The MadNIS Reloaded

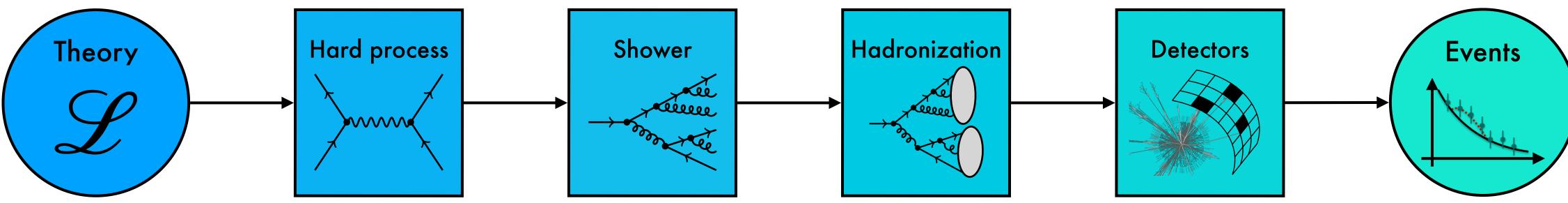
Theo Heimel December 2023

Institut für theoretische Physik Universität Heidelberg

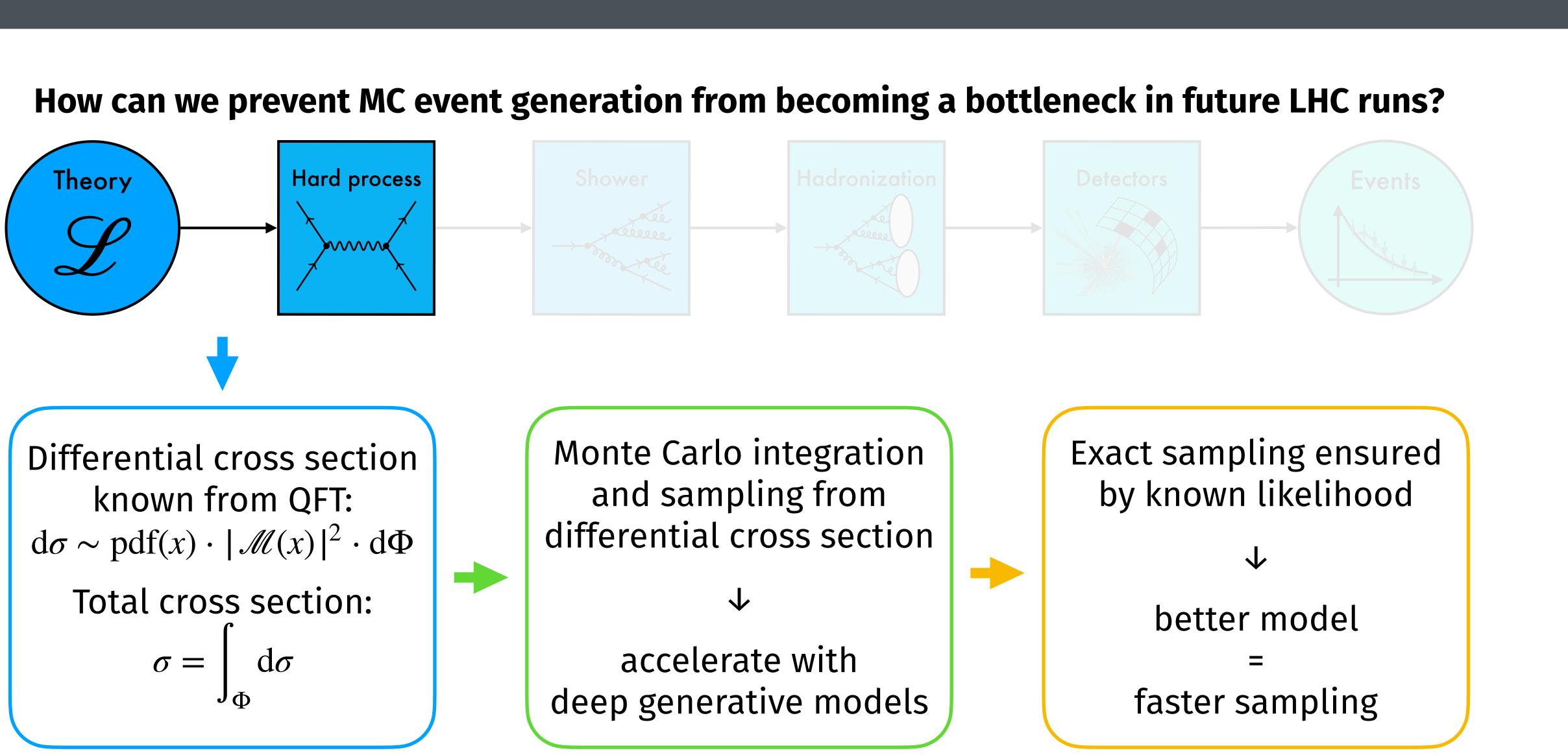
[2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder

Introduction

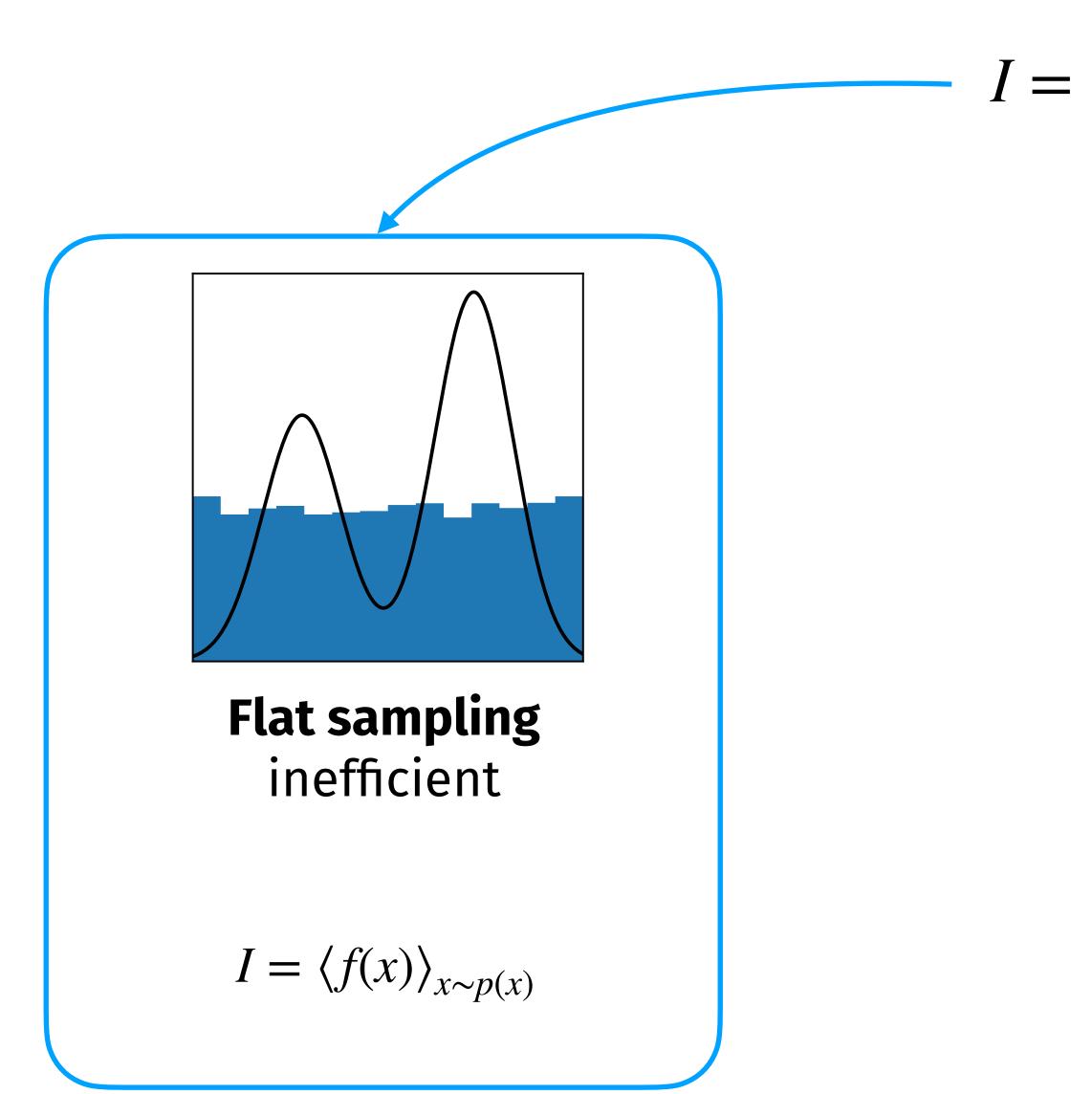
How can we prevent MC event generation from becoming a bottleneck in future LHC runs?



