
A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 1/38

Accelerating Madgraph5_aMC@NLO
via data parallelism (CPU vectorization and GPUs):

status and lessons learnt

Andrea Valassi (CERN)
on behalf of the MG5AMC CUDACPP development team

Event Generators Acceleration Workshop – CERN, 13th November 2023

https://indico.cern.ch/event/1312061

https://indico.cern.ch/event/1312061

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 2/38

Outline

• Motivation and overview

• Some results and future challenges for MG5AMC

– Performance: throughout speedups on CPU SIMD and on GPUs for LO processes

– Functionality: development status, usability for the experiments

– Future prospects: NLO and beyond; collaborations with other MC teams

• Some lessons learnt for other MC generators

– Applicability to other (existing and future) Monte Carlo generators

– Do’s and dont’s

• Conclusions

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 3/38

Motivation and overview

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 4/38

Event generators (1): why accelerate them?

CERN-LHCC-2022-005

https://cds.cern.ch/record/2802918

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 5/38

Sequential processing vs. Data-parallel processing

Ars Technica (March 2000)

Sequential processing

Single Instruction Single Data:

1 input and 1 output per cycle

for a given instruction

Data-parallel processing

(lockstep processing)

Single Instruction Multiple Data:

N inputs and N outputs per cycle

for the same instruction

Two hardware implementations

of essentially the same concept:

Vector CPUs – SIMD

More difficult to code

SOAs strictly needed

Need strict 100% lockstep

GPUs – “SIMT”

~Easier to code

SOAs not strictly needed

Tolerate lockstep <100%

Note: task parallelism (multi-threading, multi-processing)

differs from data parallelism: it exploits a different dimension

of hardware parallelism (many CPU cores, many nodes...)

In our work on MG5AMC “CUDACPP” we have targeted

data parallelism on both vector CPUs and GPUs

from the very beginning!

https://arstechnica.com/features/2000/03/simd/

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 6/38

Event generators (2): why CPU vectorization and GPUs?

• Vector CPUs and GPUs are widely available to HEP now for LHC processing (and later for FCC!?)

– Most of the CPUs in our computing Grid have at least AVX2 SIMD

– GPUs are becoming more and more available to us especially at HPC centers

• ... but they are generally very difficult to exploit in HEP software

– Example: Monte Carlo detector simulation has a lot of stochastic branching (makes lockstep processing difficult)

• Matrix element event generators, conversely, are ideal software workflows for SIMD and GPUs!

– Monte Carlo sampling of many data points → Data parallelism with near-perfect lockstep processing!

SAME CALCULATION ON DIFFERENT DATA!

(No if-then-else blocks, i.e. no branching)

INPUT

OUTPUT

Lockstep processing

Good for GPUs (SIMT)

and vector CPUs (SIMD)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 7/38

MG5AMC on GPUs and vector CPUs

(the “CUDACPP” plugin)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 8/38

C++ vectorization and CUDA in MG5AMC: the CUDACPP project

• MG5AMC CUDACPP development team
(* Filip and Joergen left after the summer)

• A collaboration* of theoretical physicists, experimental physicists and software engineers

– The project started in Q1 2020 (OM, SR, AV) in the context of the HSF event generator WG

• Effort invested at that time in Louvain and in CERN IT’s Understanding Performance team (thanks Markus Schulz!)

– *See Danilo’s slides for more comments on why this is necessary but also challenging

Stephan Hageboeck

Filip Optolowicz*

Stefan Roiser

Joergen Teig*

Andrea Valassi

Zenny Wettersten

Olivier Mattelaer

https://doi.org/10.1007/s41781-021-00055-1

https://doi.org/10.1007/s41781-021-00055-1

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 9/38

For more details...

• Our work on MG5AMC CUDACPP is described in the vCHEP2021, ICHEP2022 and ACAT2022 proceedings
– And in the upcoming CHEP2023 proceedings (Stephan’s talk1, Zenny’s talk2)

– See also the Computing Accelerator Forum (Feb 2023) talk for much more extensive details

• These also describe the work of our US and CERN collaborators on SYCL, Kokkos and Alpaka abstraction layers
– Largely based on the developments and progress in the CUDACPP project, which will be the focus of this talk

https://doi.org/10.1051/epjconf/202125103045 https://doi.org/10.22323/1.414.0212

PoS(ICHEP2022)212

https://arxiv.org/abs/2303.18244

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244
https://indico.jlab.org/event/459/contributions/11829/
https://indico.jlab.org/event/459/contributions/11850/
https://indico.cern.ch/event/1207838
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 10/38

Madgraph5_aMC@NLO (MG5aMC)

• One of the workhorses for event generation in ATLAS and CMS!

