
Theo Heimel 
December 2023 

Institut für theoretische Physik 
Universität Heidelberg

The MadNIS Reloaded

[2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder

https://arxiv.org/abs/2311.01548


Introduction

2

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?
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Introduction
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How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Monte Carlo integration 
and sampling from 

differential cross section 

↓ 

accelerate with 
deep generative models

Exact sampling ensured 
by known likelihood 

↓ 

better model 
= 

faster sampling

Differential cross section 
known from QFT: 

 

Total cross section: 

dσ ∼ pdf(x) ⋅ ∣ℳ(x) ∣2 ⋅ dΦ

σ = ∫Φ
dσ

ℒ
Theory Shower EventsHard process Hadronization Detectors



Monte Carlo Integration
I = ∫ dx f(x)
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Monte Carlo Integration
I = ∫ dx f(x)

I = ⟨ f(x)⟩x∼p(x) I = ⟨ f(x)
g(x) ⟩

x∼g(x)
I = ∑

i ⟨αi(x)
f(x)
gi(x) ⟩

x∼gi(x)

Flat sampling 
inefficient 

Importance sampling 
Find mapping close 

to integrand

Multi-channeling 
one mapping for 

each channel
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PS Integration in Madgraph
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dσ =
1

flux
dxa dxb f(xa) f(xb) dΦn ⟨ ∣Mλ,c,…(pa, pb ∣ p1, …, pn) ∣2 ⟩

How can we make event generation faster? 
Efficient integration and sampling from differential cross section

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Integrand 
MadGraph: dσ/dx

Sum over channels 
MadGraph: build channels 
from Feynman diagrams

Channel weights 
MadGraph:  

or 
αi ∼ ∣Mi ∣2

αi ∼ ∏ ∣p2
k − m2

k − iMkΓk ∣−2

Channel mappings 
MadGraph: use propagators, … 

Refine with VEGAS 
(factorized, histogram based 

importance sampling)



VEGAS algorithm
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Factorize probability
p(x) = p(x1)⋯p(xn)

Fit bins with equal probability 
and varying width

[G. P. Lepage, 1978]



VEGAS algorithm

5

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap 

⊖ High-dim and rich peaking functions 
→ slow convergence 

⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability 
and varying width

[G. P. Lepage, 1978]



MadNIS: Neural Importance Sampling

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channels and mappings

Normalizing Flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Optimize simultaneously with integral variance as loss function
6
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Normalizing Flows 6Conditional Invertible Neural Networks
• chain of learnable, invertible transformations with tractable Jacobian

[Ardizzone et al., 1907.02392]
• Train network by maximizing log-likelihood for training dataset

logp(zn) = logp(z1) + log det ∂z1(zn; c)
∂zn

p(z1) p(z2|c) p(z3|c) p(z4|c)

Simple latent
distribution
(Gaussian)

Data
distribution

Condition c

f1 f2 f3

training on samples
density estimation

sampling

Chain of invertible, learnable transformations with 
exact likelihood from change of variables formula

log p(zn |c) = log p(z1) + log det
∂z1(zn; c)

∂zn

9Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]



Neural Importance Sampling
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Unit hypercube

Phase space

xi ∼ dΦn

Unit hypercube

z ∼ unif

Analytic 
Channel 

Mappings
xi = hi(yi)

yi ∼ gi(y)

Normalizing Flow

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

Learnable, invertible transformation 
with tractable Jacobian: 

Rational Quadratic Spline coupling block 
[Durkan et al, 1906.04032]
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MADNIS: Neural Importance Sampling

12Latent space z

Channel i

⟨αi(x)
f(x)
gi(x) ⟩

Analytic Channel 
mapping i

 Φ ⊆ ℝN
Phase space Learned channel 

weight αi(x)

Normalizing 
Flow i

 
U = [0,1]N

Unit hypercube

Single channel i



MADNIS: Neural Importance Sampling
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Conditional SplittingLatent space z

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel 
mapping 1

Analytic channel 
mapping 2

Analytic channel 
mapping k

 Φ ⊆ ℝN
Phase space

 
U = [0,1]N

Unit hypercube

⟨α2(x′ )
f(x′ )
g2(x′ ) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′ ′ )
f(x′ ′ )
gk(x′ ′ ) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2

