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Outline

 Motivation and overview

« Some results and future challenges for MG5AMC
—Performance: throughout speedups on CPU SIMD and on GPUs for LO processes
—Functionality: development status, usability for the experiments
—Future prospects: NLO and beyond; collaborations with other MC teams

« Some lessons learnt for other MC generators
— Applicability to other (existing and future) Monte Carlo generators

—Do’s and dont’s

» Conclusions
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Motivation and overview
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Event generators (1): why accelerate them?
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https://cds.cern.ch/record/2802918

Sequential processing vs. Data-parallel processing

Sequential processing
Single Instruction Single Data:
1 input and 1 output per cycle

for a given instruction =

B Instructions

[ Data

B Results

o .
7 O

&
&

Data-parallel processing
(lockstep processing)
Single Instruction Multiple Data:
N inputs and N outputs per cycle
for the same instruction

Two hardware implementations
of essentially the same concept:

Ars Technica (March 2000)

Note: task parallelism (multi-threading, multi-processing)

differs from data parallelism: it exploits a different dimension Ll 4 ety (98 el

)

of hardware parallelism (many CPU cores, many nodes..
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Vector CPUs — SIMD GPUs — “SIMT”

More difficult to code ~Easier to code

SOA:s strictly needed SOAs not strictly needed
Need strict 100% lockstep Tolerate lockstep <100%

In our work on MG5AMC “CUDACPP” we have targeted
data parallelism on both vector CPUs and GPUs

5/38
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https://arstechnica.com/features/2000/03/simd/

Event generators (2): why CPU vectorization and GPUS?

« Vector CPUs and GPUs are widely available to HEP now for LHC processing (and later for FCC!?)

— Most of the CPUs in our computing Grid have at least AVX2 SIMD
— GPUs are becoming more and more available to us especially at HPC centers

* ... but they are generally very difficult to exploit in HEP software ®

— Example: Monte Carlo detector simulation has a lot of stochastic branching (makes lockstep processing difficult)

« Matrix element event generators, conversely, are ideal software workflows for SIMD and GPUSs!
— Monte Carlo sampling of many data points — Data parallelism with near-perfect lockstep processing!

INPUT 0@

OUTPUT

/
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SAME CALCULATION ON DIFFERENT DATA!
(No if-then-else blocks, i.e. no branching)

Lockstep processing
Good for GPUs (SIMT)

and vector CPUs (SIMD)




MG5AMC on GPUs and vector CPUs
(the “CUDACPP” plugin)
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C++ vectorization and CUDA in MG5AMC: the CUDACPP project

Stephan Hageboeck
Filip Optolowicz*

Stefan Roiser Olivier Mattelaer
Joergen Telg*
- MG5AMC CUDACPP development team = | Andrea Valassi UCL

Zenny Wettersten Université © &}

catholique ’wﬂfJ
c\E/RW

de Louvain bt
N/ S

(* Filip and Joergen left after the summer)

Challenges in Monte Carlo Event Generator Software
for High-Luminosity LHC

..............

A collaboration* of theoretical physicists, experimental physicists and software engineers

— The project started in Q1 2020 (OM, SR, AV) in the context of the HSF event generator WG R —
« Effort invested at that time in Louvain and in CERN IT’s Understanding Performance team (thanks Markus Schulz!)

—*See Danilo’s slides for more comments on why this is necessary but also challenging
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https://doi.org/10.1007/s41781-021-00055-1

For more detalls...

* Our work on MG5AMC CUDACPRP is described in the vCHEP2021, ICHEP2022 and ACAT2022 proceedings

— And in the upcoming CHEP2023 proceedings (Stephan’s talkl, Zenny’s talk?)
— See also the Computing Accelerator Forum (Feb 2023) talk for much more extensive details

EPJ Web of Conferences 251, 03045 (2021) https://doi.org/10.1051/epjconf/202125103045 ¥ S PROCEEDINGS
CHEP 2021 1 OF SCIENCE
Speeding up Madgraph5 aMC@NLO through
gn and engineering ot a simpli ied workflow execution CPU vectorization and GPU offloading:
for the MG5aMC event generator on GPUs and vector CPUs Developriients I Pacforiaiics and Poraliliey for towards a first alpha release
MadGraph5_aMC@NLO A Valassi', T Child L Field', S Hagebéck', W Hopkins®
Andrea Valassi'"*, Stefun Roiser'", Olivier Mattelaer?, and Stephan Hageboeck' [o) Nf‘a:‘::;a;r N"N.fffo.b <8 ;omer Sgg,,‘.’,ih J Tei(g‘), 1(1315\/’“5310‘,
]CERN‘ IT-SC group, Geneva, Switzerland Andrea Valassi,“" Taylor Childers,” Laurence Field,” Stefan Hagebéck,” Walter Z Wettersten’
Hopkins,” Olivier Mattelaer,” Nathan Nichols,” Stefan Roiser’ and David Smith“ https //arXIV 0 rq/abS/2303 . 18244