• MG5aMC production version is in Fortran

– Software outer shell: Madevent (random sampling, integration and event generation + I/O, multi-jet merging...)

– Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process

• Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. gg→t ҧtggg)

• And ME calculations are precisely one component that can be “easily” accelerated on GPUs and vector CPUs...

https://doi.org/10.1007/JHEP07(2014)079

https://doi.org/10.1007/JHEP07(2014)079

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 11/38

MG5AMC before acceleration (Fortran madevent + Fortran ME)

• In the current production

MG5AMC in Fortran, the

matrix element calculation

is the bottleneck

– Feynman diagrams

– Color sum (color matrix)

• We are lucky!

– The fraction of time in the

ME calculation increases

with process complexity!

– The MS calculation is the

easiest to parallelize!

Matrix

Elements:

85%

S. Hageboeck, CHEP2023

https://indico.jlab.org/event/459/contributions/11829/

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 12/38

MG5AMC after acceleration (Fortran madevent + CUDA ME)

• On GPUs we speed up the ME

so much that previously

unimportant components

become the bottleneck!

– sampling (random numbers to

momenta), unweighting, pdf’s...

– we are also working on

speeding these up now!

• As predicted by Amdahl’s law

Matrix

Elements:

1.2%

Matrix

Elements:

85%

S. Hageboeck, CHEP2023

https://indico.jlab.org/event/459/contributions/11829/

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 13/38

Amdahl’s law

• The matrix element calculation is now the bottleneck (e.g. >95% for gg→t ҧtgg) in Fortran Madgraph

– But the remaining <5% may fast become the bottleneck if you accelerate the matrix element by many factors!

• Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)

– If the MadEvent overhead takes 5%, the maximum speedup is only 20 even if your GPU speedup s is 1000!

https://en.wikipedia.org/wiki/Amdahl%27s_law

https://en.wikipedia.org/wiki/Amdahl%27s_law

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 14/38

MG5aMC: old and new architecture designs

1. STANDALONE

(TOY APPLICATIONS)

MULTI-EVENT API

2. NEW MADEVENT

(GOAL: LHC PROD)

MULTI-EVENT API

OLD MADEVENT

(NOW: LHC PROD)

SINGLE-EVENT API

First we developed

the new ME engines

in standalone applications

(Amdahl...)

SCALAR:

NEW

BOTTLENECK?

PARALLEL:

MUCH FASTER!

MATRIX ELEMENT:

CPU BOTTLENECK

IN OLD MADEVENT

MATRIX ELEMENTS

CUDA/C++ or PFs:

cuRAND

CUDA/C++ or PFs:

RAMBO

CUDA/C++ or PFs:

MEKERNELS

MOMENTA

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

CUDA/C++ or PFs:

MEKERNELS

MOMENTA

MATRIX ELEMENTS

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

FORTRAN:

MATRIX1

MOMENTA

MATRIX ELEMENTS

Then we modified the existing

all-Fortran MadEvent

into a multi-event framework

and we injected the new MEs into it

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838

https://indico.cern.ch/event/1207838

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 15/38

MG5AMC+cudacpp: CUDA/C++, Fortran, bash, python...

1. STANDALONE

TOY APPLICATION

OK! (2020-2021)

2. MADEVENT

(ONE APPLICATION)

OK! (2022)

3. MADEVENT

(N x APPLICATIONS)

./bin/generate_events

BEING TESTED (since Jun 2023)

MG5AMCNLO GITHUB

+ MADGRAPH4GPU GITHUB
MG5AMCNLO GITHUB

+ CUDACPP GITHUB (PLUGIN)

4. COMPLETE USER WORKFLOW

(CODEGEN + N x APPLICATIONS)

generate.. output.. launch

BEING DEVELOPED/TESTED (since Aug 2023)

PYTHON
BASH

PYTHON
BASH

We are now somewhere in between 3 and 4

(and this is what CMS is testing)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 16/38

Test driven development

• I personally think that writing tests is as important as (more important than?) writing implementation code!

• At each stage of development we have been adding new tests – and we still run them (manually and/or in the CI)

– Standalone applications: use hardcoded random seeds, compare momenta and MEs to reference files (googletest)

– One madevent application: use the same random seeds, compare cross sections and LHE files for Fortran/C++/CUDA MEs

• Require ~bit-by-bit equal results (within numerical precision), this is much more than statistical comparisons!

