Hunting for di-Higgs in hadronic final states

 $V(\phi)$

Nicole Hartman nicole.hartman@tum.de

Workshop on Machine Learning and High Energy Physics Austrian Academy of Sciences 13 Dec 2023

Motivation

Motivation

Where to look

$$V(\phi) = \mu^2 h(x)^2 + \frac{\lambda v h(x)^3}{4} + \frac{1}{4} \lambda h(x)^4$$

Focus for today!			Higgs 1 decay			
		bb	ww	π	ZZ	ŶŶ
Higgs 2 decay	bb	34%				
	ww	25%	4.6%			
	π	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	γγ	0.26%	0.10%	0.028%	0.012%	0.0005%

The European Physical Journal C Vol 73 3 (2013) 2304

Jets

Also lots of ways to get **b-jets** other than Higgs bosons!

In the detector, quarks create jets

From ATLAS <u>bb $\gamma\gamma$ </u>, <u>bb $\tau\tau$ </u>, and <u>4b</u> analyses.

Challenges

Analyses with jets have large backgrounds ➡ which are challenging to simulate from first principles ↓

Motivating Q: What's needed for applying ML methods in an experiment / analysis?

ERANCE

CMS

/ 31

CERN Prevessin

Methods Uncertainty Quantification

Systematics

HH \rightarrow 4b analysis

- ► Birds-eye view of analysis
 ► NN reweighting for backer
- NN reweighting for background modelling
 - Normalizing Flows for background modelling
 - End-to-end analysis

n: 362619 ent: 524614423 18-10-03 08:06:34 CEST

Run 3

The scale of the problem

140 million people in Germany + Italy

100,000 hairs / person

ПП

Analysis overview

How to predict the background here?

Want to fit a shape with categories... need a multidimensional description of the data.

<u>1911.00405</u> 2202.07288; 2301.03212 Graphic from Lukas Heinrich

Reweighting for background estimation

Use classifiers to learn likelihood ratios, e.g, $p_{4b}(x)/p_{2b}(x)$

$$p_{4b} = w(x) \cdot p_{2b}(x), \ x \in \mathbb{R}^d$$

Note m_{HH} was not used in the set of reweighting features *x*.

Uncertainty: NN training

Uncertainty: choice of control region

Q: Have we accounted for all uncertainties?

Q: Have we accounted for all uncertainties?

 \rightarrow Invert every cut!!

Q: Have we accounted for all uncertainties?

 \rightarrow Invert every cut!!

Q: Have we accounted for all uncertainties?

 \rightarrow Invert every cut!!

Modeled by existing uncertainties

Categorization : ggF channel

Systematics

2017

Impact in the combination

Impact in one analysis

Impact in one analysis

How will ML continue to improve our analysis? End-to-end optimization strategies Better b-taggers Flows for background modelling ПΠ 19/31

NH <u>thesis</u> with S. Gasiorowski, R. Teixeira de Lima, M. Kagan

Flows for high dimensional interpolation

Hierarchical $p(x, m_{H1}, m_{H2}) = p(x|m_{H1}, m_{H2}) p(m_{H1}, m_{H2})$ model:

x: Event kinematics p_{T,H1}, p_{T,H2}, η_{H1}, η_{H2}, Δφ_{HH}, X_{wt} [top veto]

Use the smoothly varying (m_{H1}, m_{H2}) to predict SR kinematics.

Conceptually identical to CATHODE

$p(x, m_{H1}, m_{H2}) = p(x | m_{H1}, m_{H2}) p(m_{H1}, m_{H2})$

1) GP fits

Fit a GP to the 2d (m_{H1} , m_{H2}) histogram

Radial basis function kernel, 2d length scale

Flow gradually from one distribution into another.

Flow gradually from one distribution into another.

•
$$f_{\theta} = f_{\theta L} \circ \cdots \circ f_{\theta 2} \circ f_{\theta 1}$$

• Invertible f_{θ_i} allow us to get the <u>density</u> of training samples

Flow gradually from one distribution into another.

