
Theo Heimel
December 2023

Institut für theoretische Physik
Universität Heidelberg

The MadNIS Reloaded

[2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder

https://arxiv.org/abs/2311.01548

Introduction

2

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

ℒ
Theory Shower EventsHard process Hadronization Detectors

Introduction

2

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Monte Carlo integration
and sampling from

differential cross section

↓

accelerate with
deep generative models

Exact sampling ensured
by known likelihood

↓

better model
=

faster sampling

Differential cross section
known from QFT:

Total cross section:

dσ ∼ pdf(x) ⋅ ∣ℳ(x) ∣2 ⋅ dΦ

σ = ∫Φ
dσ

ℒ
Theory Shower EventsHard process Hadronization Detectors

Monte Carlo Integration
I = ∫ dx f(x)

3

Monte Carlo Integration
I = ∫ dx f(x)

I = ⟨ f(x)⟩x∼p(x)

Flat sampling
inefficient

3

Monte Carlo Integration
I = ∫ dx f(x)

I = ⟨ f(x)⟩x∼p(x) I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Flat sampling
inefficient

Importance sampling
Find mapping close

to integrand

3

Monte Carlo Integration
I = ∫ dx f(x)

I = ⟨ f(x)⟩x∼p(x) I = ⟨ f(x)
g(x) ⟩

x∼g(x)
I = ∑

i ⟨αi(x)
f(x)
gi(x) ⟩

x∼gi(x)

Flat sampling
inefficient

Importance sampling
Find mapping close

to integrand

Multi-channeling
one mapping for

each channel

3

PS Integration in Madgraph

4

dσ =
1

flux
dxa dxb f(xa) f(xb) dΦn ⟨ ∣Mλ,c,…(pa, pb ∣ p1, …, pn) ∣2 ⟩

How can we make event generation faster?
Efficient integration and sampling from differential cross section

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Integrand
MadGraph: dσ/dx

Sum over channels
MadGraph: build channels
from Feynman diagrams

Channel weights
MadGraph:

or
αi ∼ ∣Mi ∣2

αi ∼ ∏ ∣p2
k − m2

k − iMkΓk ∣−2

Channel mappings
MadGraph: use propagators, …

Refine with VEGAS
(factorized, histogram based

importance sampling)

VEGAS algorithm

5

Factorize probability
p(x) = p(x1)⋯p(xn)

Fit bins with equal probability
and varying width

[G. P. Lepage, 1978]

VEGAS algorithm

5

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap

⊖ High-dim and rich peaking functions
→ slow convergence

⊖ Peaks not aligned with grid axes
→ phantom peaks

Fit bins with equal probability
and varying width

[G. P. Lepage, 1978]

MadNIS: Neural Importance Sampling

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channels and mappings

Normalizing Flow to
refine channel mappings

Fully connected network
to refine channel weights

Optimize simultaneously with integral variance as loss function
6

Overview

7

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

Overview

8

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

Normalizing Flows 6Conditional Invertible Neural Networks
• chain of learnable, invertible transformations with tractable Jacobian

[Ardizzone et al., 1907.02392]
• Train network by maximizing log-likelihood for training dataset

logp(zn) = logp(z1) + log det ∂z1(zn; c)
∂zn

p(z1) p(z2|c) p(z3|c) p(z4|c)

Simple latent
distribution
(Gaussian)

Data
distribution

Condition c

f1 f2 f3

training on samples
density estimation

sampling

Chain of invertible, learnable transformations with
exact likelihood from change of variables formula

log p(zn |c) = log p(z1) + log det
∂z1(zn; c)

∂zn

9Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

Neural Importance Sampling

10

Co
up

lin
g

Bl
oc

k

Co
up

lin
g

Bl
oc

k

Co
up

lin
g

Bl
oc

k

Unit hypercube

Phase space

xi ∼ dΦn

Unit hypercube

z ∼ unif

Analytic
Channel

Mappings
xi = hi(yi)

yi ∼ gi(y)

Normalizing Flow

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

Learnable, invertible transformation
with tractable Jacobian:

Rational Quadratic Spline coupling block
[Durkan et al, 1906.04032]

Overview

11

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

MADNIS: Neural Importance Sampling

12Latent space z

Channel i

⟨αi(x)
f(x)
gi(x) ⟩

Analytic Channel
mapping i

 Φ ⊆ ℝN
Phase space Learned channel

weight αi(x)

Normalizing
Flow i

U = [0,1]N

Unit hypercube

Single channel i

MADNIS: Neural Importance Sampling

13

Conditional SplittingLatent space z

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel
mapping 1

Analytic channel
mapping 2

Analytic channel
mapping k

 Φ ⊆ ℝN
Phase space

U = [0,1]N

Unit hypercube

⟨α2(x′)
f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′)
f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

Combination of
 channelsk

Neural Channel Weights

14

Channel WeightPhase space

Fu
lly

 c
on

ne
ct

ed

Fu
lly

 c
on

ne
ct

ed

Re
si

du
al

 B
lo

ck

βi(x) =
∣Mi(x) ∣2

∑j ∣Mj(x) ∣2

Prior Channel Weights

x ∼ dΦn αiθ(x)

Neural Channel Weights

15

Channel WeightPhase space

x ∼ dΦ

Fu
lly

 c
on

ne
ct

ed

Fu
lly

 c
on

ne
ct

ed

Re
si

du
al

 B
lo

ck

Prior Channel Weights

Residual Block

Add prior

Normalization

 αiθ = βi(x) exp Δiθ(x)

αiθ(x) → α̂iθ(x) =
exp Δiθ(x)

∑j exp Δiθ(x)
βi(x)

βj(x)

βi(x) =
∣Mi(x) ∣2

∑j ∣Mj(x) ∣2

αiθ(x)

Loss function

16

σ2
i = Var (αi(x)

f(x)
gi(x))

x∼gi(x)

Ni = N
σi

∑k σk

σ2
tot = N∑

i

σ2
i

Ni

ℒ = σ2
tot = ∑

i,k

σi σk

with

Training objective:
Minimize total variance

Optimal MC weights depend on
↓

assume choice of during training:
use stratified sampling

Ni

Ni

MadNIS loss function

SYMFI Multi-Channel

17

Latent space z
Shared

Normalizing
Flow

Shared
Analytic Channel

mapping

Permutation
xj → xν1(j)

Permutation
xj → xν2(j)

Permutation
xj → xν3(j)

Channel index i

⟨α1(x1)
f(x1)

g1(x1) ⟩

⟨α2(x2)
f(x2)
g2(x2) ⟩

⟨α3(x3)
f(x3)

g3(x3) ⟩

Learned channel
weights ⃗α (x)

Optional:
condition flow

on channel index

Optional:
combine symm.
channels in loss

Overview

18

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

Buffered Training

19

Sample
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

G(x |φ)

gφ(x)

L(f(x), gφ(x))

Online training

Buffered Training

19

Buffered samples

x, qφ̂(x), f(x)
Weighted Loss

L(f(x), gφ(x) ∣ wφ(x))

Density wφ(x) =
gφ(x)
qφ̂(x)

Buffered training

gφ(x)

G(x |φ)

gφ(x) φ→φ̂ qφ̂(x)

Sample
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

G(x |φ)

gφ(x)

L(f(x), gφ(x))