– Full workflow with many madevent applications (under development): compare overall cross sections and LHE files as above

– Full workflow including code generation: similar tests as above, regenerating physics process from the cudacpp plugin

Test a large phase space of development environments!

- Different physics processes

- Different vectorization scenarios

- Different floating point precisions

- Different compilers and O/S

- ...

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 17/38

ACAT2022

MadEvent with vectorized C++ for gg→t ҧtgg (on a single CPU core)

ME speedup ~ x8 (double) and x16 (float) over scalar Fortran

Our ME engine reaches the maximum theoretical SIMD speedup!

Overall speedup so far~ x6 (double) and x10 (float) over scalar Fortran

(Amdahl’s law)

512y = AVX512, ymm registers

512z = AVX512, zmm registers

The latter is only better on

nodes with 2 FMA units

(here an Intel Gold 6148)

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838

https://indico.cern.ch/event/1207838

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 18/38

gg→𝒕 ҧ𝒕gg

(float)

gg→𝒕 ҧ𝒕gg

(float)

ME throughput in C++ for gg→t ҧtgg (on all the cores of a CPU)

• Previous tables for SIMD speedups on C++ were for a single CPU core

• Large SIMD speedups are also confirmed when all CPU cores are used
– AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)

– Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)

– Aggregate MEs throughput from many identical processes using the standalone application
• (HEP-workload Docker container from the HEPIX Benchmarking WG)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 19/38

Floating point precision

• Previous slides: our vectorized C++ on CPUs is 2x faster in single-precision than in double-precision

– In a 512-bit register you fit 16 (4-byte) floats but only 8 (8-byte) doubles

• Next slide: our CUDA implementation on V100 GPUs is also 2x faster for floats than for doubles

– On data-center NVidia GPUs (e.g. V100 or A100), you have twice as many FLOPs in float as in double

– Note that lower-end GPUs (e.g. T4) have very limited double-precision FLOPs...

• But single-point precision is not enough for physics: numerical instabilities (e.g. in Feynman diagrams)

– It would be useful to study if these instabilities can be worked around – anyone interested? ☺

• We had a closer look at the source of these instabilities with the CADNA tool (see later)

– Alternative: we prototyped a “mixed-precision” calculation (double for Feynman, float for color matrix)

• Color sum is the largest CPU time consumer for complex processes, but can be done with floats!

O. Mattelaer,

this workshop

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 20/38

MadEvent/CUDA for gg→t ҧtggg

ACAT2022

We are lucky! The more complex the physics process, the lower the relative overhead from the scalar Fortran MadEvent - here only 0.5%

Amdahl’s law limits the overall speedup to x200 (parallelizable p=0.5%), and we achieve x60 (double) or x100 (float) in the overall speedup!

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838

One technicality about mixed precision (to answer Peter’s question this afternoon):

mixing double and float vectors implies some transition moments

where you merge two 4-double vectors into one 8-float vector, and/or viceversa

https://indico.cern.ch/event/1207838

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 21/38

Numerical precision: CADNA
(can we use floats instead of doubles?)

• Application to MG5AMC CUDACPP:

– assess precision of the ME calculation (when using

floats: down to 3 significant digits in gg to ttggg)

– understand where in the code the precision is lost

(typically, cancellations subtracting large terms, one

example being heavily suppressed helicities)

S. Hageboeck, Gargnano meeting 18 Sep 2023

F. Optolowicz, CERN EP-SFT meeting 21 Aug 2023

https://indico.cern.ch/event/1264290/

https://indico.cern.ch/event/1240244/contributions/5474419/
https://indico.cern.ch/event/1309774/
https://indico.cern.ch/event/1264290/

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 22/38

Preliminary results for the full workflow (June 2023)

• On the most complex gg to ttggg

• CPP with “512y” SIMD

– around x 3.4 faster than FORTRAN

• CUDA (V100 GPU vs 4-core CPU)

– around x 21 faster than FORTRAN

– (was ~ x 60 over a single CPU core)

~ Same physics results in

FORTRAN, CUDA, CPP

from the same random number

(some final tests underway...)

Note: Fortran here is NOT what

the LHC experiments are using

- It has a multi-event API

- It has -O3 –ffast-math

For more recent and

more realistic results,

see the CMS talk!

(thanks Sapta, Jin, Robert

for your collaboration!)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 23/38

S. Roiser, Gargnano meeting 18 Sep 2023

The code has many additional fixes since then,

many of which already picked by CMS.

