn

% Fork 0 -

About

Stores ROOT metadata in Tiled for
quicker sliced-array access.

Readme
BSD-3-Clause license
Activity

1star

2 watching

0 forks

< O %<8

Releases

No releases published
Create a new release

Languages

@ Python 100.0%

9/13

After populating the database. . .

>>> tree = tiled_uproot.extract.TiledUproot ("root_metadata", awkward_client)
>>> tree
<tiled_uproot.extract.TiledUproot object at 0x7fceb06c2d70>

>>> tree.show()

name | typename | interpretation
,,,,,,,,,,,,,,,,,,,,, o
run [uint32_t | AsDtype('>ud")

luminosityBlock | uint32_t | AsDtype('>ud'")

event | uinte64d_t | AsDtype ('>u8")

CaloMET_phi | float | AsDtype('>f4d")

CaloMET_pt | float | AsDtype('>f4")

CaloMET_sumEt | float | AsDtype('>f4")

ChsMET_phi | float | AsDtype('>f4d")

ChsMET_pt | float | AsDtype('>f4d")

ChsMET_sumEt | float | AsDtype('>f4")

nCorrTIMETJet | uint32_t | AsDtype('>ud")
CorrTl1METJet_area | float[] | AsJagged(AsDtype('>f4"))
CorrT1METJet_eta | floatl[] | AsJagged (AsDtype ('>f4")
CorrTIMETJet_muon... | float[] | AsJagged (AsDtype ('>f4"))
CorrT1METJet_phi | float[] | AsJagged (AsDtype ('>f4")
CorrTIMETJet_rawPt | float[] | AsJagged (AsDtype ('>f4'"))
nElectron | uint32_t | AsDtype('>ud') 10/13

After populating the database. . .

>>> array = tree.arrays(["nMuon", "Muon_pt"], entry_start=100, entry_stop=10000)
>>> array.show (type=True)
type: 9900 =% {
nMuon: uint32,
Muon_pt: var » float32
}

[{nMuon: 2, Muon_pt: [10.4, 5.3]1},
{nMuon: 3, Muon_pt: [15.1, 9.15, 5.991},
{nMuon: 1, Muon_pt: [14.8]},

{nMuon: 2, Muon_pt: [17.6, 12.9]},
{nMuon: 0, Muon_pt: []},
{nMuon: 2, Muon_pt: [49, 38.71},
{nMuon: 4, Muon_pt: [15.4, 6.3, , 5.151},
{nMuon: 3, Muon_pt: [15.5, 14.5, 12.8]},
{nMuon: 1, Muon_pt: [20.1]},
{nMuon: 1, Muon_pt: [9.4]},

I
{nMuon: 2, Muon_pt: [19.8, 12.21},
{nMuon: 1, Muon_pt: [3.14]1},
{nMuon: 1, Muon_pt: [13.1]},
{nMuon: 1, Muon_pt: [19.6]},
{nMuon: 2, Muon_pt: [17.4, 10.41},
{nMuon: 3, Muon_pt: [9.66, 4.06, 3.85]}

11/13

After populating the database. . .

>>> array = tree.arrays(
["px", "py", "pz"l,
cut="nMuon == 2",
aliases={

"py" .
}I
entry_start=100,
entry_stop=10000,

)
>>> array.show (type=True)
type: 4922 x {
px: var x float32,
py: var + float32,
pz: var x float32

[{px: [-11.3, 1.18], py: [5.23, -5.321,

{px: [14.9, 311, py: [10.3, 55.71,

{px: [-46.3, 63.8], py: [-19.3, 7.581,
{px: [16.3, -36.6], py: [51, -18.5],

{px: [27.9, 3.711, py: [40.4, 18.8

1,
{px: [29.4, 15.1], py: [24.5, 5.01],

px": "Muon_pt x cosh (Muon_eta)
"Muon_pt * cosh (Muon_eta)
"pz": "Muon_pt * sinh (Muon_eta)

pz: [-34.2, .

* cos (Muon_phi)",
* sin (Muon_phi)",

n
’

[6.89, ...1},
[3.93, ...1},
[10.5, ...1},
[20.5, 1},
[-41.8,

1L
1) 12/13

-1
-1

. ServiceX?

Possible configuration: as an Adapter within Tiled

source of
ROOT files

get "Muon_pt * sinh(Muon_eta)"
from primary dataset

Uproot Adapter
for Tiled

\

Client

Awkward Array
store in Tiled

Analysis Facility

3 get "corrected_muons"
' from user 12345's derived dataset

13/13