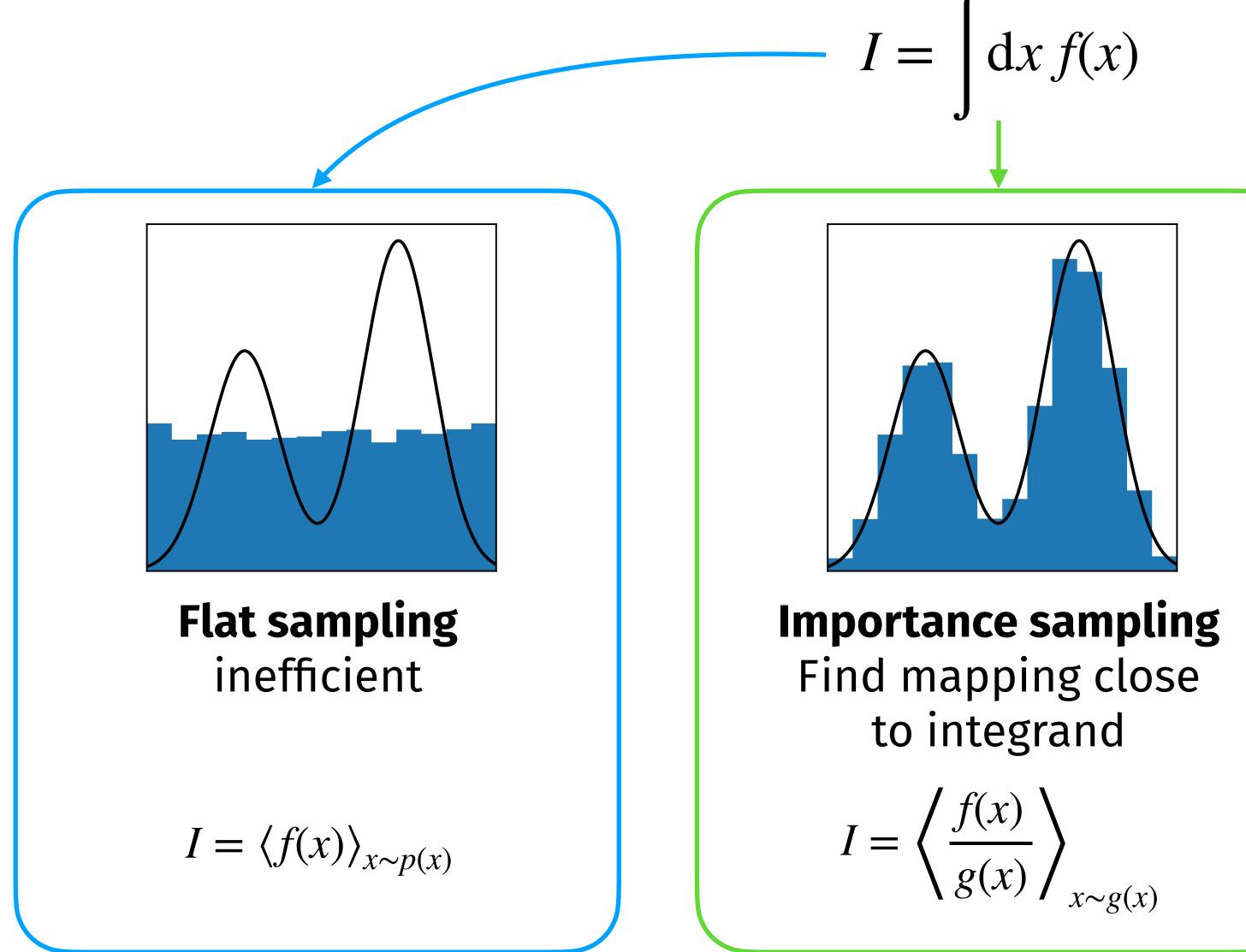
Introduction

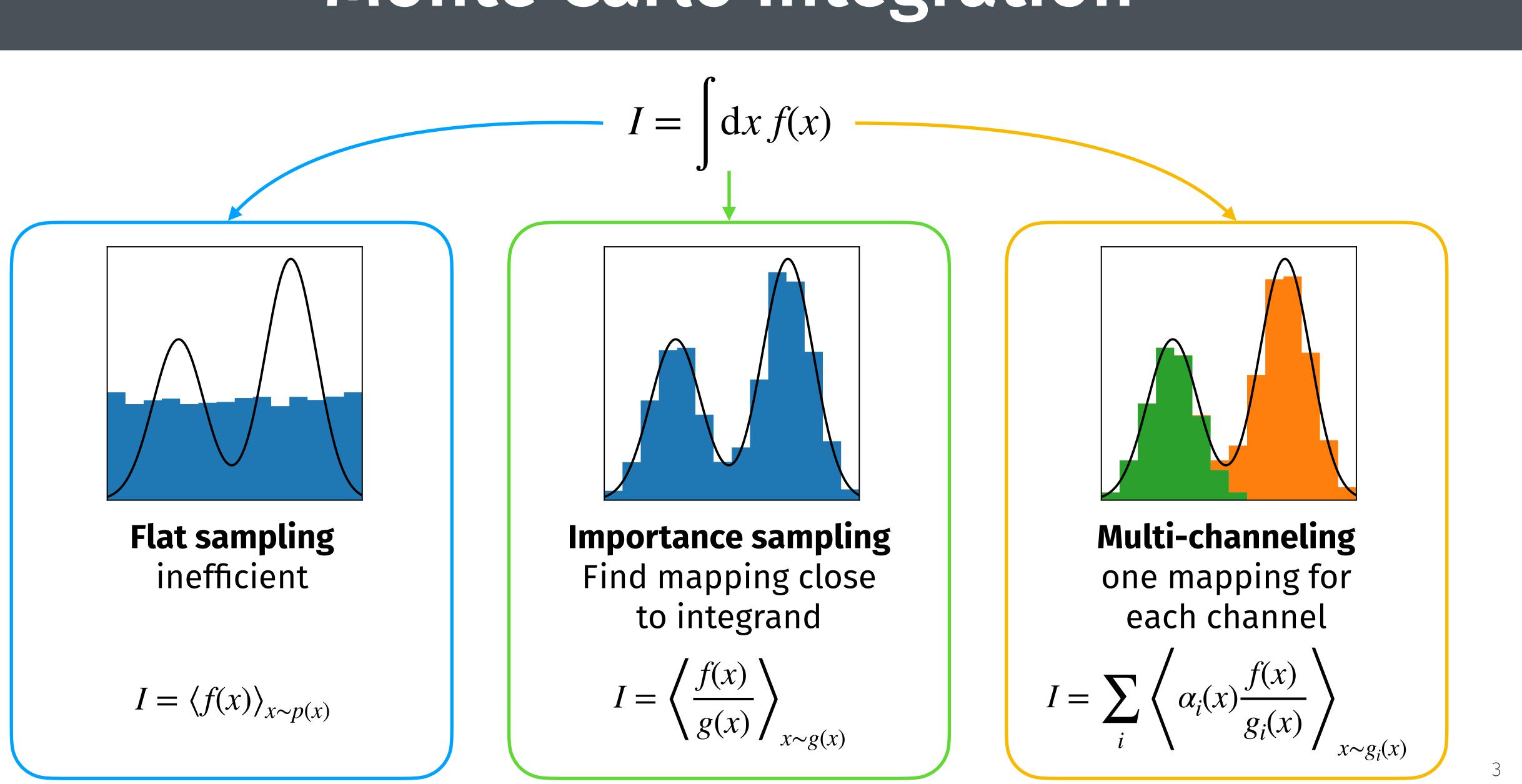


 $I = \int \mathrm{d}x \, f(x)$



 $I = \left| \, \mathrm{d}x \, f(x) \right|$





PS Integration in Madgraph

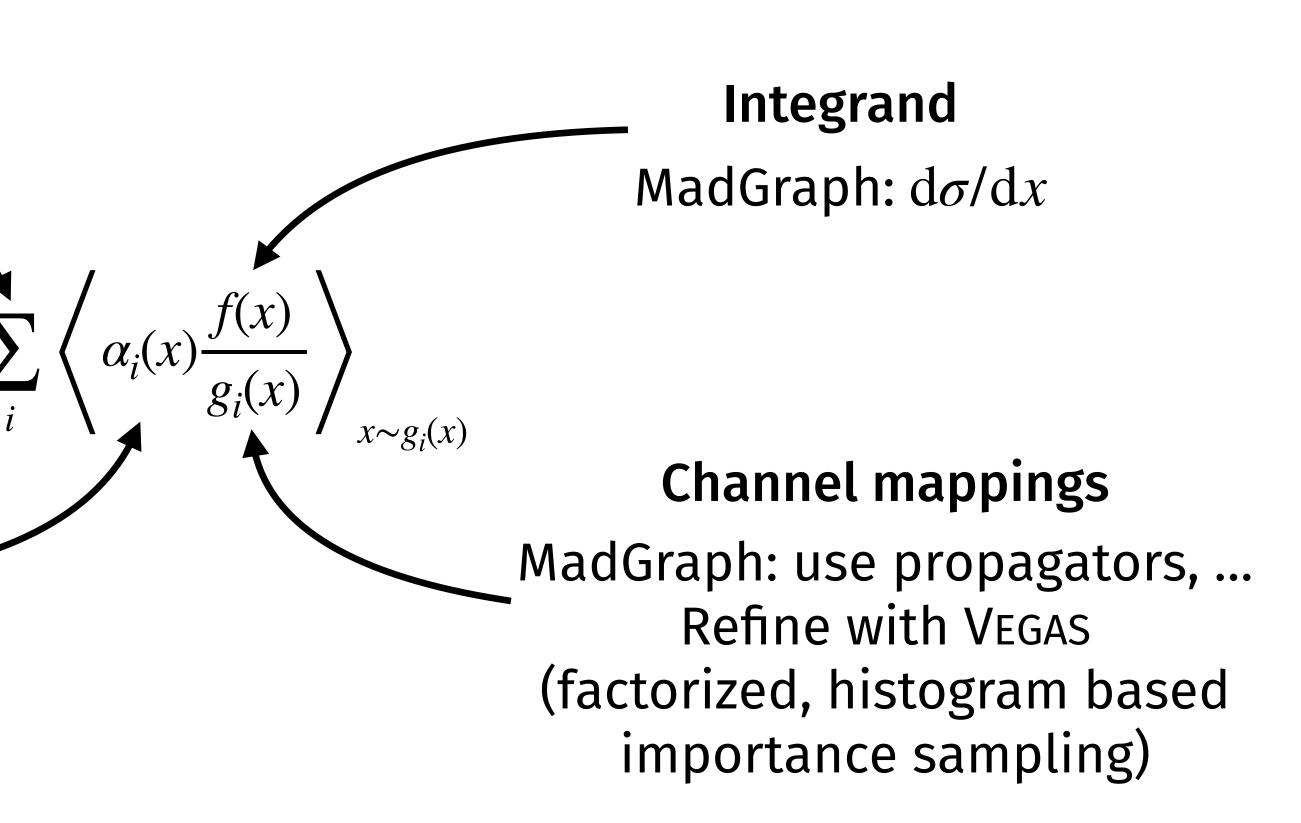
 $d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,\dots}(p_a, p_b | p_1, \dots, p_n)|^2 \rangle$

Sum over channels MadGraph: build channels[¬] from Feynman diagrams

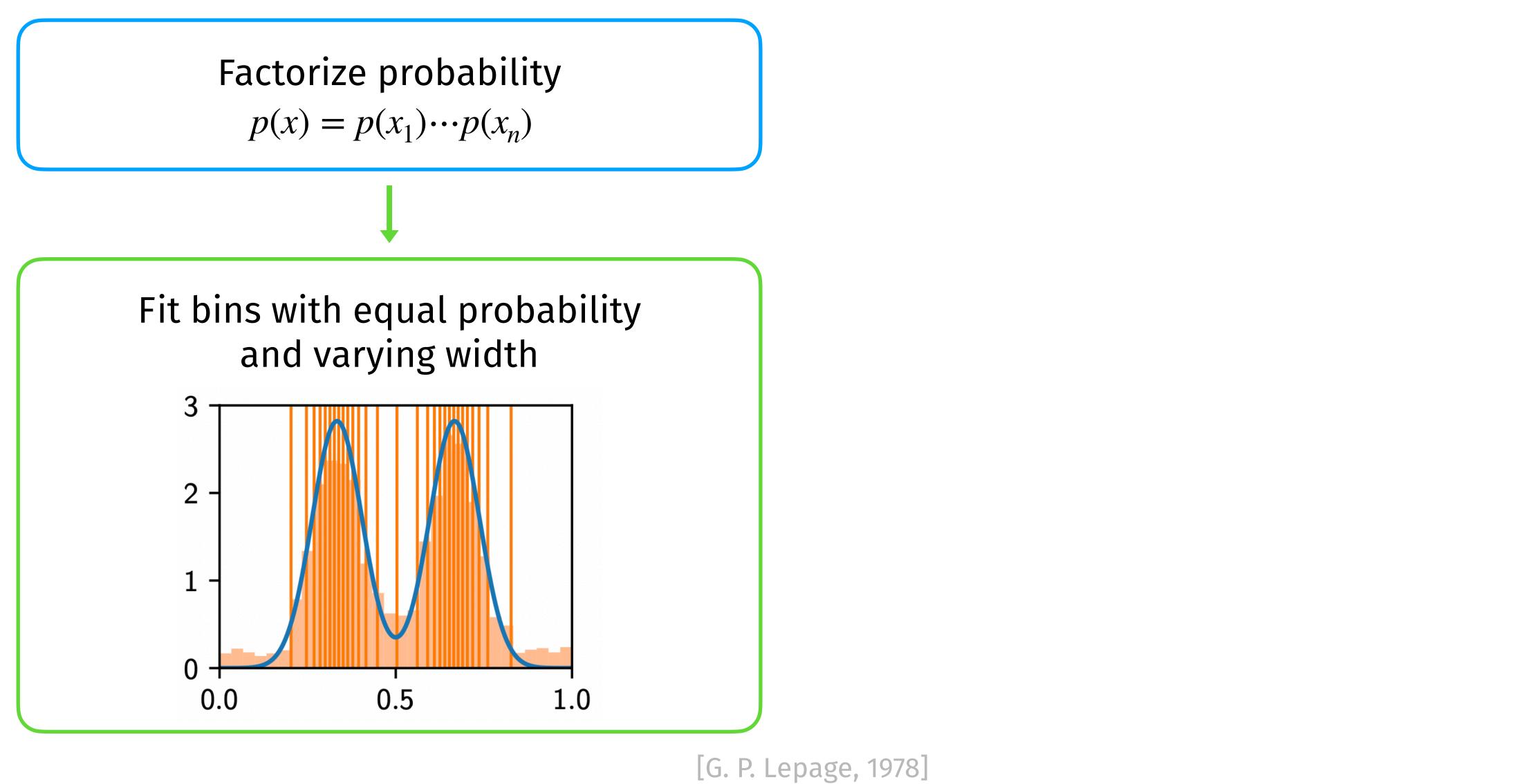
Channel weights

MadGraph: $\alpha_i \sim |M_i|^2$ or $\alpha_i \sim ||p_k^2 - m_k^2 - iM_k\Gamma_k|^{-2}$