A “proper” release will come eventually!

https://indico.cern.ch/event/1240244/contributions/5474419/

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 24/38

Beyond NVidia GPUs

• The CUDACPP plugin uses a single source-code approach for

CPUs (C++) and NVidia GPUs (CUDA), based on #ifdef’s
– The few CUDA calls are encapsulated by design in GPU classes

– We do not use any vendor-specific features (e.g. Streams) yet

• We recently added support for AMD GPUs (HIP), using the

same #ifdef approach (status: pull request merge is pending)
– NVidia and AMD GPUs represent almost all of HPC top500 GPUs

– It might be possible to extend this further to Intel GPUs

• Another implementation using SYCL (for CPUs and NVidia,

AMD, Intel GPUs) was developed by our Argonne colleagues
– Detailed performance comparisons are planned

Joergen Teig

S. Roiser,

Gargnano meeting 18 Sep 2023

https://indico.cern.ch/event/1240244/contributions/5474419/
https://indico.cern.ch/event/1240244/contributions/5474419/

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 25/38

Status: recent progress and LO prospects

• An as-is but usable version of the code has been provided to and tested by CMS

– Including recent bug fixes for specific physics processes (Drell-Yan plus jets) or computing environments (HPCs)

• There are pending bugs, affecting some processes relevant to the experiments

– Example: floating point exceptions in pp to ttW (suggested by ATLAS) and other processes

– Example: code generation and/or builds fail for EFT and SUSY processes, mainly related to the scaling of alphas

• A few additional technical issues to iron out before a proper LO release

– Proper choice of user configuration via the runcard (floating point precision, SIMD vectorization level etc)

– Possibly: integration of AMD support, cleanup of Makefiles

• Longer-term improvements and performance optimizations will still be needed for LO after the release

– Integration of helicity recycling (see Olivier’s talk): combine the speedups of both SIMD and helicity recycling on CPU

– Smaller GPU kernels (leading to shorter builds for 2→6 and allowing even more gluons in the final state?)

– Combine event-level and helicity-level parallelism (reduce the minimum number of events needed on the GPU – see later)

– Multi-GPU support, tuning and optimization of heterogeneous environments (with the HEPIX benchmarking WG)

– Further extend infrastructure for matrix element reweighting

– Port to GPU/SIMD more than just the MEs (e.g. PDF’s, momenta computation from random numbers in sampling step...)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 26/38

More work since June (next slide)

Profiled the impact of loops

Discussed with Stefano Frixione

(thanks!) about branching and

lockstep processing for NLO

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 27/38

CPU time profiles for NLO: a first look

Borns, Reals, Counterterms, and ~half of

virtual Loops contributions involve LO matrix

elements that we already ported to GPUs!

Only ~half of Loops need a GPU port

(here: ninja) or would remain on the CPU

(less than 10% overall in this example)Z. Wettersten

Marco Zaro – https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015

B, V, R: matrix elements

MC: counterterms (B, PS)

S and H events: two separate sets of events (different matrix elements)

Integral = S+H is positive – but individual events can have negative weights

MC@NLO: https://doi.org/10.1088/1126-6708/2002/06/029

Matching NLO QCD and parton showers (avoid double counting)

• Our first priority for NLO: move the NLO madevent framework from a single-event to a multi-event API

– And replace the Fortran ME calculations (in Born, Reals, CTs and part of Loops) using the CUDACPP ME bridge

– Technicality: keep strict lockstep processing in cleanly separate FKS sectors [thanks to Stefano Frixione for a useful chat!]

• Porting loop packages like ninja to NLO will become important (Amdahl’s law...) but is not the first priority

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
https://doi.org/10.1088/1126-6708/2002/06/029

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 28/38

Wishes for the future – interaction with other generator teams

• Some discussions with other generator teams have already started – non-exhaustive list of examples below

• POWHEG (E. Re, S. Alioli, C. Oleari)

– Integrate MG5AMC GPU/SIMD MEs into POWHEG (status: interest confirmed – technically feasible, need time/effort)

• SHERPA (S. Hoeche, M. Knobbe, E. Bothmann) + ATLAS (J. McFayden)

– Detailed comparison of MG5AMC and SHERPA (status: interest ~confirmed? – need time/effort)

• Compare generation speeds (with and without GPU/SIMD) for a few benchmark processes relevant to ATLAS and CMS

• Understand the impact on speed and precision of technical choices (Berends-Giele recursion relations, helicity sampling/summing...)