2Université Catholique de Louvain, Belgium

https://doi.org/10.1051/epjconf/202125103045

https://doi.orq/10.22323/1.414.0212

» These also describe the work of our US and CERN collaborators on SYCL, Kokkos and Alpaka abstraction layers
— Largely based on the developments and progress in the CUDACPP project, which will be the focus of this talk

/
Event Generator Workshop, CERN, 13 Nov 2023 @ ?ath;:::: &; 90/38

de Louvain
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https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244
https://indico.jlab.org/event/459/contributions/11829/
https://indico.jlab.org/event/459/contributions/11850/
https://indico.cern.ch/event/1207838
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244

Madgraph5 aMC@NLO (MG5aMC)

 One of the workhorses for event generation in ATLAS and CMS! P AN
— RANMAR
%? PUBLISHED FOR SISSA BY ) SPRINGER i
o RECEIVED: May 20, 2014
ACCEPTED: June 25, 2014 FORTRAN:
PuUBLISHED: July 17, 2014 ) MADEVENT
e
The automated computation of tree-level and - ,
. . . . MOMENTA
next-to-leading order differential cross sections, and T
. . . . b
their matching to parton shower simulations = i FORTRAN:
antiproton MATRIX1
J. Alwall,” R. Frederix,” S. Frixione,’ V. Hirschi,® F. Maltoni,? O. Mattelaer,? w i
H.-S. Shao,® T. Stelzer,” P. Torrielli’ and M. Zaro* v
MATRIX ELEMENTS

https://doi.org/10.1007/JHEP07(2014)079

« MG5aMC production version is in Fortran
— Software outer shell: Madevent (random sampling, integration and event generation + 1/0O, multi-jet merging...)

— Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process

» Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. gg—ttggg)
 And ME calculations are precisely one component that can be “easily” accelerated on GPUs and vector CPUs..

F UCL{V:‘K
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MG5AMC before acceleration (Fortran madevent + Fortran ME)

* In the current production
MG5AMC in Fortran, the
matrix element calculation

is the bottleneck Flame Graph Reset Search
— Feynman diagrams Fortran only S. Hageboeck, CHEP2023
— Color sum (color matrix) gg — ttgg

* We are lucky!

— The fraction of time in the | |

j | Matrix

| \ @EPPMI 2cpi_pm_read Elements: |
[KEMEgEN ktime_get_real.. \

| posix_ge... [poSIXIgEEFEAIN 85% !

| __x64_sy.. i

| \do_sysca.. do_syscall_64 |

l ~ |

|

|

ME calculation increases
with process complexity!

— The MS calculation is the
easiest to parallelize!

7 UCL
@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 ;a';‘i,e,}ﬁ.jﬁi\y,ei 11/38


https://indico.jlab.org/event/459/contributions/11829/

MG5AMC after acceleration (Fortran madevent + CUDA ME)

mmmmmmmmmmmmmm

gzm—r:r;v?;g Matrix Flame Graph Reset Search
Elements: I Fortran+CUDA S. Hageboeck, CHEP2023
e 85% g9 — ttgg
¥ mg4gpu
! CUDA

* On GPUs we speed up the ME
so much that previously
unimportant components
become the bottleneck!

— sampling (random numbers to
momenta), unweighting, pdf’s...

— we are also working on
speeding these up now!

S e o EPe s

g
3
:

» As predicted by Amdahl’s law

n.. sample_full_

' M
: . . o @ UCL 2
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https://indico.jlab.org/event/459/contributions/11829/

Amdahl’s law

« The matrix element calculation is now the bottleneck (e.g. >95% for gg—ttgg) in Fortran Madgraph
—But the remaining <5% may fast become the bottleneck if you accelerate the matrix element by many factors!

 Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)
—If the MadEvent overhead takes 5%, the maximum speedup is only 20 even if your GPU speedup s is 1000!

Amdahl's Law

20 T

——
—

18 ///
// Parallel portion
16 f 50%
/A R A B 75%
14 —— 90%
—— 95%
o 12 . ]_
E’_ 10 P e S A S NN N IS - ].lm S]_a_tc-nc}r(ﬁ) — 1_
& . o 80 — p
6
iy S et B e
2
[}
v eS8z 8gFIEegeosoeog https://en.wikipedia.org/wiki/Amdahl%27s_law

Number of processors
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OLD MADEVENT
(NOW: LHC PROD)
SINGLE-EVENT API