- $f_{\theta} = f_{\theta L} \circ \cdots \circ f_{\theta 2} \circ f_{\theta 1}$
- Invertible f_{θ_i} allow us to get the <u>density</u> of training samples
- Conditional generative model $p_{\theta}(x \mid y), y = (m_{H1}, m_{H2})$

Key for interpolation!

Flow gradually from one distribution into another.

•
$$f_{\theta} = f_{\theta L} \circ \cdots \circ f_{\theta 2} \circ f_{\theta 1}$$

- Invertible f_{θ_i} allow us to get the <u>density</u> of training samples
- Conditional generative model $p_{\theta}(x \mid y), y = (m_{H1}, m_{H2})$

$$\mathscr{L}oss = -\log p_{\theta}(x \mid y) = -\log p_{z}(f_{\theta}^{-1}(x \mid y)) - \sum_{i=1}^{K} \left| \frac{\partial f_{\theta_{i}}^{-1}}{\partial z_{i}^{T}} \right|$$

Key for interpolation!

thesis

23 / 31

Input processing : HH -> 4b background modeling pred log pT, H1 pred nH1 **ATLAS** Thesis 0.4 flow pred log pT $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ 0.2 prediction 4b SR Þ -2 0.0 -2.5 0.0 2.5 2 -7 -2 0 2 -2 0 -2 2 -2 2 true log *p*_{T, H1} 0.4 0 0 0.2 -7 -7 -2 Good transformations help 0.0 -2.5 0.0 2.5 -7 for complex distributions. LO 5000 true n_{H1} 0 flow mean ATLAS Thesis Learns about $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ -2 reweighting ເ_ຍ 4000 ⊨ 4b SR 2.5 0.0 -2.5 preprocessing cut Entri 2000 4b 0.3 (Δη_{HH} < 1.5) true n_{H2} 0.2 0 2000 0.1 -2 -7 0.0 -2 0 -2 0.0 -2 2 -2 2 1000 0.3 true X_{Wt} 0.2 0 1.50 0.1 -2 **4** 1.25 0.0 -2.5 0.0 2.5 -2 -2 -2 -2 0 $-\Delta\phi_{HH}$ 1.00 ed 4b data 0.4 ٥.75 d - m)pol 0.2 0.50 brue -7 24 / 31 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 -2 -2.5 0.0 2.5 -2 0 2 -2 0 2 -2 0 -2 2 0 2

true X_{wt}

true nH2

true $log(\pi - \Delta \phi_{HH})$

true log pT, H1

true log pT, H1

true n_{H1}

thesis

Input processing : HH \rightarrow 4b background modeling

Variable transformations

thesis

Can we use gradient optimization more?

Traditional Analysis

Traditional Analysis

How do you know we this particle classifier is optimal for **every analysis**?

Traditional Analysis

New paradigm

Dataset: CMS Open Data Signal: $X \rightarrow HH \rightarrow 4b$ Bkg: QCD simulation

Jet Tagger: Transformer, ParT [2202.03772], start from published weights (pre-training with 100m jets in JetClass dataset)

There *is* a gain with an end-to-end analysis!

Conclusion

Very exciting time for ML in Run 3 and bbbbeyond!

Backup

And exciting new ways to start rethinking our analyses...

How can the next generation of ML improve this? Limitations of reweighting methods: 1. Choice of CR

2. Suffers in regions of finite support

3. Limited by the stats of the "source distribution"

The European Physical Journal C Vol 73 3 (2013) 2304

Quark signature

Quark → reconstructed as collimated spray of particles

My research... guess who?

1 signal event / (3 hour)

1 billion collisions / second

140 million people in Germany + Italy 100,000 hairs / person **10**-13

signal background

. .

The background model

The background model

The background model

Reweighting – key idea

What's next?

ПΠ

What's next?