• PYTHIA (P. Ilten)

– Porting of parton showers and/or minimum bias to GPU/SIMD? (status: wish – interesting technical challenge, branching)

• HERWIG (S. Platzer)

– Integration of MG5AMC GPU/SIMD [complex] amplitudes, rather than [real] MEs (status: wish – heavier technical work)

My personal thanks to the organizers of Les Houches 2023 for a memorable experience! ☺

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 29/38

Lessons learnt for other MC generators?

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 30/38

What is a MC ME generator? A simplified computational anatomy

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MONTE CARLO
INTEGRATION

MONTE CARLO
UNWEIGHTING

UNWEIGHTED EVENTS
{EVT_i , W_i=1}

WEIGHTED EVENTS
{EVT_i , W_i}

CROSS-SECTIONS etc...
(AVG W_i, MAX W_i)

PHASE SPACE
SAMPLING

OPTIMISATION

MC MATRIX
ELEMENT

GENERATOR
(e.g. MG5aMC)

+ optional event cuts

HADRONISATION
AND DECAY

PARTON
SHOWERS

PARTICLE
FILTERING

DETECTOR
SIMULATION

SHOWERING AND
HADRONIZATION

GENERATORS
(e.g. PYTHIA)

(GEANT4)

For each event:

1.

Output: random numbers

2.

Input: random numbers

Output: particle 4-momenta

3.

Input: particle 4-momenta

Output: Matrix Element (ME)

CPU BOTTLENECK

(NB: for non-physicists in the

room, the “Matrix Element” is an

element of the scattering matrix...

not a linear algebra calculationt!)

Monte Carlo sampling: randomly generate and process

MANY different events (“phase space points”)

This can be parallelized (SIMT/SIMD and multithreading)

Physics output: cross-section and LHE event file

(at least at LO!)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 31/38

MG5aMC data parallelism: design for lockstep processing!

• In MC ME generators, the same function is used to compute the Matrix Element for many different events

– ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)

– Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads)

Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data)

Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU

SIMT
CPU

SIMD

S
e
e
 t
h
e
 N

V
id

ia
 V

o
lt
a
 w

h
it
e
p
a
p
e

r

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 32/38

ANY ME event generator is a great fit for GPUs and vector CPUs!

• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

• From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

ME event generators*

(before ME calculation):

- MC integration

(cross sections)

- MC generation

(event samples)

*NB: the CPU-intensive ME calculation comes

before PS, fragmentation, detector simulation

SAME CALCULATION

ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing

Good for SIMT/SIMD

MC DECISIONS

Detector simulation (Geant4)

- Particle/matter interaction

(when? how?)

- Particle decays (when?)

Event generators*

(after ME calculation):

- MC unweighting (keep/reject)

Parton showers (PS)

- Fragmentation and decays

DIFFERENT CALCULATIONS

ON DIFFERENT DATA!

DECISION

INPUT

OUTPUT

Stochastic branching

Bad for SIMT/SIMD

Data parallelism (NB: MULTI-EVENT API !)

(at least at LO!)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 33/38

• (1) Design computational units with well-defined inputs and outputs!

– Beware of hidden inputs and outputs from common blocks and static data...

• (2) Keep data parallelism in mind from the start: move from single-event APIs to multi-event APIs!

– Well-defined input array of many events, well-defined output array of many events

If you design a new Monte Carlo from scratch, these are MUST's, not SHOULD's!

Do's and dont's - two simple recommendations

PROCESS ONE EVENT1 IN 1 OUT

PROCESS N EVENTSN IN N OUT

REENTRANT FUNCTION
(NO STATE! THREAD SAFE!)

IN OUT

STATEFUL FUNCTION

"IN" ? "OUT" ?

/COMMON/... /COMMON/...

static ... static ...

An additional technicality: prefer Structure-of-Array

(SOA) memory layouts for the inputs and outputs!

[Strictly needed only internally for SIMD and useful for

GPUs, but good to have also in the API of the function]

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 34/38

From single-event to multi-event APIs: some specific examples

• 1. MG5AMC at LO: the work described in this talk!

– This was all the work Olivier had to do on the madevent Fortran framework (to interface to the CUDACPP “bridge”)

• 2. MG5AMC at NLO: the work we are planning!

– This is the work Zenny and Olivier will do on the madevent Fortran framework (to interface to the CUDACPP “bridge”)

• 3. POWHEG + MG5AMC: the work we plan to collaborate with!

