Introduction
Overall mission: enhance the theoretical tools for the simulation of collider events for the next generation of colliders, HL-LHC and beyond

Goals and Challenges:
Goals and Challenges:

• **speed-up the event generation:**
 • exploit the most advanced HPC hardware platforms
 • exploit the most advanced computing techniques and resources, to cover numerical and symbolic operations, sourcing from expertise as diverse as advanced mathematics and machine learning
 • review underlying TH framework to maximize benefit of the above

Overall mission: **enhance the theoretical tools for the simulation of collider events for the next generation of colliders, HL-LHC and beyond**
Overall mission: enhance the theoretical tools for the simulation of collider events for the next generation of colliders, HL-LHC and beyond

Goals and Challenges:

• **speed-up the event generation:**
 • exploit the most advanced HPC hardware platforms
 • exploit the most advanced computing techniques and resources, to cover numerical and symbolic operations, sourcing from expertise as diverse as advanced mathematics and machine learning
 • review underlying TH framework to maximize benefit of the above
• **maximize precision and control of systematics**, incorporating in event generators the state-of-the-art knowledge of each individual component of event generation: PDFs, matrix elements at large perturbative order, higher-order resummations, beyond-leading-log parton shower evolution, non-perturbative phase and underlying event, …
Overall mission: enhance the theoretical tools for the simulation of collider events for the next generation of colliders, HL-LHC and beyond

Goals and Challenges:

• **speed-up the event generation:**
 • exploit the most advanced HPC hardware platforms
 • exploit the most advanced computing techniques and resources, to cover numerical and symbolic operations, sourcing from expertise as diverse as advanced mathematics and machine learning
 • review underlying TH framework to maximize benefit of the above
• **maximize precision and control of systematics,** incorporating in event generators the state-of-the-art knowledge of each individual component of event generation: PDFs, matrix elements at large perturbative order, higher-order resummations, beyond-leading-log parton shower evolution, non-perturbative phase and underlying event, …
• **maximize event-generation efficiency:** improved unweighting, pre-filtering w.r.t. analysis selection criteria, reduced negative-weight contributions, streamlined evaluation of systematics, …
Key goals of the workshop:

- assess the state of the art and inform the interested community
- harmonize the global ongoing efforts and promote their visibility
- define the priorities, the resources needed, and discuss the way forward
Key goals of the workshop:

• assess the state of the art and inform the interested community
• harmonize the global ongoing efforts and promote their visibility
• define the priorities, the resources needed, and discuss the way forward

Aspects to be raised for the discussion:

• Complementarity and synergies among the different areas of development (eg ML vs GPUs vs novel algo’s vs …)
Key goals of the workshop:

- assess the state of the art and inform the interested community
- harmonize the global ongoing efforts and promote their visibility
- define the priorities, the resources needed, and discuss the way forward

Aspects to be raised for the discussion:

- Complementarity and synergies among the different areas of development (eg ML vs GPUs vs novel algo’s vs …)
- What’s missing? Unexplored opportunities?
Key goals of the workshop:

- assess the state of the art and inform the interested community
- harmonize the global ongoing efforts and promote their visibility
- define the priorities, the resources needed, and discuss the way forward

Aspects to be raised for the discussion:

- Complementarity and synergies among the different areas of development (eg ML vs GPUs vs novel algo’s vs …)
- What’s missing? Unexplored opportunities?
- Sharing of knowledge and experience, documentation
 - Publications (in areas sitting at the cross-border of TH and computing), profile recognition, …
Key goals of the workshop:

- assess the state of the art and inform the interested community
- harmonize the global ongoing efforts and promote their visibility
- define the priorities, the resources needed, and discuss the way forward

Aspects to be raised for the discussion:

- Complementarity and synergies among the different areas of development (eg ML vs GPUs vs novel algo’s vs …)
- What’s missing? Unexplored opportunities?
- Sharing of knowledge and experience, documentation
 - Publications (in areas sitting at the cross-border of TH and computing), profile recognition, …
- Resource needs:
 - students, postdocs?
 - computer scientists’ support, participation, contributions?
 - dedicated access to hardware?
 - dedicated computing training/tutorials, …, for MC/NnLO developers?
Key goals of the workshop:

- assess the state of the art and inform the interested community
- harmonize the global ongoing efforts and promote their visibility
- define the priorities, the resources needed, and discuss the way forward

Aspects to be raised for the discussion:

- Complementarity and synergies among the different areas of development (eg ML vs GPUs vs novel algo’s vs …)
- What’s missing? Unexplored opportunities?
- Sharing of knowledge and experience, documentation
 - Publications (in areas sitting at the cross-border of TH and computing), profile recognition, …
- Resource needs:
 - students, postdocs?
 - computer scientists’ support, participation, contributions?
 - dedicated access to hardware?
 - dedicated computing training/tutorials, …, for MC/NnLO developers?
 ➡ the role of CERN TH, EP, IT in providing support?
Agenda

MONDAY:
1. The perspective of the experiments (ATLAS, CMS)
2. The experience of the MC developers (Pythia, Herwig, Sherpa, Madgraph)
3. The HPC landscape and the coding challenges/opportunities provided by new hardware
4. The MG5 -> GPU project experience

6:30pm Welcome drink (Salle des Pas Perdus)

TUESDAY
1. Phase space sampling and more
2. Matrix element calculations, LO & NLO, acceleration techniques, GPU porting, negative weight reduction
3. PDFs and hadronization
4. NNLO and beyond
5. Discussion, the next steps forward