Normalizing 
Flow k

Combination of 
 channelsk



Neural Channel Weights
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Channel WeightPhase space

Fu
lly

 c
on

ne
ct

ed

Fu
lly

 c
on

ne
ct

ed

Re
si

du
al

 B
lo

ck

βi(x) =
∣Mi(x) ∣2

∑j ∣Mj(x) ∣2

Prior Channel Weights
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Neural Channel Weights
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Channel WeightPhase space

x ∼ dΦ

Fu
lly

 c
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Prior Channel Weights

Residual Block

Add prior

Normalization

 αiθ = βi(x) exp Δiθ(x)

αiθ(x) → α̂iθ(x) =
exp Δiθ(x)

∑j exp Δiθ(x)
βi(x)

βj(x)

βi(x) =
∣Mi(x) ∣2

∑j ∣Mj(x) ∣2

αiθ(x)



Loss function
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σ2
i = Var (αi(x)

f(x)
gi(x) )

x∼gi(x)

Ni = N
σi

∑k σk

σ2
tot = N∑

i

σ2
i

Ni

ℒ = σ2
tot = ∑

i,k

σi σk

with

Training objective: 
Minimize total variance

Optimal MC weights depend on  
↓ 

assume choice of  during training: 
use stratified sampling

Ni

Ni

MadNIS loss function



SYMFI Multi-Channel
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Latent space z
Shared 

Normalizing 
Flow

Shared 
Analytic Channel 

mapping

Permutation 
xj → xν1( j)

Permutation 
xj → xν2( j)

Permutation 
xj → xν3( j)

Channel index i

⟨α1(x1)
f(x1)

g1(x1) ⟩

⟨α2(x2)
f(x2)
g2(x2) ⟩

⟨α3(x3)
f(x3)

g3(x3) ⟩

Learned channel 
weights ⃗α (x)

Optional: 
condition flow 

on channel index

Optional: 
combine symm. 
channels in loss
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Buffered Training
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Sample 
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

G(x |φ)

gφ(x)

L( f(x), gφ(x))

Online training



Buffered Training
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Buffered samples

x, qφ̂(x), f(x)
Weighted Loss

L( f(x), gφ(x) ∣ wφ(x))

Density wφ(x) =
gφ(x)
qφ̂(x)

Buffered training

gφ(x)

G(x |φ)

gφ(x) φ→φ̂ qφ̂(x)

Sample 
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

G(x |φ)

gφ(x)

L( f(x), gφ(x))

Online training



Buffered Training
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1 2 3 4 5 6
reduction in training statistics R@
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t@ = 40µs
tbuff = 30µs

fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm 

generate new samples, train on them, 
save samples 

↓ 
train on saved samples  times 

↓ 
repeat

n

Reduction in training statistics by 

R@ = n + 1
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VEGAS Initialization
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VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages: 

Pre-trained VEGAS grid as 
starting point for flow training



VEGAS Initialization
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y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

Initialization

Bin reduction

VEGAS gridVEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages: 

Pre-trained VEGAS grid as 
starting point for flow training
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Improved Multichanneling
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Reduced complexity 
Improved stability 

Use symmetries 

Groups of channels only 
differ by permutations of 

final state momenta 
↓ 

use common flows and 
combine in loss function

Stratified training 

Channels have different 
contributions to the 

total variance 
↓ 

more samples for channels 
with higher variance 

during training

Channel dropping 

MadNIS often reduces 
contribution of some 

channels to total integral 
↓ 

remove insignificant 
channels from the 

training completely



LHC processes
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1. Excellent results by combining all improvements! 
2. Same performance with buffered training 

3. Even larger improvements for process with large interference terms
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Learned channel weights
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MadNIS often sends weight of many channels to 0 
↓ 

dropping channels makes training and 
event generation more stable and efficient
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Scaling with multiplicity
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Large improvements compared to VEGAS even 
for high multiplicities and many channels!

 
384 channels, 108 symm. 

7x better than VEGAS

gg → W+dūgg  
945 channels, 119 symm. 

5x better than VEGAS

gg → tt̄ggg
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Outlook
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The MadNIS Reloaded 

Large improvements, 
even for high multiplicities 
and complicated processes!

Future plans 

Make MadNIS part of next 
MadGraph version

6@
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