$3b + rev \Delta \eta_{HH}$

Event reconstruction

р

2

$$\eta_{H1}, \eta_{H2}$$

 η_{H1}, η_{H2}
 Φ_{HH}, X_{Wt}
 $A p(evt vars| m_{h1}, m_{h2})$ [flow]

Construct Higgs 4-vectors

HC 1: $(p_{T,H1}, \eta_{H1}, 0, m_{H1})$ HC 2: $(p_{T,H2}, \eta_{H2}, \Delta \Phi_{HH}, m_{H2})$

C.f. the 4b NR bkg validation regions

Compare the observed and predicted yields

		obs	rw	flow	1 - rw / obs [%]	1 - flow / obs [%]
	3b1f	180044	175817.9	175416.8	2.3	2.6
S	rev $ \Delta \eta_{HH} $	16113	16462.7	16185.9	-2.2	-0.5
gion	lower left	40578	48708.9	39252.2	-20.0	3.3
L reç	lower right	12377	14648.5	11982.7	-18.4	3.2
fted	upper right	5751	5543.0	5825.9	3.6	-1.3
shi	upper left	19075	19504.7	19833.4	-2.3	-4.0
	4b	16171	15423.7	16564.8	4.6	-2.4

Shape modelling

Normalize histograms to the target, and compare shapes

3b1f rev $|\Delta \eta_{HH}|$ lower left lower right upper right upper left flow flow flow flow flow flow rw rw rw rw rw rw 1.85 1.25 0.98 1.60 3d disc 1.37 5.52 2.19 1.32 1.35 0.93 2.24 2.54 2.29 3.77 1.34 2.70 1.26 0.78 1.30 4.70 1.60 1.98 0.91 4.44 m_{HH} 2.213.81 1.63 2.34 8.26 2.21 1.61 1.03 1.97 1.64 2.85 4.49 $m_{HH,cor2}$ 1.38 1.51 0.98 1.94 1.16 3.90 6.95 1.37 1.52 1.07 1.63 1.99 $\Delta \eta_{HH}$ 1.58 0.70 1.07 1.77 1.61 1.42 1.48 1.76 0.95 0.58 1.14 2.85 $p_{T,H1}$ 1.74 1.51 1.82 1.06 1.49 2.64 2.50 2.811.83 2.831.17 0.92 $p_{T,H2}$ 1.99 1.74 2.07 2.74 1.51 2.33 1.54 2.24 0.87 1.45 0.82 2.36 η_{H1} 1.37 1.36 1.17 4.93 1.11 0.85 1.16 2.07 2.62 1.35 0.75 1.33 η_{H2} 1.88 1.85 2.081.16 18.81 3.23 2.24 1.40 $\Delta \phi_{HH}$ 9.64 1.46 1.04 2.61 2.49 0.82 1.71 5.29 0.79 1.39 X_{Wt} 3.73 1.74 17.64 1.27 1.45 1.33 2.54 0.93 2.35 0.87 6.06 1.13 1.76 1.00 1.50 1.23 1.80 0.80 $p_{T,HH}$

shifted regions

reweighting better

GP+flow better

	$m_{H1} ~[{ m GeV}]$	$m_{H2} [{ m GeV}]$
2016	108.3	50.6
2017	106.1	64.4
2018	105.4	56.4

Table 13.1: The fitted length scales for 4b data.

GN2v01

FTAG-2023-01

Philipp Gadow | Tagging beyond GN2

GN2 b-tagging performance DL1d ATLAS Simulation Preliminary 10^{5} $\sqrt{s} = 13$ TeV, PFlow jets GN1

CERN

How can we learn more?

Data efficiency

When you train the whole thing from scratch (all on the 10m jets CMS dataset), you eventually get the *same level of performance* as the finetuned model.

The frozen Xbb score is consistently worse than the finetuned model.

The fine-tuning with pretaining has the best performance once you have more than 10k jets to fine-tune the model on.

Utility of higher dimensional representation

If the jet level representation is frozen, vector performs better than single scalar

And with the gradient flow?

With a finetuned model, some benefit from vector info. In the from scratch phase, *no benefit from the additional information*.

54 / 31