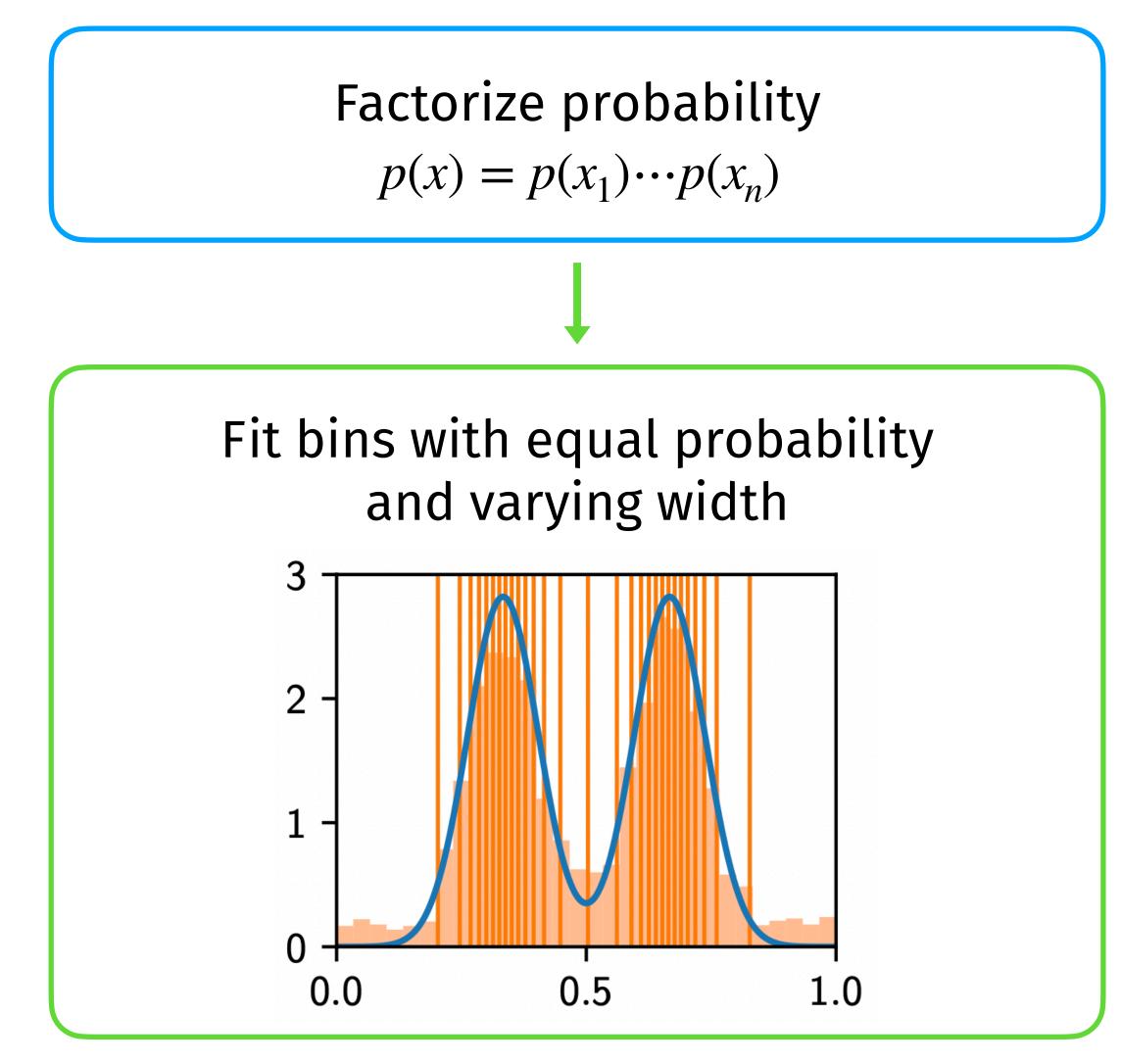
How can we make event generation faster? Efficient integration and sampling from differential cross section



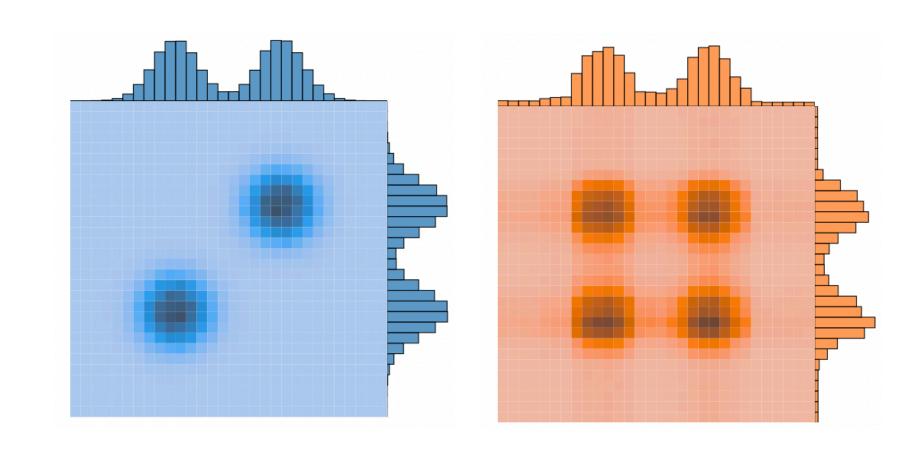
VEGAS algorithm



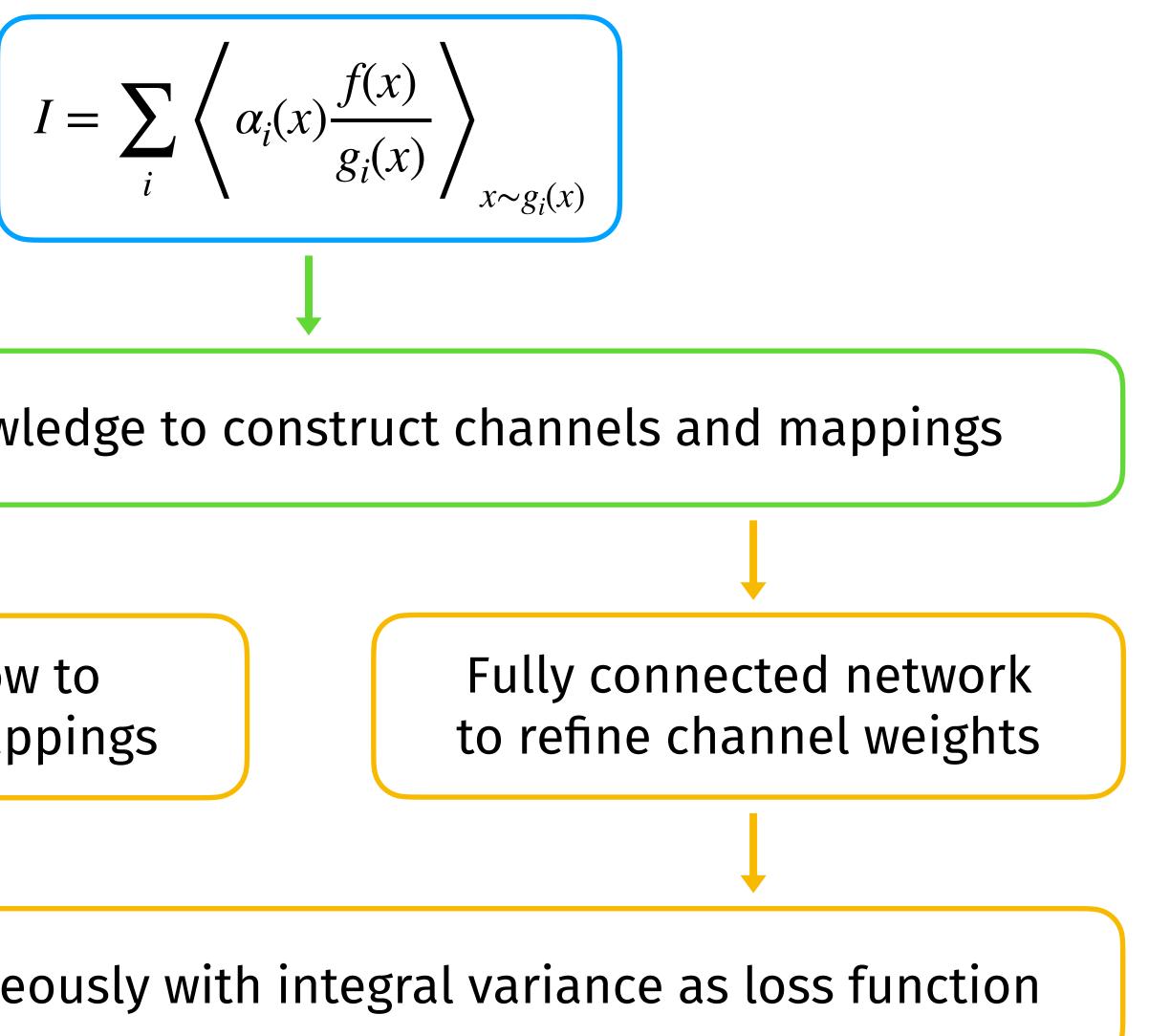
VEGAS algorithm

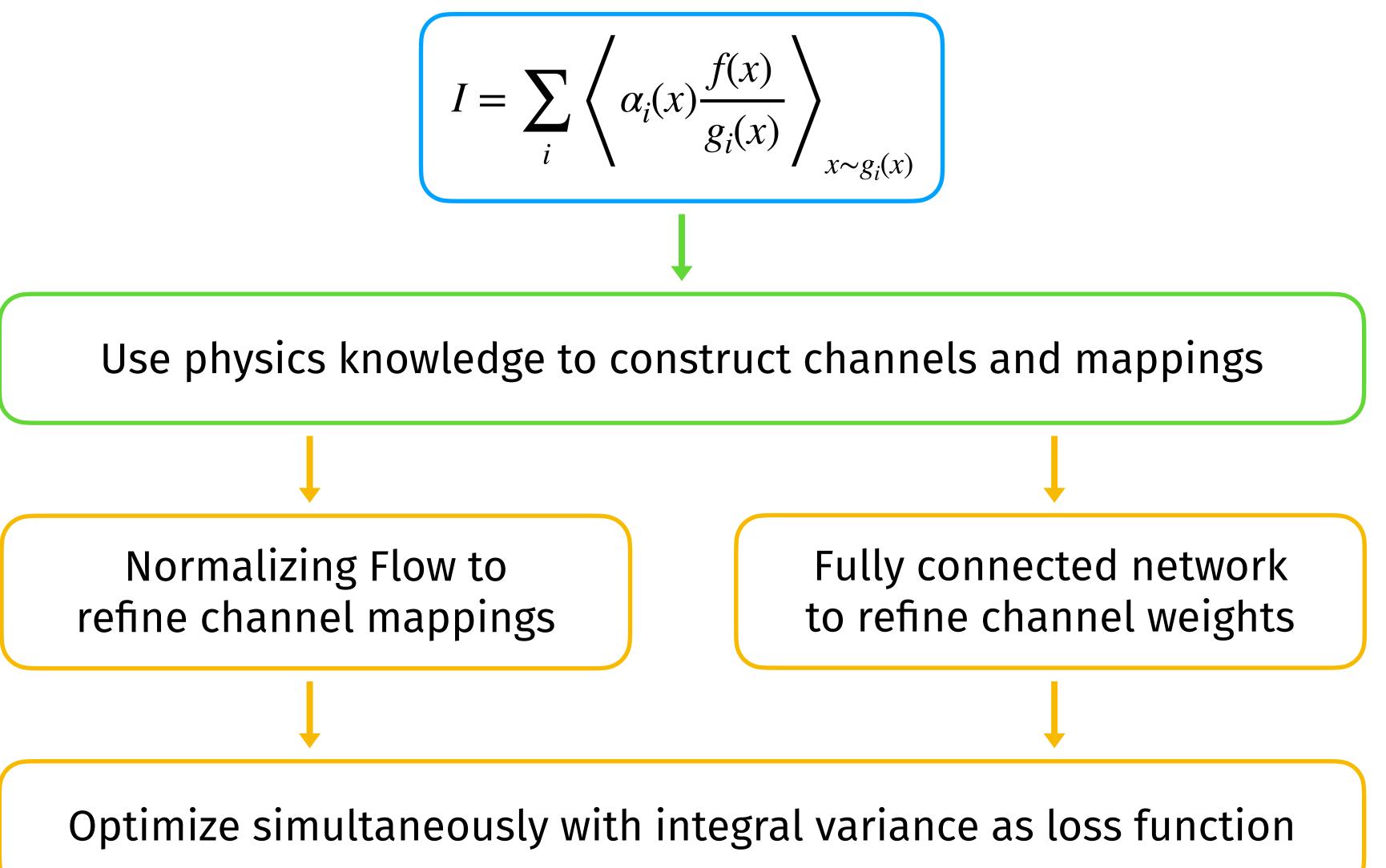


- High-dim and rich peaking functions \rightarrow slow convergence
- Peaks not aligned with grid axes \rightarrow phantom peaks