– This is the work the POWHEG team will do on their framework (to interface to the MG5AMC CUDACPP “bridge”)

PROCESS ONE EVENT1 IN 1 OUT

PROCESS N EVENTSN IN N OUT

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 35/38

• You will still need to loop over multiple sets of N events

– And the internal implementation of N-event processing may still involve some loops!

• N should be at least as big as the minimum number of events for which strict lockstep is required

– On a CPU: number of variables in a vector register (most complex case: 16 floats in a 512-bit AVX512 register)

– On a GPU: strictly speaking, number of threads (typically: 32) in a GPU “warp”

• Our present implementation: number of threads to “fill” the GPU (typically: 16k, up to 500k)

• NB: I focus on event-level parallelism, but other options exist

– In MG5AMC we will investigate using 1 GPU thread per helicity per event...

What about loops? And how many are N events?

PROCESS N EVENTSN IN N OUT

(N x M EVENTS)

LOOP OVER 1...M

"Process N events": three implementation examples (there can be more!)

1. CPU scalar: internally loop over N events, process each one individually

2. CPU vector: hold the events in a SIMD vector of size N,

3. GPU kernel: each of the N events is processed by one of N GPU threads

...one more item on our to-

do list for next year...

(also because so many

events may lead to biases)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 36/38

Helicity amplitudes – same code in CUDA and in vectorized C++

• Old slide! The new code is

different, the idea is the same!

• Formally the same code for

CUDA and scalar/vector C++

– hide type behind a typedef

– add a few missing operators

SIMD in CUDA/C++ uses

compiler vector extensions!

Flexible design: being reused also in

the vectorized SYCL implementation

Automatically

generated!

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 37/38

Conclusions

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 38/38

Conclusions

• Our journey to port MG5AMC LO calculations to GPUs and SIMD is starting to bring fruits (see the CMS talk!)

– It has been long (3+ years) and challenging, but it has been fun!

– We still have a few things to iron out before a “proper” release – and many optimizations are still possible after that!

• We have demonstrated that near-perfect lockstep processing in LO ME event generators is possible

– A typical factor 4 speedup on CPUs from AVX2 SIMD in double precision, much more than that on GPUs

– We accelerated the ME calculation so much, that previously unimportant components become the bottleneck (Amdahl)

• Our journey to port MG5AMC NLO calculations to GPUs and SIMD is just starting and will also be long (and fun)!

– We have indications that porting the bulk of NLO calculations will be feasible using our LO tools

– Porting the packages providing virtual loop calculations will be harder, but is not our first bottleneck and priority

• Any Monte Carlo ME event generator (at least at LO) is a great fit for data parallelism using GPUs and SIMD

– We would be eager to collaborate with other MC teams (to help them interface with MG5AMC or reengineer their code)

We believe that this work is essential to fully exploit the HL-LHC physics program, and that of future colliders

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 39/38

BACKUP

SLIDES

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 40/38

Our internal Fortran-to-C++ interface: multi-event and stateless!

This outputs the squared sum of

amplitudes (real number)

As discussed with Simon, for

HERWIG and other generators

it may be useful to also expose

an API that gives the partial

amplitude (complex number) for

a given colour structure

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 41/38

MG5AMC is not alone – SHERPA on GPU (BlockGen)

• Note: unlike MG5aMC, based on Feynman diagrams,

SHERPA uses ~Berends-Giele recursion relations

– Allows computations with more final-state jets

• No ongoing effort on CPU vectorization (yet)

• Planned Les Houches project: a detailed comparison

of software performances of MG5AMC and SHERPA

– Tentative process list: pp to tt(0-3jets) or Z(0-3jets)

– Previously, an old wish of the HSF generator WG

– (NB: not a comparison of physics results or distributions)

From http://dx.doi.org/10.21468/SciPostPhysCodeb.3

More recent results were presented in June 2023

in Les Houches by Max Knobbe

http://dx.doi.org/10.21468/SciPostPhysCodeb.3

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 42/38

Reweighting

• Advantages of reweighting: savings in computing costs (no detector simulation), fewer statistical fluctuations

• In practice for MG5AMC: read in an LHE file, add weights, write back the modified LHE file
– Will use the new matrix element engine in CUDA/C++

– For further details and a status report: Zenny’s talk (and upcoming paper) at CHEP 2023

• Theoretical and technical challenges
– NLO reweighting (see O. Mattelaer, https://arxiv.org/abs/1607.00763)

– Coverage of phase space in the new parameter set

– Reweighting for a given event-by-event helicity and color

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

1. Generate signal sample at ref, with wi(ref)=1
(By definition, background does not depend on)

2. Full detector simulation
(MC truth event properties xi

(true) → observed event properties xi)

3. Reweight each event by matrix element ratio

Old technique, renewed interest!

https://indico.jlab.org/event/459/contributions/11850/
https://arxiv.org/abs/1607.00763

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 43/38

Reweighting and weight derivatives in parameter estimation

• Weight derivative: event-by-event sensitivity to the measured parameter

• First: makes it possible to determine the limit error with an ideal detector, and how much (0 to 1) we do worse

– with a given luminosity at a FCC-ee, what is the best theoretically achievable measurement on Higgs couplings?

