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Areas of Interest – Me

▶ kinematic reconstruction / unfolding
▶ generation
▶ foundation models



Anomaly Detection – CURTAINs

▶ Want to estimate background in
signal region

▶ Train two flows to transform
𝑝(𝑥|𝑚input) to𝑝(𝑥|𝑚target)
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Anomaly Detection – Drapes

▶ Conditional density estimation using Diffusion
▶ Analogous to CATHODE



Anomaly Detection – Drapes



Kinematic Reconstruction – nu2-flows

▶ Use cINN unfolding setup for
neutrino reconstruction

▶ preprocess reco-level information
with transformer-based vision setup

▶ Permutation invariant
▶ Allows for variable number of jets
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Particle Cloud Generation – PC-Droid

▶ Jet constituent generation
▶ Use diffusion with transformer based score function
▶ Generation time: two orders faster than PC-JeDi, three orders faster than Delphes
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Returning CP-Observables to The Frames They Belong
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Summary

▶ idea: apply ML unfolding to
CP-violation detection in𝑝𝑝 → ℎ𝑡 ̄𝑡

▶ allow for reconstruction of
CP-sensitive observables

▶ improve sensitivity
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arXiv:2308.00027v1

https://arxiv.org/abs/2308.00027v1


CP-violation

▶ promising target for BSM physics
▶ potential CP-violation source:

Higgs-top Yukawa coupling

ℒ ⊃ −
𝑚𝑡

𝑣
𝜅𝑡 ̄𝑡(cos(𝛼)+𝑖𝛾5 sin(𝛼))𝑡ℎ

▶ most direct probe: 𝑡 ̄𝑡ℎ production
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CP-sensitive Observables

▶ Look at four CP-sensitive
observables

▶ Identified as most sensitive by
Barman et al (arXiv:2110.07635v2)
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Classical Reconstruction
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ML Unfolding



Unfolding Method

▶ train normalizing flow on simulated
data

▶ normalize parton distribution

𝑥 = (𝑝ℎ, 𝑝𝑏, 𝑝ℓ,… ) ∼ 𝑝part(𝑥)

conditioned on reco-level
distribution

𝑦 = (𝑝𝛾1
, 𝑝𝛾2

, 𝑝𝑏1
,… ) ∼ 𝑝det(𝑦)
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Unfolding Method

▶ Main idea of generative models

𝑧 ∼ 𝑞(𝑧) → 𝑥part ∼ 𝑝(𝑥part)

▶ Naive KL-loss is not tractable in general

KL(𝑝(𝑥part) ‖ 𝑝𝜙(𝑥part)) = −𝐸𝑥part∼𝑝(𝑥part)
[log(𝑝𝜙(𝑥part))] +…

▶ Invertible NN allows for change of variable formula

𝑝𝜙(𝑥part) = 𝑞(𝑓𝜙(𝑥part)) |det(𝐷 𝑓𝜙(𝑥part))|
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Unfolding Method

▶ Use feature transformation that is
invertible and flexible

▶ Predict parameters of
transformation with NN
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Observable Reconstruction
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Sensitivity
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Problem 1: Intermediate Masses

▶ many massive intermediate
particles

𝑚𝑡,𝑚 ̄𝑡,𝑚𝑊+ ,𝑚𝑊− ,𝑚𝐻

▶ narrow mass distributions are hard
to reconstruct

→ use phase space parameterization
that includes intermediate masses
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▶ Use (𝑚𝑊, �⃗�𝑊, 𝜙𝑊
𝑙 , 𝜃𝑊

𝑙 )
▶ From on-shell conditions

𝐸𝑊
ℓ = |�⃗�𝑊

ℓ | = 𝑚𝑊

Example
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