MadNIS: Neural Importance Sampling





Overview

Improved training

Buffered training

Surrogate integrand

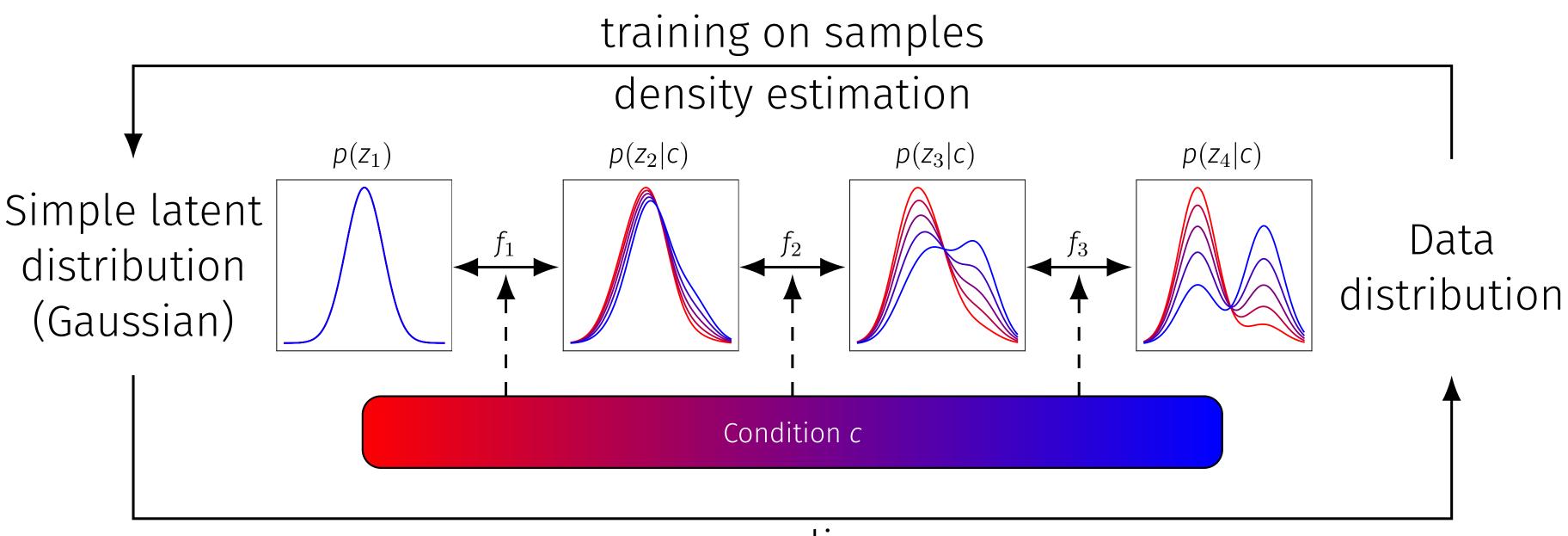
Improved training

Overview

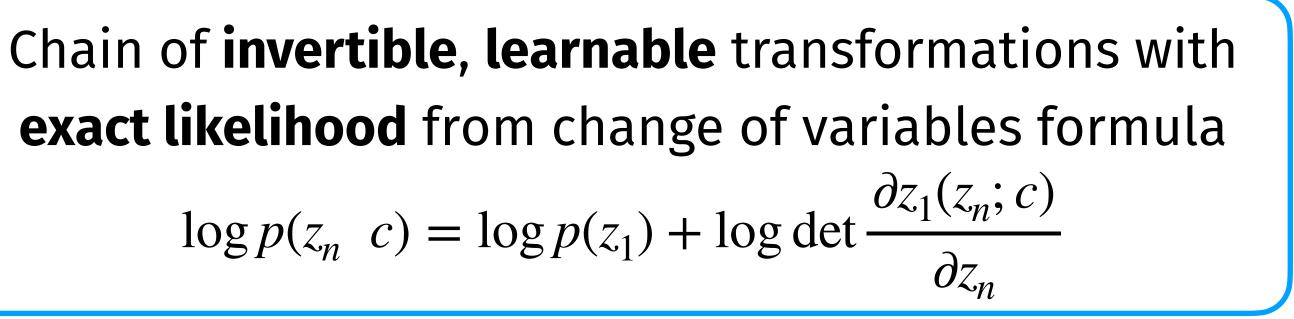
Buffered training

Surrogate integrand

Normalizing Flows

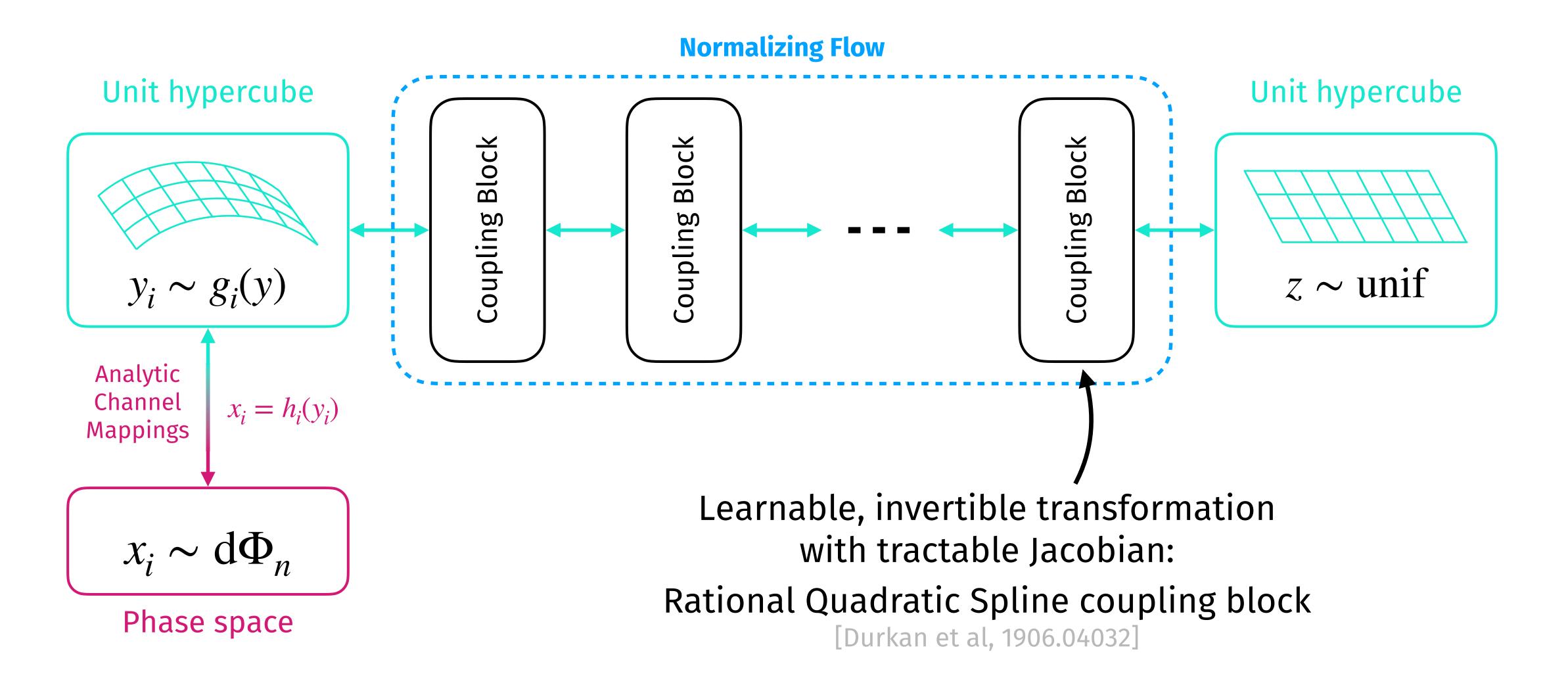


Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]