Online training

Buffered Training

20

1 2 3 4 5 6
reduction in training statistics R@

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

ch
an

ge
in

tr
ai

ni
ng

tim
e

t@ = 40µs
tbuff = 30µs

fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm

generate new samples, train on them,
save samples

↓
train on saved samples times

↓
repeat

n

Reduction in training statistics by

R@ = n + 1

Overview

21

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

VEGAS Initialization

22

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training

VEGAS Initialization

22

y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

Initialization

Bin reduction

VEGAS gridVEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training

Overview

23

Neural
Channel
Weights

Buffered
training

Symmetries
between
channels

Removing
channels

VEGAS
initialization

Normalizing
Flow

Stratified
sampling/

training

MadGraph
matrix

elements

MadEvent
channel

mappings
Partial weight

buffering

Basic functionality Improved Multichanneling

Improved training

Surrogate
integrand

Improved Multichanneling

24

Reduced complexity
Improved stability

Use symmetries

Groups of channels only
differ by permutations of

final state momenta
↓

use common flows and
combine in loss function

Stratified training

Channels have different
contributions to the

total variance
↓

more samples for channels
with higher variance

during training

Channel dropping

MadNIS often reduces
contribution of some

channels to total integral
↓

remove insignificant
channels from the

training completely

LHC processes

25

1. Excellent results by combining all improvements!
2. Same performance with buffered training

3. Even larger improvements for process with large interference terms

1.0

1.5

2.0

2.5

3.0

re
la

tiv
e

st
d

de
v

æ
/I

gg ! W+dūg (@13 TeV)

VE
G

A
S

fix
ed

Æ

tr
ai

ne
d

Æ

VE
G

A
S-

in
it

fix
ed

Æ
VE

G
A

S-
in

it
tr

ai
ne

d
Æ

st
ra

tifi
ed

fix
ed

Æ
st

ra
tifi

ed
tr

ai
ne

d
Æ

C
ha

nn
el

dr
op

pi
ng

bu
ff

er
ed

R
@

=
3

bu
ff

er
ed

R
@

=
5

2.5

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

5

10

15

20

un
w

ei
gh

tin
g

ef
fic

ie
nc

y
≤
[%

]

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e

st
d

de
v

æ
/I

uc ! W+W+ds (@13 TeV)

VE
G

A
S

fix
ed

Æ

tr
ai

ne
d

Æ

VE
G

A
S-

in
it

fix
ed

Æ
VE

G
A

S-
in

it
tr

ai
ne

d
Æ

st
ra

tifi
ed

fix
ed

Æ
st

ra
tifi

ed
tr

ai
ne

d
Æ

C
ha

nn
el

dr
op

pi
ng

bu
ff

er
ed

R
@

=
3

bu
ff

er
ed

R
@

=
5

5

10

15

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

5

10

15

20

un
w

ei
gh

tin
g

ef
fic

ie
nc

y
≤
[%

]

1
2

3

Learned channel weights

26

MadNIS often sends weight of many channels to 0
↓

dropping channels makes training and
event generation more stable and efficient

0.0 0.1 0.2 0.3
relative contribution Ai

46
45
42
41
36
35
34
33
30
29
26
25
16
15
14
13
12
11
10
9
7
3
2
1

ch
an

ne
lg

ro
up

gg ! W+dūg (@13 TeV)

MG5
MadNIS
dropped

0.00 0.25 0.50 0.75 1.00
relative contribution Ai

28

27

25

22

21

19

17

14

13

6

5

4

3

2

1

ch
an

ne
lg

ro
up

uc ! W+W+ds (@13 TeV)

MG5
MadNIS
dropped

Scaling with multiplicity

27

Large improvements compared to VEGAS even
for high multiplicities and many channels!

384 channels, 108 symm.

7x better than VEGAS

gg → W+dūgg
945 channels, 119 symm.

5x better than VEGAS

gg → tt̄ggg

0.75

1.00

1.25

1.50

re
ls

td
de

v
æ
/I

gg ! W+dū . . . (@13 TeV)

W+2j W+3j W+4j
2.5

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S 0

20

40

60

un
w

ef
f≤

[%
]

0.50

0.75

1.00

1.25

re
ls

td
de

v
æ
/I

gg ! tt̄g . . . (@13 TeV)

t̄t+1j t̄t+2j t̄t+3j

5.0

7.5

im
pr

ov
em

en
t

w
rt

.V
EG

A
S 0

20

40

un
w

ef
f≤

[%
]

Outlook

28

The MadNIS Reloaded

Large improvements,
even for high multiplicities
and complicated processes!

Future plans

Make MadNIS part of next
MadGraph version

6@
[2311.01548]

https://arxiv.org/abs/2311.01548
https://arxiv.org/abs/2311.01548