• Second: can be used as a basis for an “improved optimal observable” ML method

AV

Knowing one’s limits: maximum achievable

information with an ideal detector

- Ideal acceptance, select all signal events Ssel=Stot

- Ideal resolution, measured i is that from MC truth

(implies ideal rejection of background events, i=0)

Weight Derivative

Regression

i
(MC truth) ~ q(xi

(MC))

Data observable

event properties xi
(DATA)

Fit WDR regressor
qi

(DATA) = q(xi
(DATA))

qi
(MC) = q(xi

(MC))

https://doi.org/10.1051/epjconf/202024506038

https://zenodo.org/record/3715951

https://doi.org/10.1051/epjconf/202024506038
https://zenodo.org/record/3715951

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 44/38

Memory layouts – AOS, SOA, AOSOA

We have experimented with three possible memory layouts for momenta

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)

We are using AOSOA’s as the current default – but this is still largely configurable

• For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
– We use an AOSOA with Nepp equal to the SIMD vector size NeppV – and an aligned malloc is needed too!

– For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

• For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
– We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)

– For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

• Coding for SIMD is more complex than coding for GPUs...

MATRIX ELEMENTS

CUDA/C++:

MEKERNELS

MOMENTA

Matrix element calculation (simplified example)
– inputs[4*Npar*Nevt] = (x,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)

– outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

Example: Npar=6 particles for the 2→4 process gg→t ҧtgg

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 45/38

Monitoring GPU memory access – NSight Compute

• Explicitly collect two relevant profiler metrics in NSight Compute

– “requests” : l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum

– “sectors” (i.e. transactions, network roundtrips): l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum

– this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

• Profile AOS against the AOSOA baseline

– same number of “requests” in AOS and AOSOA

– AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)

– in other words: AOSOA provides coalesced memory access, AOS does not

– for what it is worth (not much!), the actual slowdown in this e+e−→+− example was only 7% however

https://github.com/madgraph5/madgraph4gpu/issues/16

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 46/38

In practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity) compute partial amplitudes Jf for each color ordering permutation f (sum diagrams relevant to f)

2. (for each helicity) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

3. sum over helicities [Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 128 helicities (before and after filtering)]

Each step computes many events 𝒑 in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.

Inside the ME calculation: Feynman diagrams, colors, helicities
Given the momenta Ԧ𝑝 of initial+final partons in one specific event

Sum over all helicity combinations of initial+final partons

Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given and c

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 1240 Feynman diagrams (using helicity amplitudes)

This takes ~40% of the CPU time for this process

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 120 color ordering permutations, 120x120 matrix

This takes ~60% of the CPU time for this process

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 47/38

C++ vectorization – why choose Compiler Vector Extensions?

• Portable – available in gcc, clang, icpx (from clang) with minimal differences
– Do not require any external libraries or tools (VC, VCL, VecCore, xSIMD, UME::SIMD, or SYCL...)

• Powerful, but easy to use
– No need to debug auto-vectorization when it does not vectorize

– As powerful as intrinsics, but much easier to write (higher-level abstractions)

• Intuitive – CVEs force you to think in terms of vector types!

• Minor disadvantage – no vector complex type out of the box
– But it was easy to write it in our case (RRRRIIII memory layout) as we only need + -

– A few extensions for Boolean vector masks were needed, too

• One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype_v*...

HUGE THANKS TO SEBASTIEN PONCE for his Practical Vectorization lectures mentioning CVEs!

https://indico.cern.ch/event/1100351/contributions/4629205

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 48/38

Monitoring lockstep – GPU NSight compute, CPU disassemble

• GPU: explicitly collect one profiler metric in NSight Compute

– “branch efficiency” : sm__sass_average_branch_targets_threads_uniform.pct

– old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency,

alternative with minor forced divergence has 96% efficiency (and is 20% slower)

• CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)

– but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

Symbols in .o SSE4.2

(xmm)

AVX2

(ymm)

AVX512

(ymm)

AVX512

(zmm)Build type

Scalar 4534 0 0 0

SSE4.2 12916 0 0 0

AVX2 0 10630 0 0

256-bit AVX512 0 10366 12 0

512-bit AVX512 0 1267 60 99104
a

9
0

e
c
2
gg
→
t
ҧ tg
g

ACAT2022

https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 49/38

Code generation: how did we bootstrap the project?