sampling

Neural Importance Sampling



Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

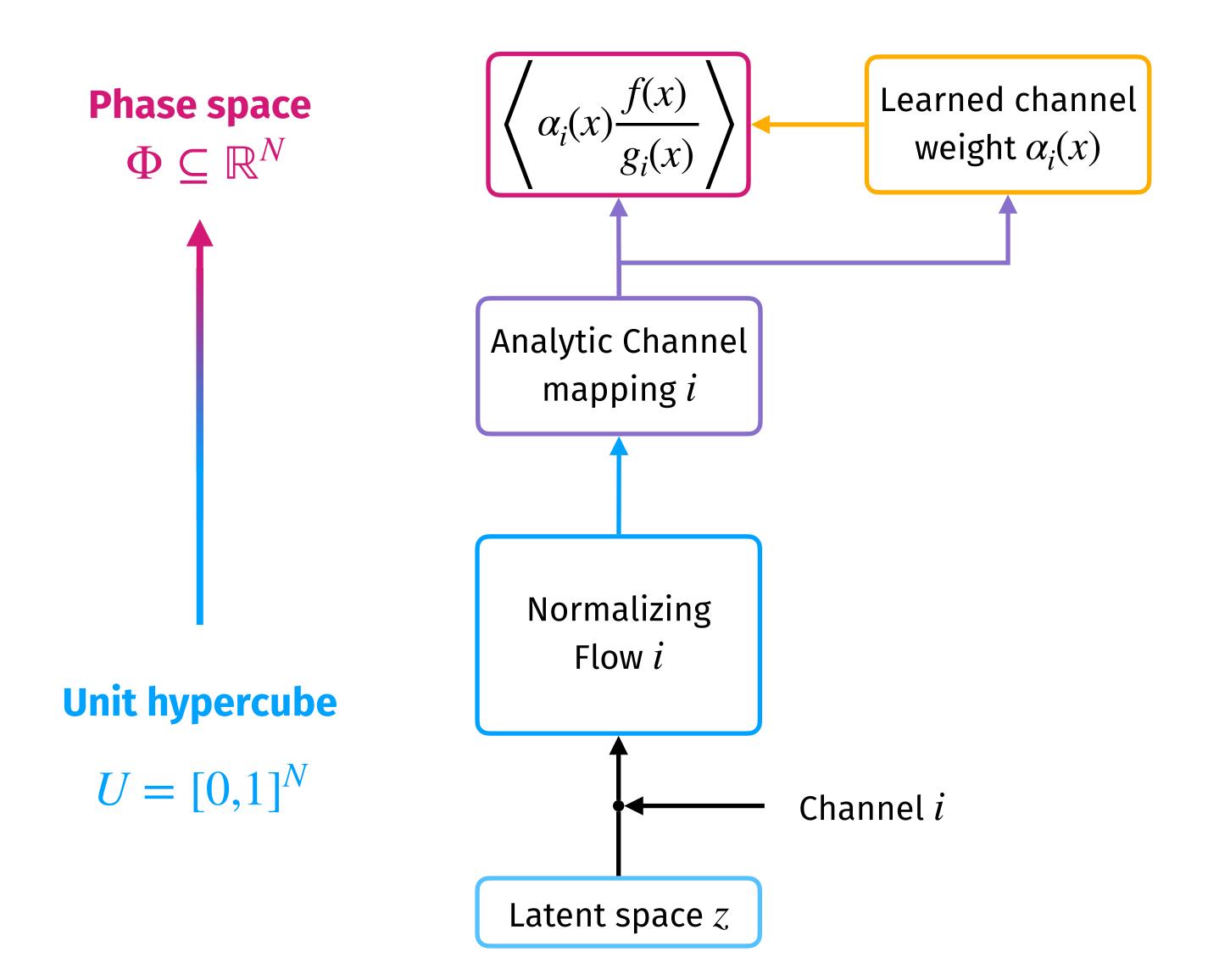
Improved training

Overview

Buffered training

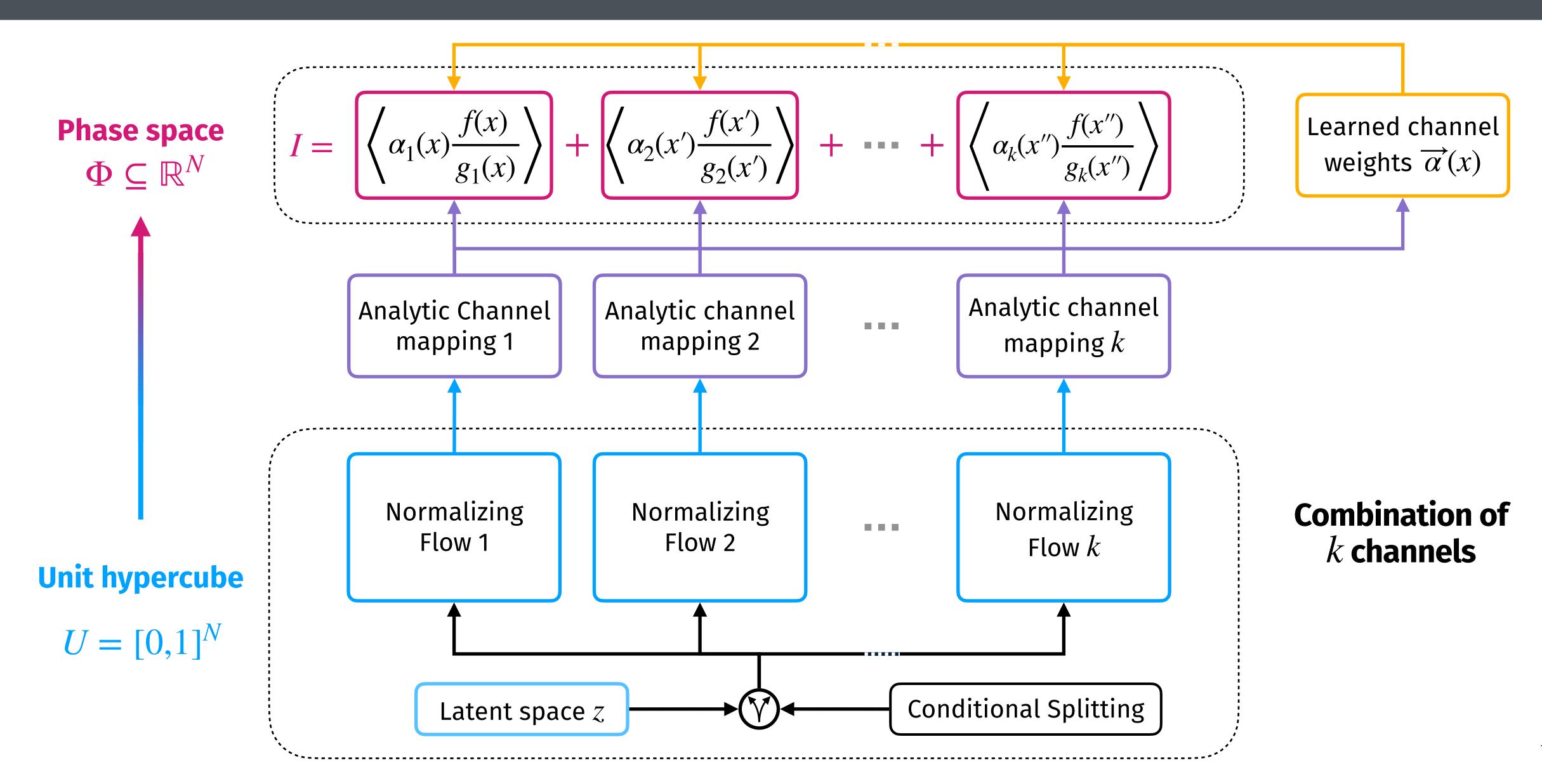
Surrogate integrand

MADNIS: Neural Importance Sampling

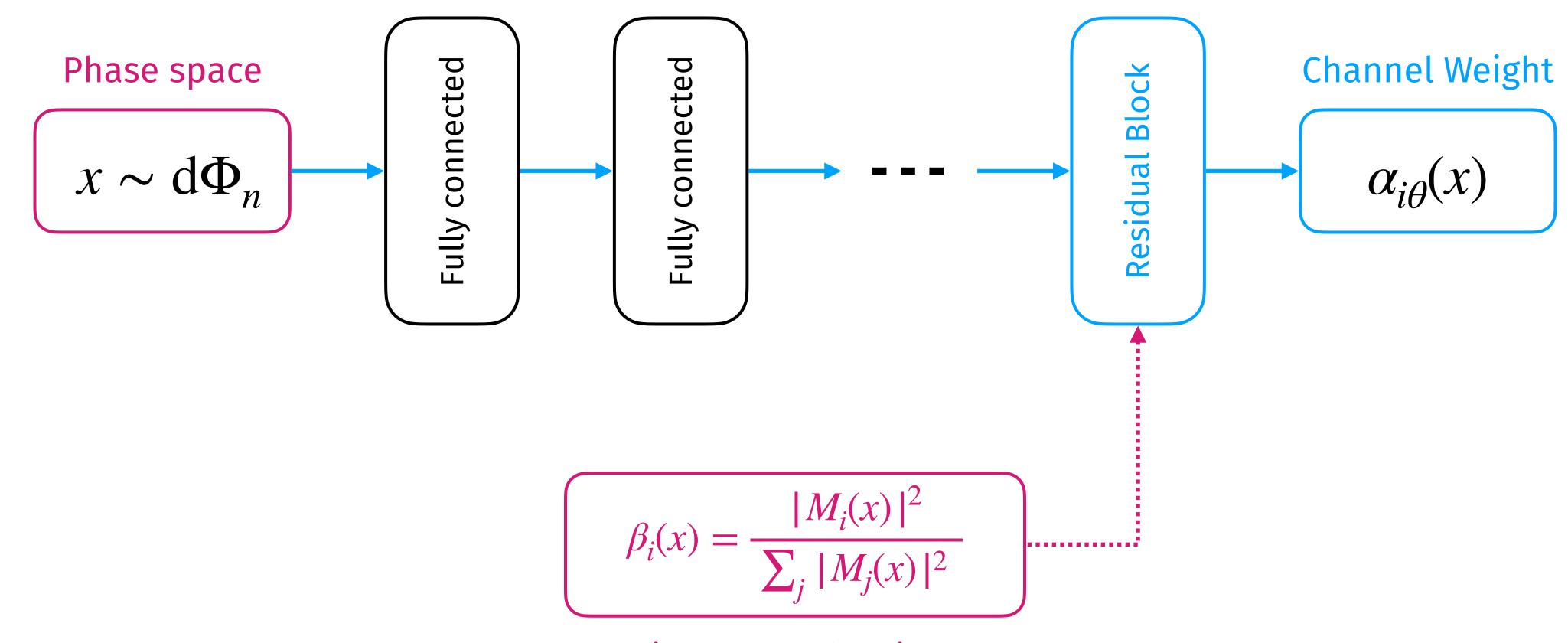


Single channel *i*

MADNIS: Neural Importance Sampling



Neural Channel Weights



Prior Channel Weights

Neural Channel Weights

Residual Block

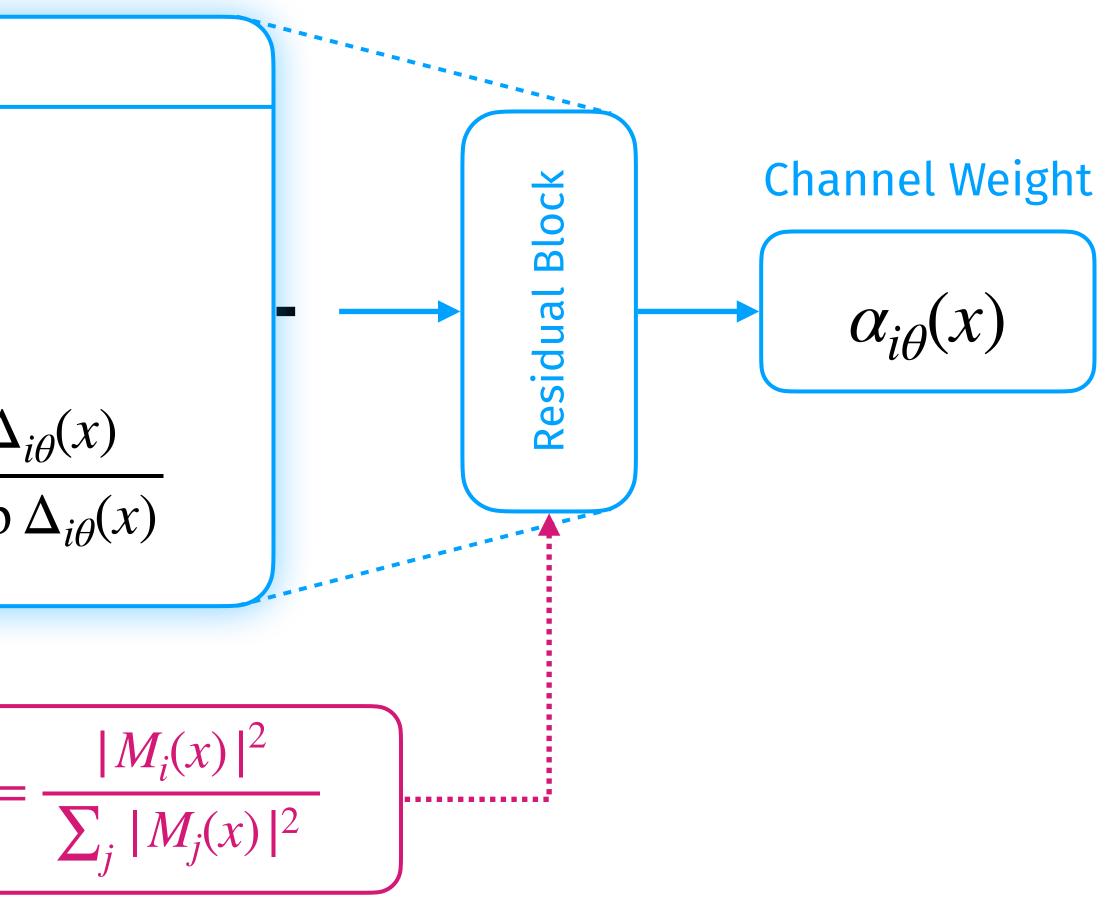
Add prior

$$\alpha_{i\theta} = \beta_i(x) \exp \Delta_{i\theta}(x)$$

Normalization

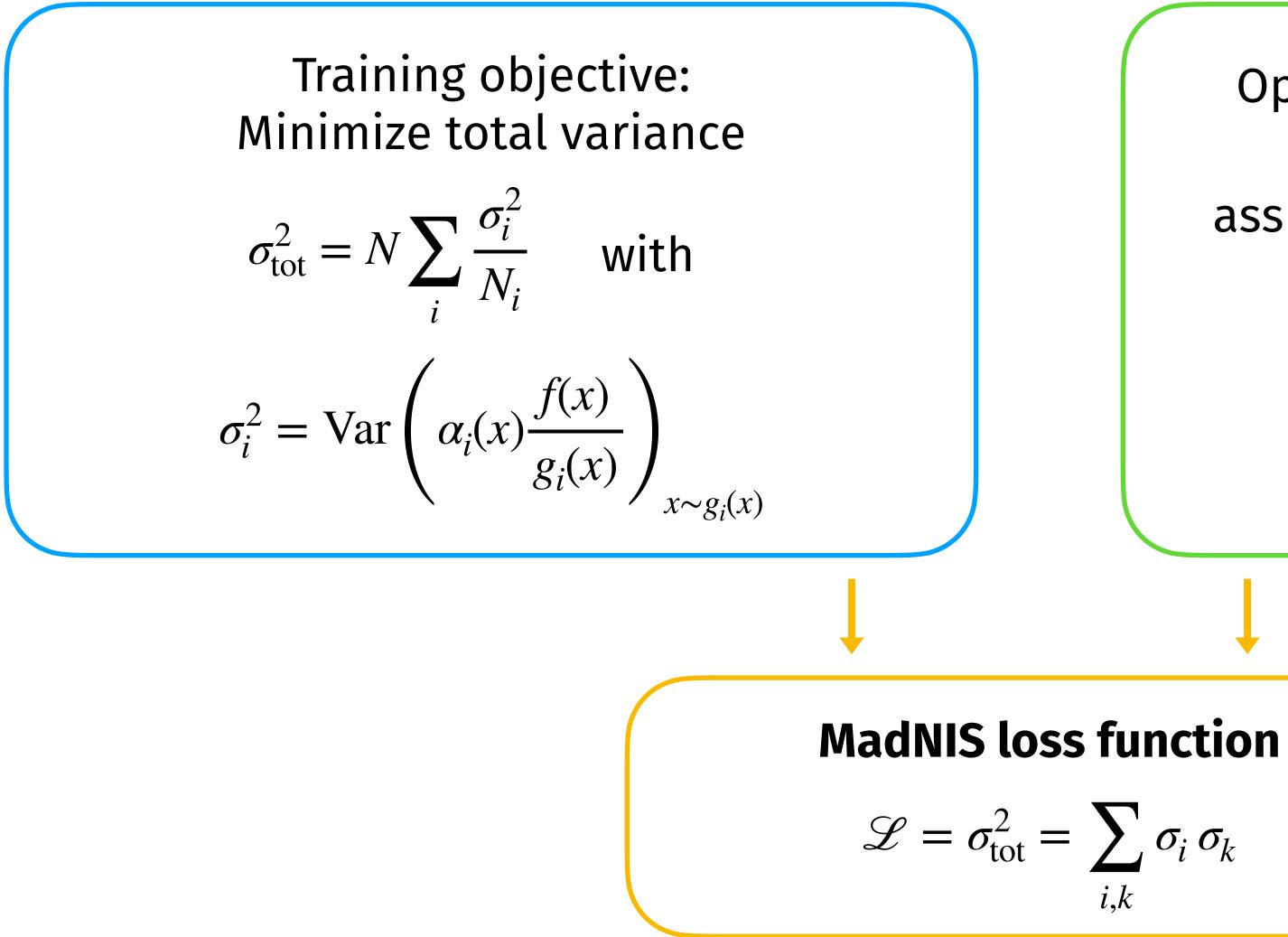
$$\alpha_{i\theta}(x) \to \hat{\alpha}_{i\theta}(x) = \frac{\beta_i(x) \exp \Delta}{\sum_j \beta_j(x) \exp \beta_j(x)}$$

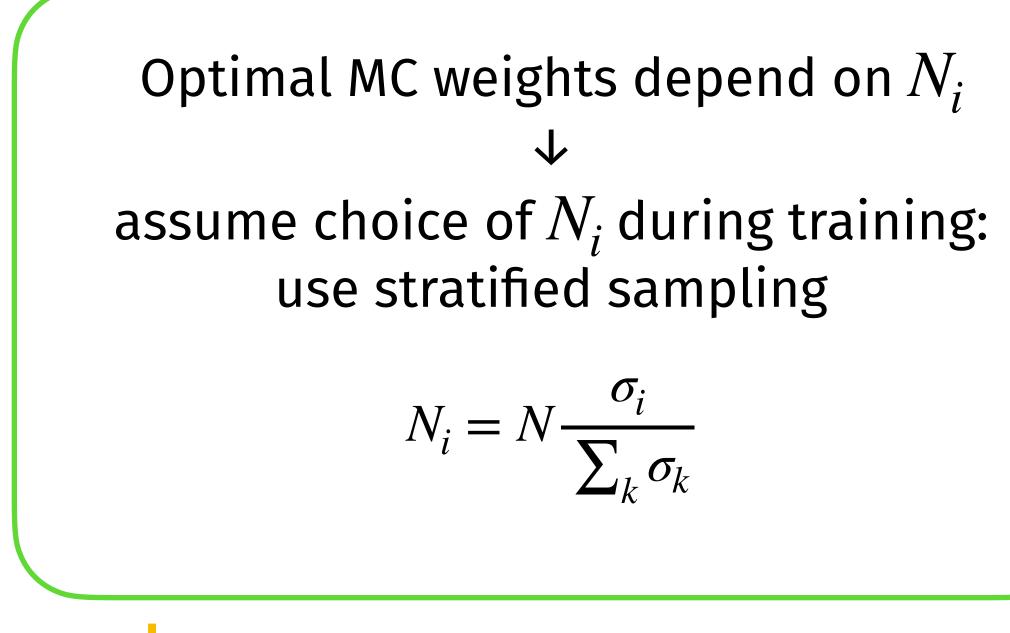
$$\beta_i(x) =$$



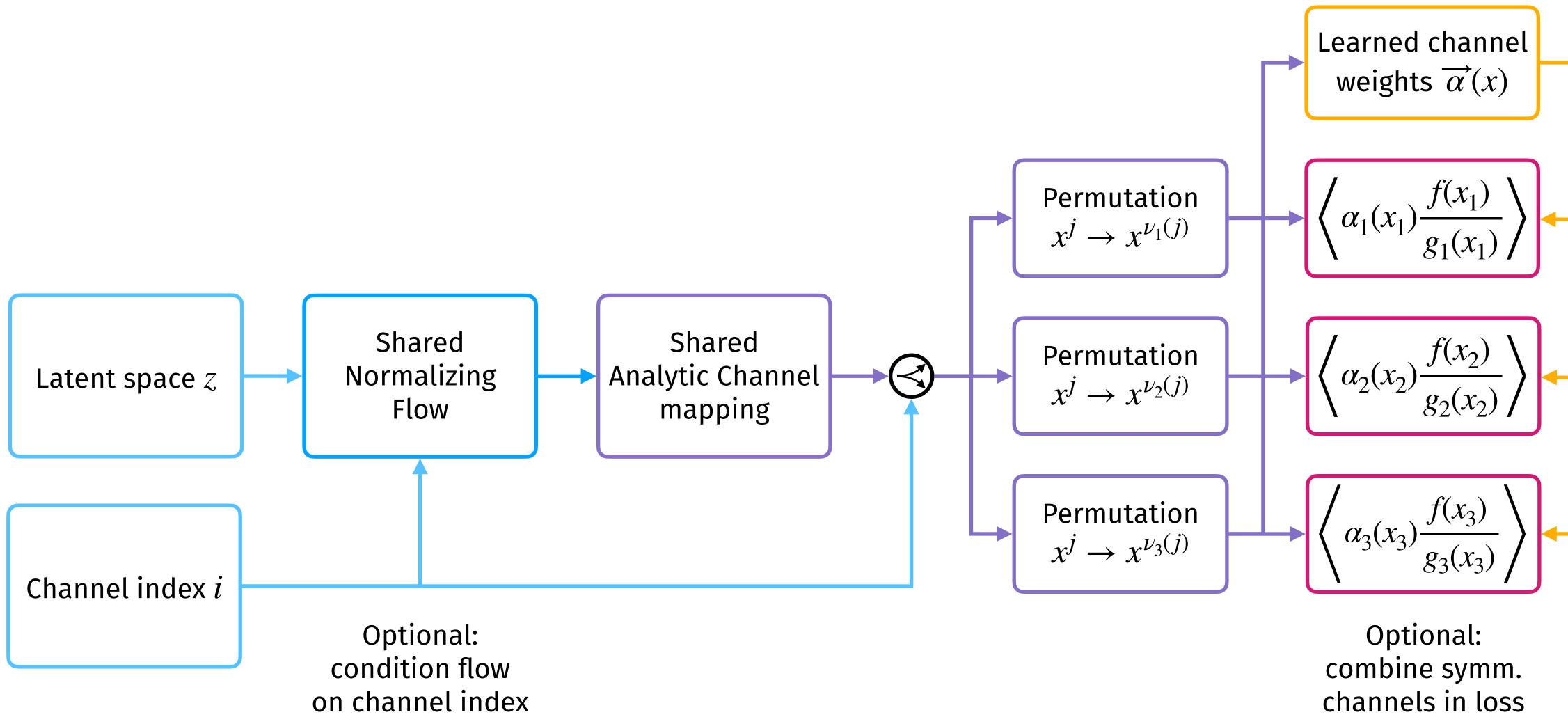
Prior Channel Weights

Loss function





SymFl Multi-Channel



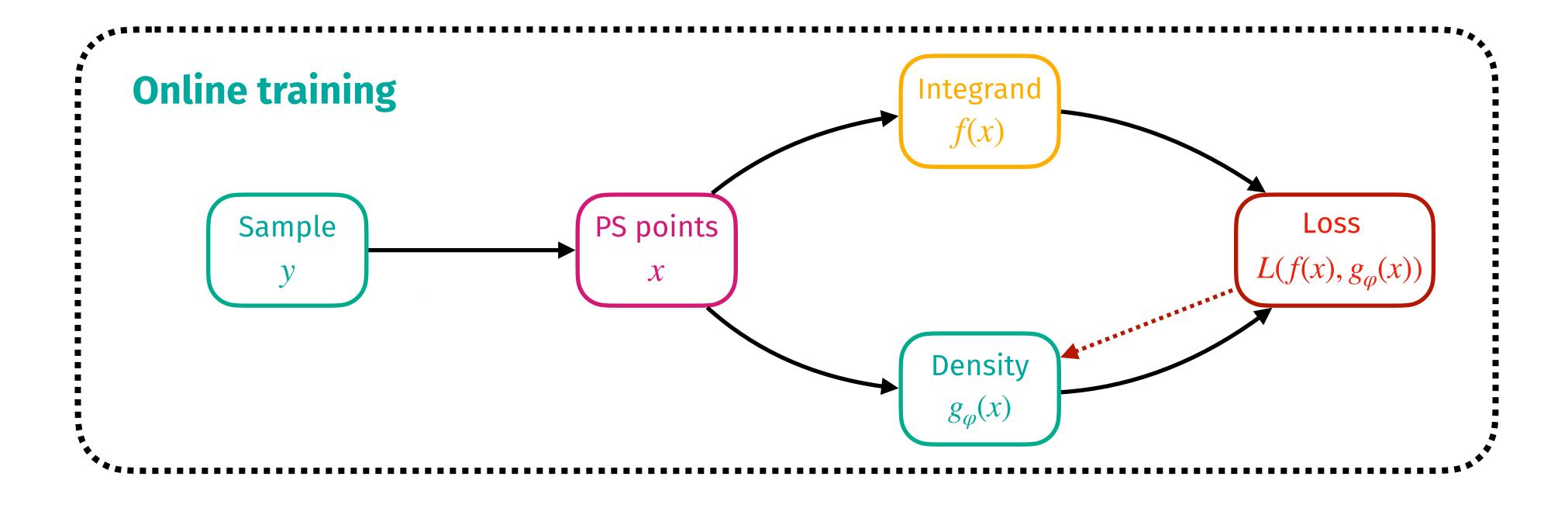
Overview

Improved training

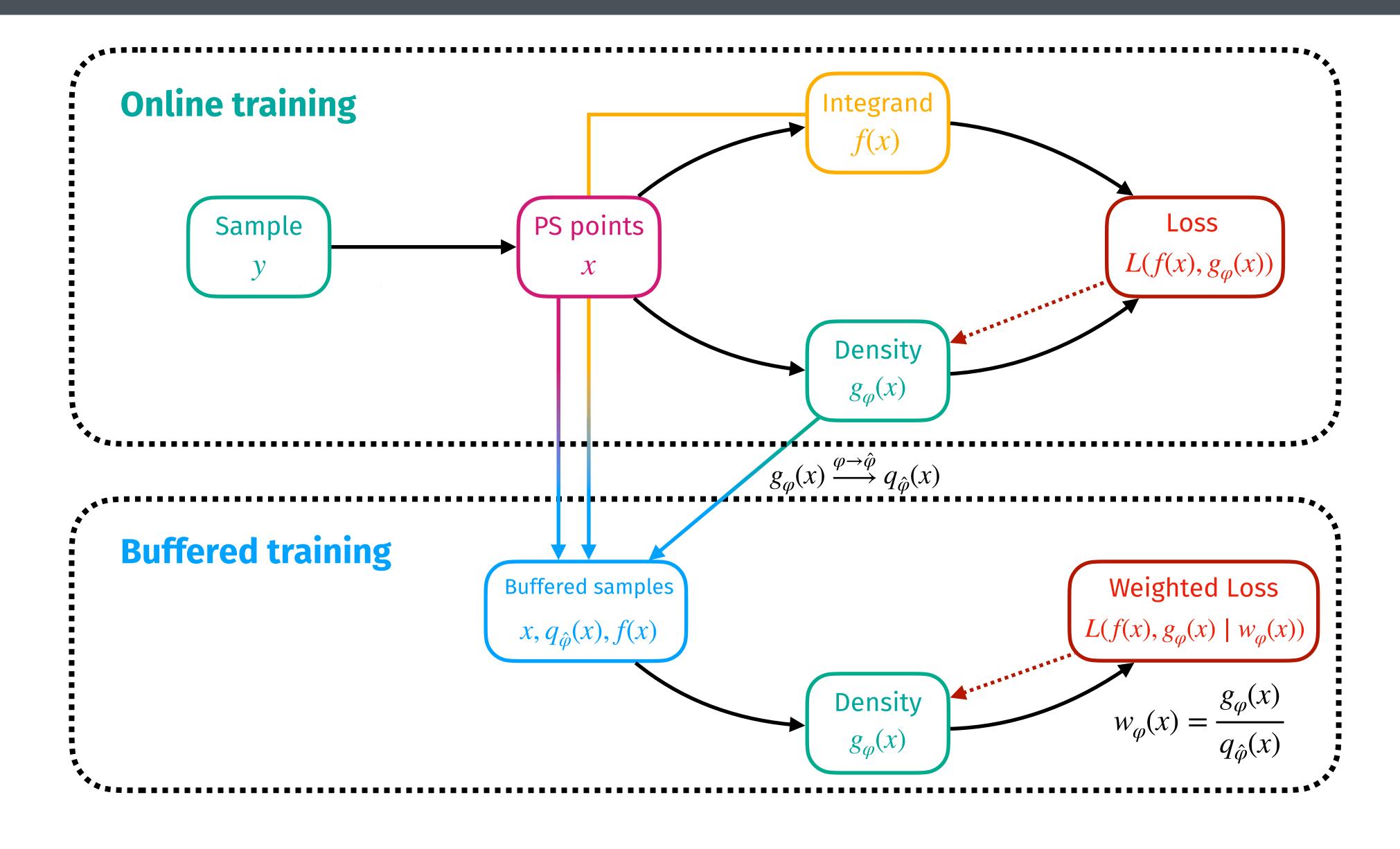
Buffered training

Surrogate integrand

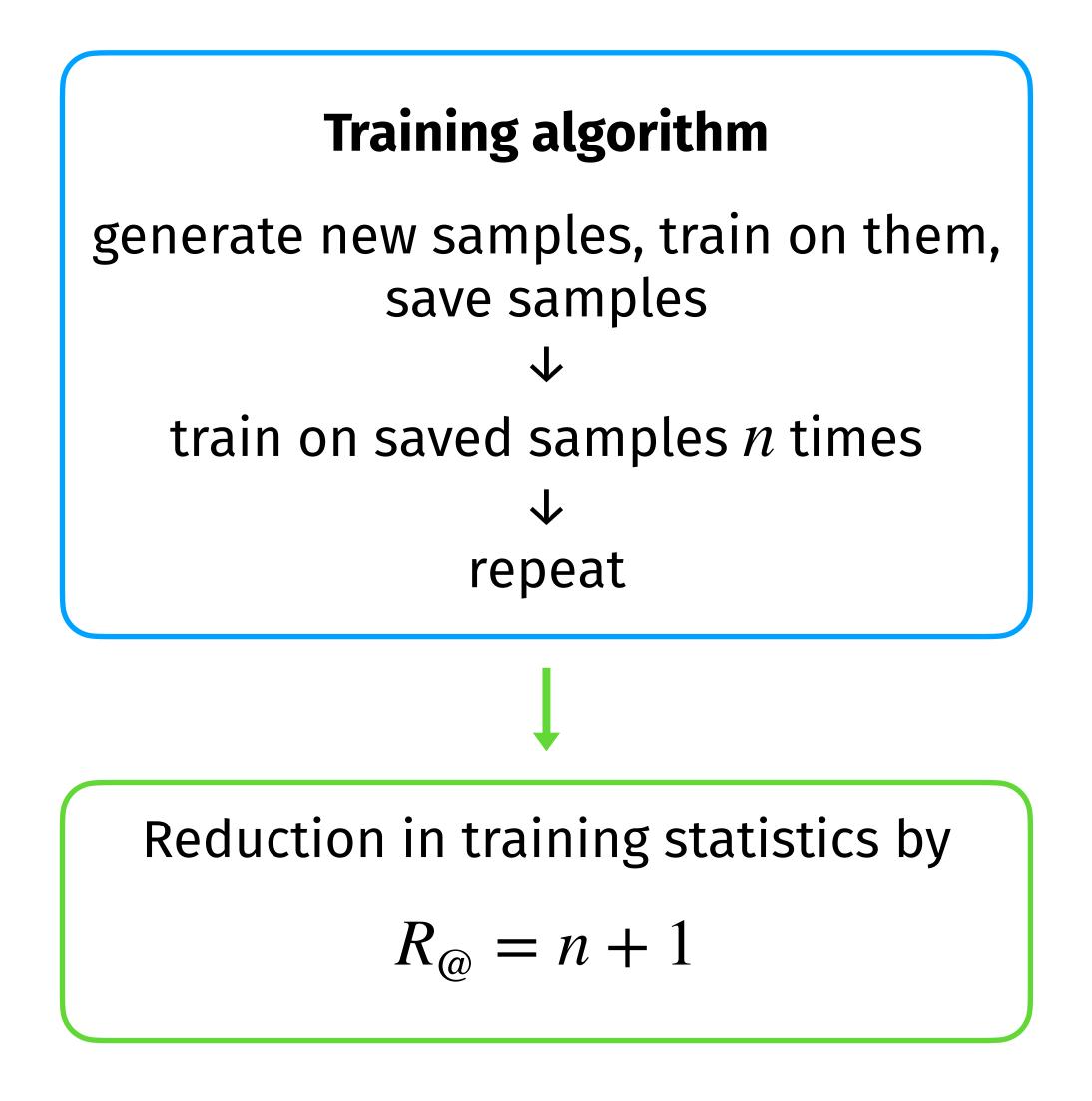
Buffered Training

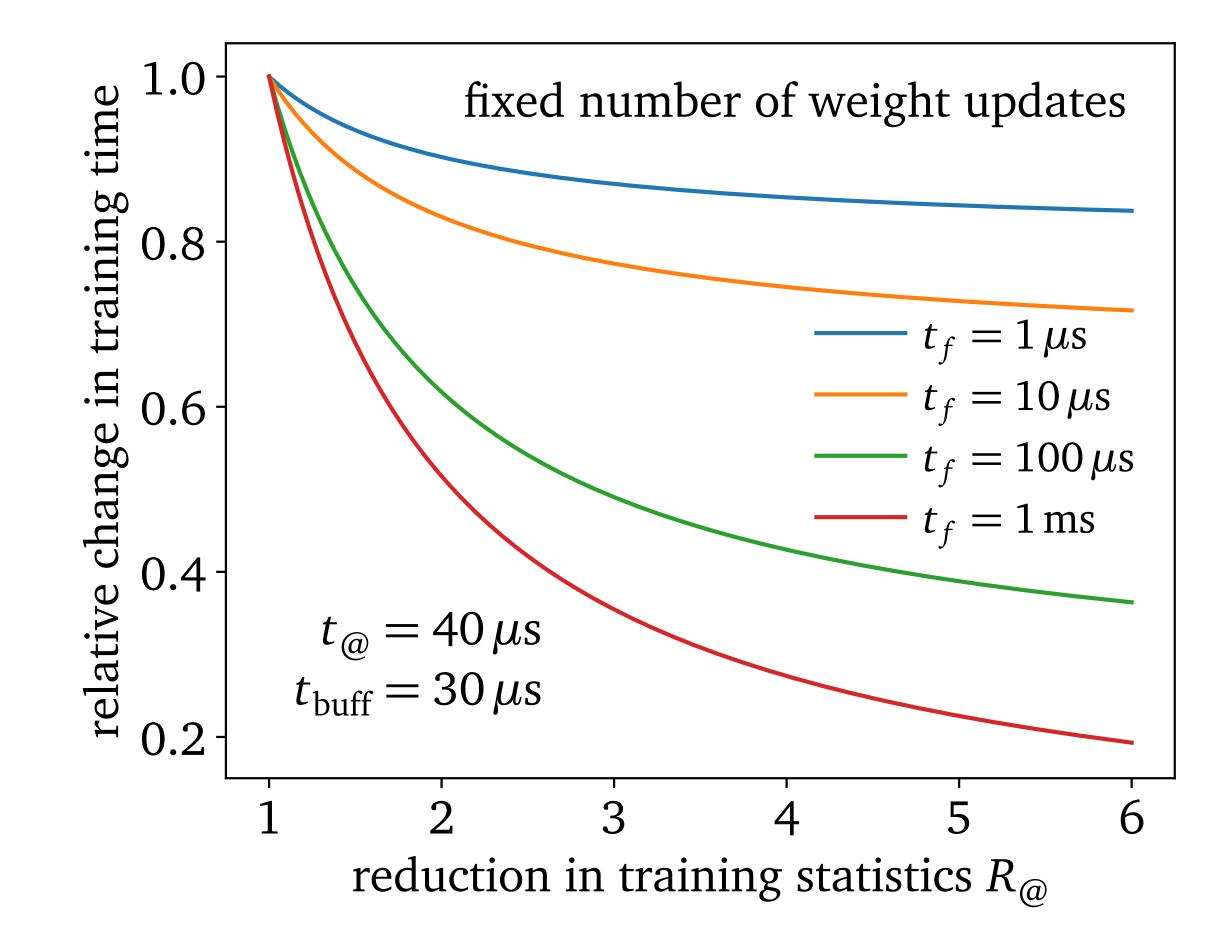


Buffered Training



Buffered Training





Improved training

Overview

Buffered training

Surrogate integrand

VEGAS Initialization

	VEGAS	Flow
Training	Fast	Slow