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 50/38

Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates

- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)

- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code

(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL

(since end 2021)

OLD MODEL

(2020- early 2021)

(1) MG5AMC Python framework, Fortran templates:

“upstream” https://github.com/mg5amcnlo/mg5amcnlo

(2) CUDACPP plugin, post-generation patches,

generated CUDA/C++ physics processes:

our https://github.com/madgraph5/madgraph4gpu

WIP to-do before a release:

full port from madgraph4gpu

to mg5amcnlo (remove post-

generation Fortran patches,

add CUDACPP upstream)

... and beyond

https://github.com/mg5amcnlo/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 51/38

Why focus on complex processes? Compute >> memory!

• We are lucky: the more

complex the physics process,

the less relevant is the cost of

GPU-CPU data copies!

– Similarly (later): the more

complex the process, the less

relevant is the overhead from

scalar Fortran in madevent!

– And the fewer events in flight

needed to fill the GPU...

• In this talk I mainly give

performance numbers for

complex processes like

gg→t ҧtgg or gg→t ҧtggg

e+e-→+-

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 52/38

Filling the GPU – minimum number of threads (events in flight)

• We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

• But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
– Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event across many kernels)?

– Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?

– Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?

https://doi.org/10.1051/epjconf/202125103045 (vCHEP 2021)

https://doi.org/10.1051/epjconf/202125103045

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 53/38

All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

• Helicity filtering – at initialization time, compute the allowed combinations of particle helicities

– This is computed in CUDA/C++ using the same criteria as in Fortran

• “Multi-channel” – single-diagram enhancement of ME output

– This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

• Event-by-event running QCD coupling constants s(Q
2)

– The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event

• Event-by-event choice of helicity and color in LHE files

– Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

– NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)

• We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++

https://doi.org/10.1088/1126-6708/2003/02/027

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 54/38

Benchmarking – Madgraph and the HEP-SCORE project

• HEPscore: the new HEP benchmark for compute resources, replacing HepSpec06

– Based on reproducible HEP workloads (GEN, SIM, DIGI, REC...) within docker containers

– The first version HEPscore23 should become production in April 2023 for (x86 and ARM) CPUs

• The aim is to benchmark a fully loaded server: all CPU cores, and eventually all associated GPUs

– (and ideally measure how well an application is doing compared to the theoretical power of the server...)

– fill all CPU cores by a combination of application multi-threading and/or several identical copies/processes

• A first container based on our Madgraph-on-GPU has been prepared

– Very useful because it gives the same physics results on CPU and GPU: may compare them to each other!

– And eventually may be used to evaluate heterogeneous processing on CPU+GPU...

• The plots on the next slides are based on this HEPscore container: several identical copies/processes

– (A multi-threaded CUDACPP version exists but not optimized yet – SYCL and Kokkos also provide MT)

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 55/38

Some ideas for heterogeneous processing

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

• Blue curve: one single CPU process using the GPU
– For gg→𝑡 ҧ𝑡gg, you need at least ~16k events to reach the throughput plateau

• Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
– Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU

– The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced

– (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Throughput variation as a function of

GPU grid size (#blocks * #threads)

This is the number of events

processed in parallel in one cycle

Nvidia V100 GPU

Silver 4216 4-core CPU

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 56/38

Lockstep beyond event-level parallelism

• Efficient data parallelism (lockstep processing) requires the same function computed for different data
– This is true in MG5AMC at the event level (different events i.e. different phase space points)

– But it is also true at the sub-event level (different helicities within the same event)

• We are evaluating the move to a different data parallelism strategy on GPUs
– Currently: one event (sum over all helicities) per GPU thread

– In the future: one helicity of one event per GPU thread?

• Advantages:
– You can fill the GPU with much fewer “events in flight” – more balanced sampling/integration in MadEvent

– This is a prerequisite for moving the color matrix to externally-launched cuBLAS and tensor cores

– This is also a prerequisite if we want to evaluate much smaller kernels
• From all Feynman diagrams in one kernel to one Feynman diagram per kernel?

• Which might decrease register pressure and increase kernel occupancy, but would require more global memory access

A. Valassi – Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 57/38

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