Correlations	No	Yes
	_	:

Combine advantages:

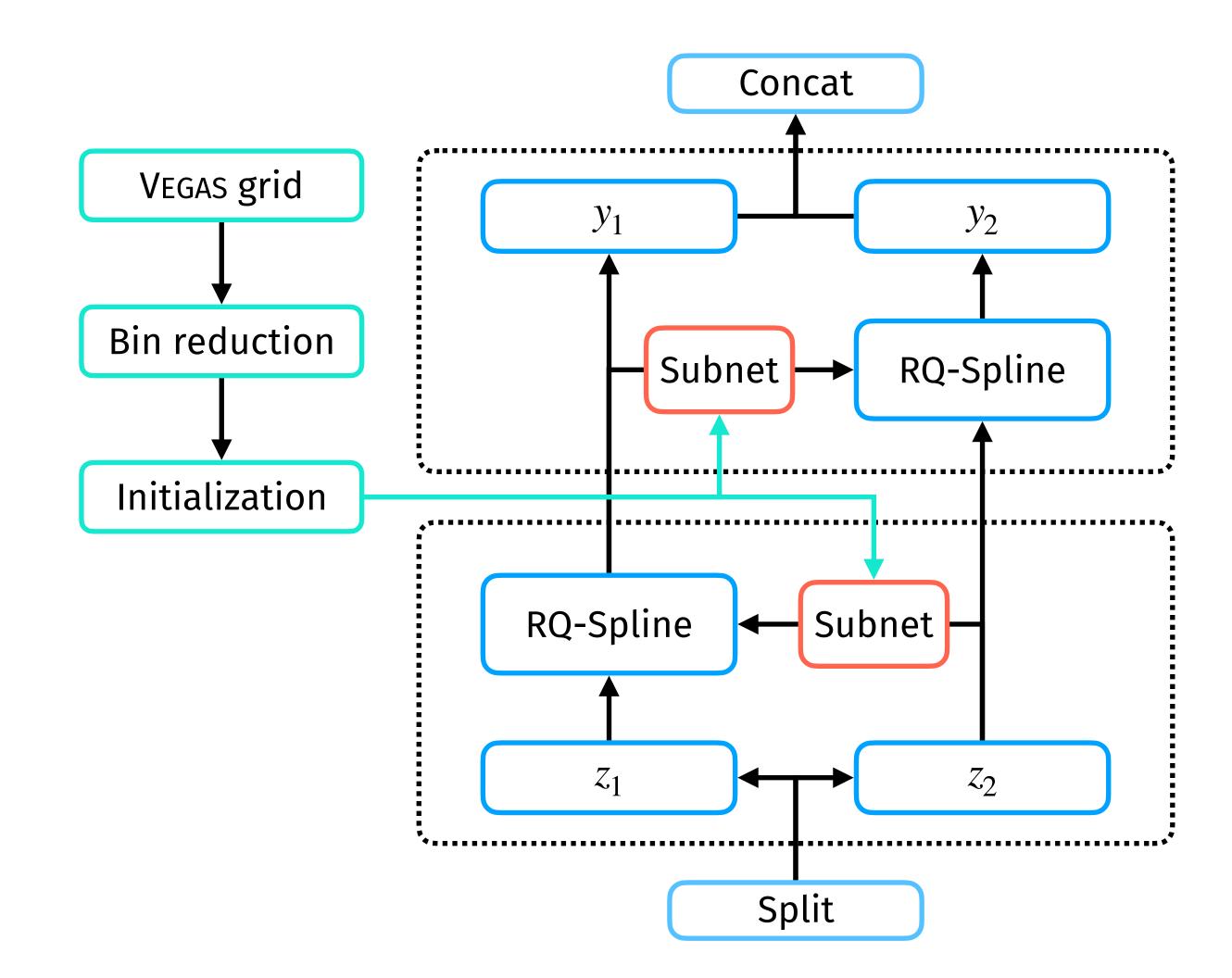
Pre-trained VEGAS grid as starting point for flow training

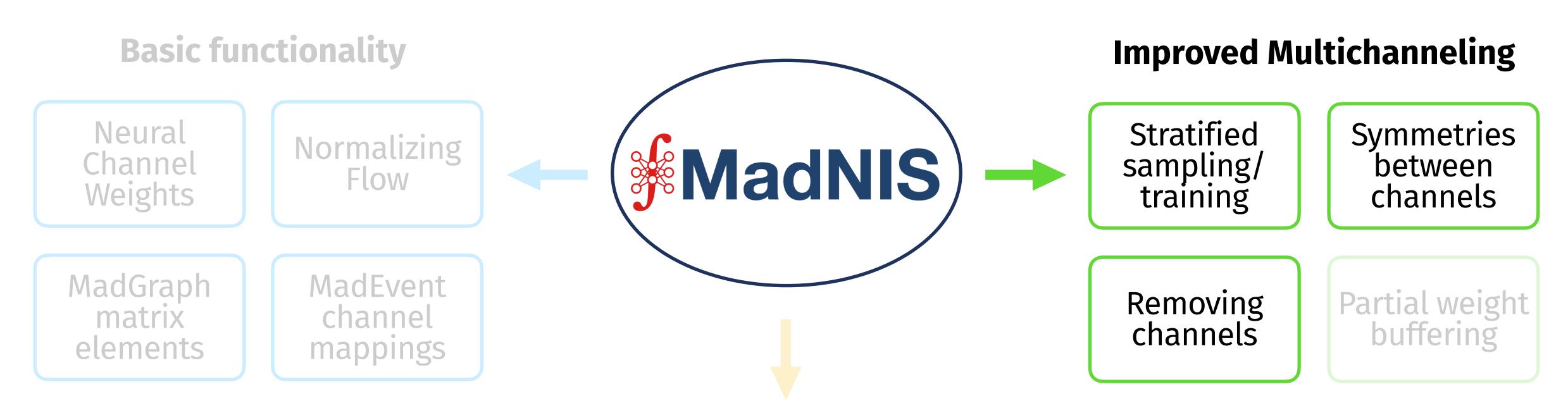
VEGAS Initialization

_		1
Training	Fast	Slow
Correlations	No	Yes

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training





Improved training

Overview

Buffered training

Surrogate integrand

Improved Multichanneling

Use symmetries

Groups of channels only differ by permutations of final state momenta

 $\mathbf{1}$

use **common flows** and combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

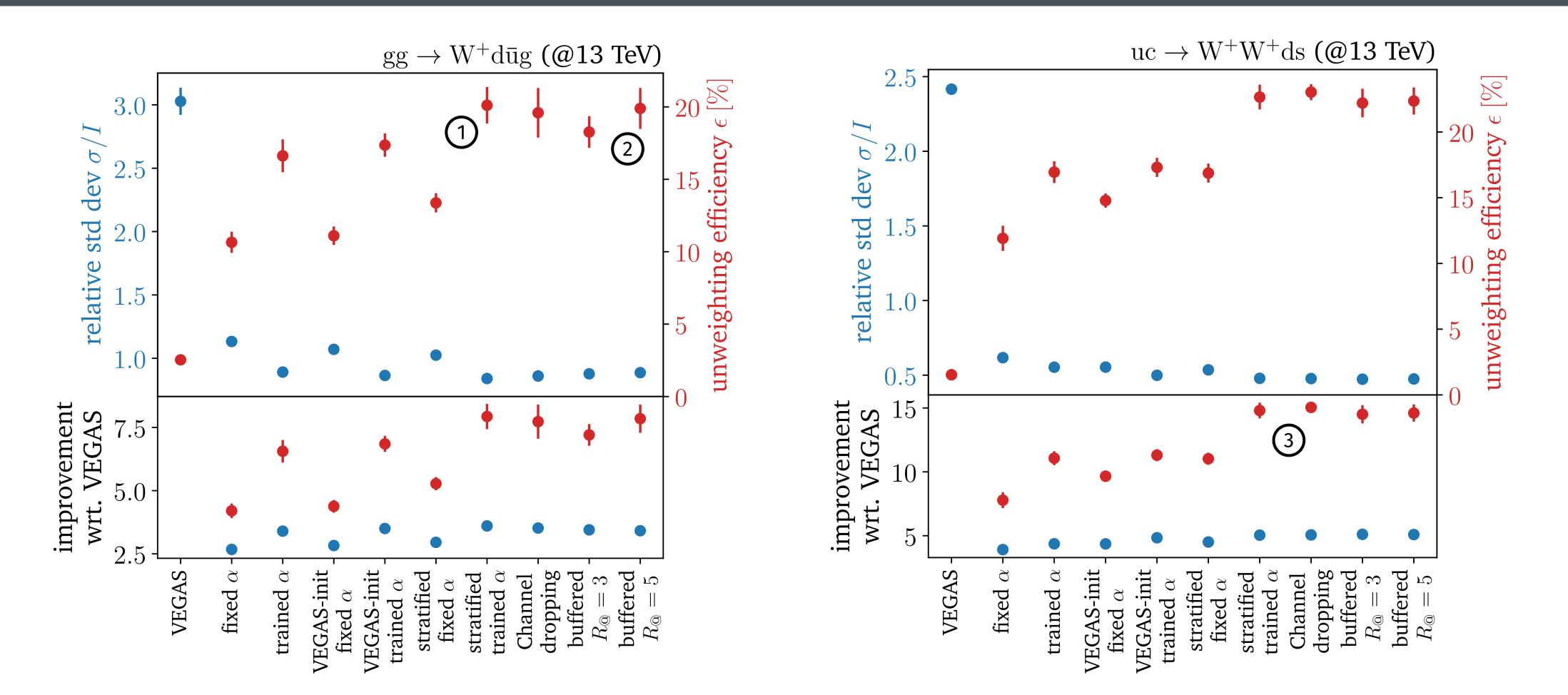
Reduced complexity Improved stability

 \checkmark

Channel dropping

MadNIS often **reduces contribution** of some channels to total integral

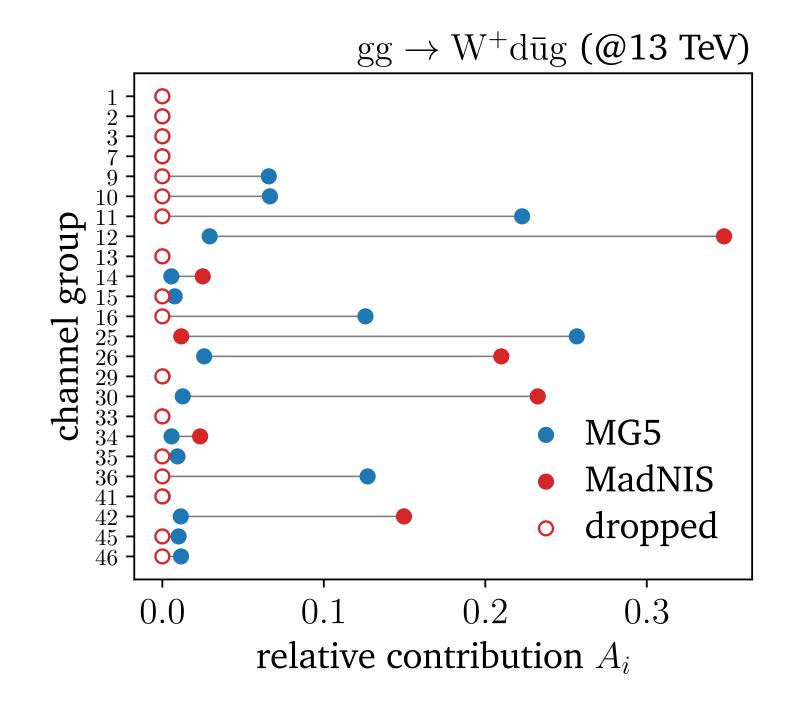
remove insignificant channels from the training completely



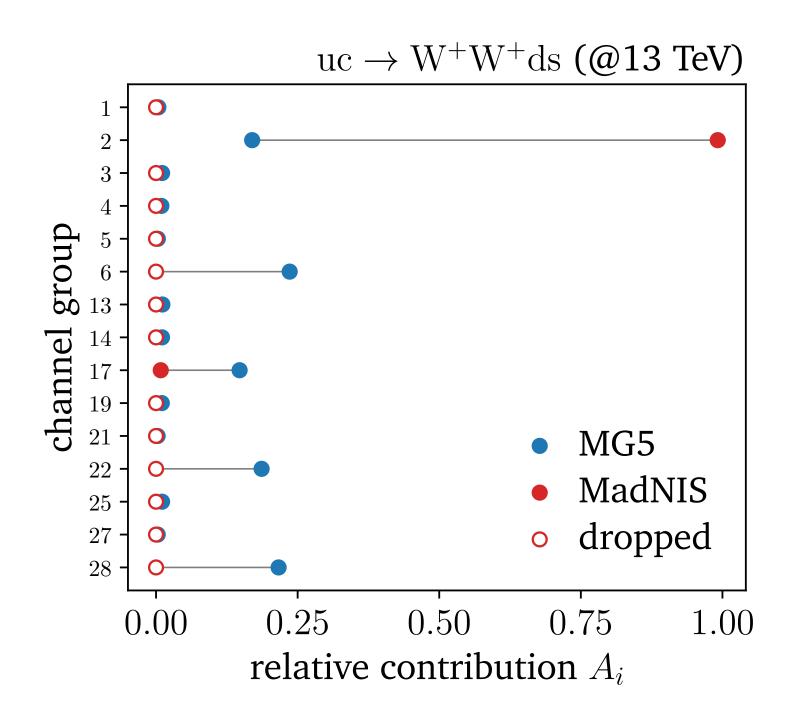
1. Excellent results by combining all improvements! 2. Same performance with buffered training 3. Even larger improvements for process with large interference terms

LHC processes

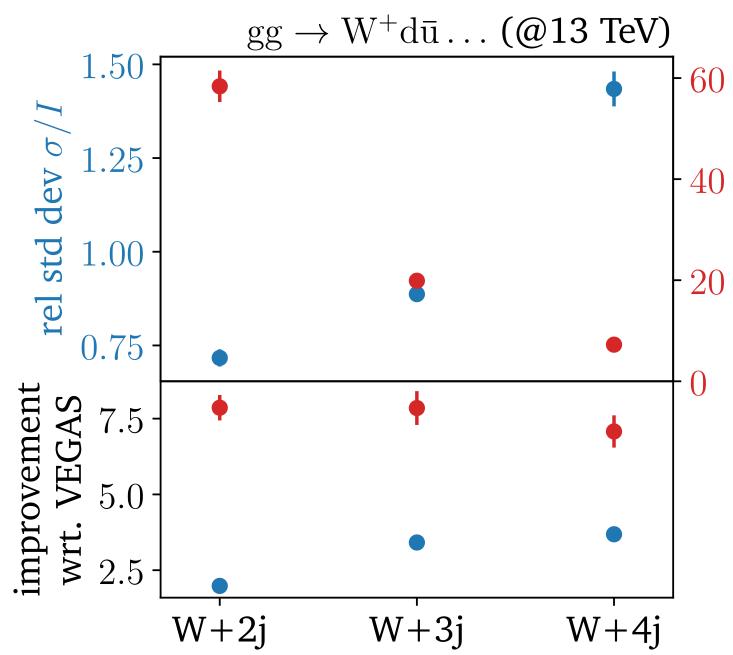
Learned channel weights



MadNIS often sends weight of many channels to 0 \checkmark dropping channels makes training and event generation more stable and efficient

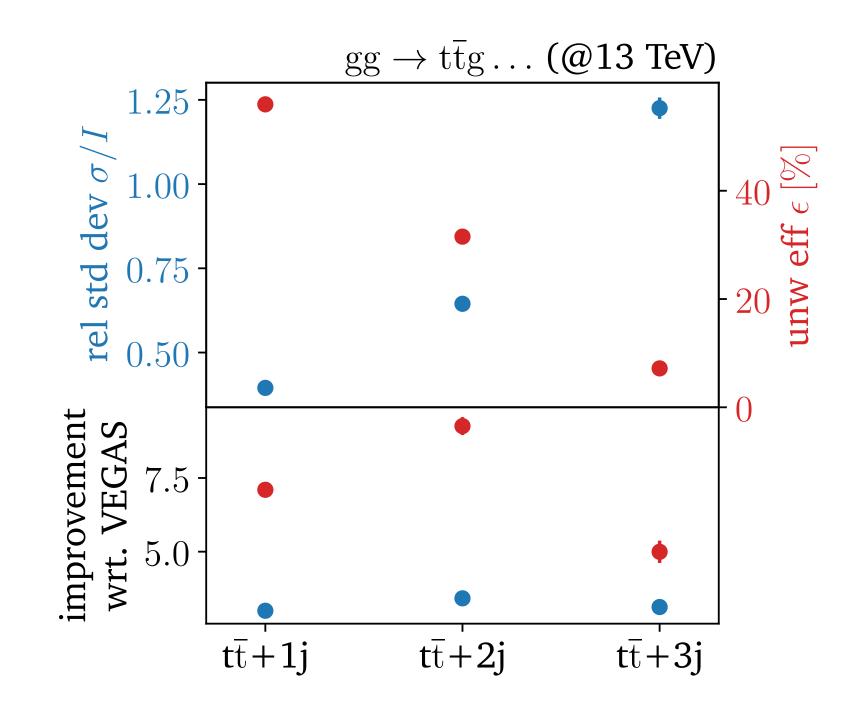


Scaling with multiplicity



 $gg \rightarrow W^+ d\bar{u}gg$ 384 channels, 108 symm. 7x better than VEGAS

> Large improvements compared to VEGAS even for high multiplicities and many channels!



 $gg \rightarrow t\bar{t}ggg$ 945 channels, 119 symm. 5x better than VEGAS

unw eff ϵ [%]

Outlook

The MadNIS Reloaded

Large improvements, even for high multiplicities and complicated processes!