FORTRAN:
RANMAR

|
FORTRAN:
MADEVENT

MOMENTA

FORTRAN:
MATRIX1

MATRIX ELEMENTS

HH

MATRIX ELEMENT:
CPU BOTTLENECK
IN OLD MADEVENT

~
~
~,
~
~
~.
~.
~
~
~.
~
~
~
~.
~
~

First we developed
the new ME engines
in standalone applications

1. STANDALONE
(TOY APPLICATIONS)
MULTI-EVENT AP

Compute Accelerator Forum, February 2023
https://indico.cern.ch/event/1207838

Then we mOdIerd the existing
all-Fortran MadEvent
into a multi-event framework
and we injected the new MEs into it

2. NEW MADEVENT
(GOAL: LHC PROD)

MULTI-EVENT API

FORTRAN: FORTRAN: (Amdahl...)
SCALAR:
B NEW
FORTRAN: FORTRAN: BOTTLENECK?
MADEVENT MADEVENT
FORTRAN: | PARALLEL:
MATRIX1 MUCH FASTER!
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MG5AMC+cudacpp: CUDA/C++, Fortran, bash, python...

4. COMPLETE USER WORKFLOW

(CODEGEN + N x APPLICATIONS)
generate.. output.. launch

BEING DEVELOPED/TESTED (since Aug 2023)

1. STANDALONE 2. MADEVENT
TOY APPLICATION (ONE APPLICATION)
OK! (2020-2021) OK! (2022)

MOMENTA

MATRIX ELEMENTS

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

MOMENTA

MATRIX ELEMENTS

3. MADEVENT
(N x APPLICATIONS)
Ibin/generate_events
BEING TESTED (since Jun 2023)

FORTRAN:
RANMAR
FORTRAN:
MADEVENT
Y

MOMENTA

MATRIX ELEMENTS

PYTHON
BASH

FORTRAN:
RANMAR
FORTRAN:
MADEVENT
Y

MOMENTA

MATRIX ELEMENTS

MG5AMCNLO GITHUB
+ MADGRAPH4GPU GITHUB

MG5AMCNLO GITHUB
+ CUDACPP GITHUB (PLUGIN)

We are now somewhere in between 3 and 4
(and this is what CMS s testing)

n UC
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Test driven development

* | personally think that writing tests is as important as (more important than?) writing implementation code!

« At each stage of development we have been adding new tests — and we still run them (manually and/or in the CI)
— Standalone applications: use hardcoded random seeds, compare momenta and MEs to reference files (googletest)

— One madevent application: use the same random seeds, compare cross sections and LHE files for Fortran/C++/CUDA MEs
» Require ~bit-by-bit equal results (within numerical precision), this is much more than statistical comparisons!

— Full workflow with many madevent applications (under development): compare overall cross sections and LHE files as above
— Full workflow including code generation: similar tests as above, regenerating physics process from the cudacpp plugin

1. STANDALONE
TOY APPLICATION
OK! (2020-2021)

CUDA/C++ or PFs:
cuRAND

CUDA/C++ or PFs:
RAMBO

i
MOMENTA

CUDA/C++ or PFs:
MEKERNELS

MATRIX ELEMENTS

@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs

2. MADEVENT
(ONE APPLICATION)
OK! (2022)

FORTRAN:
RANMAR

Wi

FORTRAN:
MADEVENT

MMMMMMM

CUDA/C++ or PFs:
MEKERNELS

MATRIX ELEMENTS

4. COMPLETE USER WORKFLOW
(CODEGEN + N x APPLICATIONS)
generate.. output.. launch

DEVELOPED

3. MADEVENT
(N x APPLICATIONS)
Ibin/generate_events

e —
[ —
e —
— .
——— Test a large phase space of development environments!
— - Different physics processes
| | | T - Different vectorization scenarios
| ‘ | "@“ - Different floating point precisions
‘ onte - Different compilers and O/S

PYTHOM
BASH

Event Generator Workshop, CERN, 13 Nov 2023



MadEvent with vectorized C++ for gg—ttgg (on a single CPU core)

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838 ACAT2022 madevent Standalonp |
- MEs ITOT = IMad T IMEs Nevents/ ITOT N events/ IMEs (ONZ%E'E:%E?'TON)
g8 —1gyg .. !
precision [sec] [events/sec] [MEs/sec] e
Fortran(scalar) double | 37.3=1.7+35.6 | 2.20E3 (=1.0) | 2.30E3 (=1.0) — T
C++/none(scalar) double | 37.8=|1.7]+36.0 | 2.17E3J(x1.0)}| 2.28E3 2.37E3 —
C++/sse4(128-bit) | double | 19.4=[1.7|+ 17.8 | 4.22E3}(x1.9)} 4.62E3 4.75E3
C++/avx2(256-bit) | double 05=|1.7+ 7.8 | 8.63E3}(x3.9)}| 1.05E4 1.09E4 “————
512y = AVX512, ymm registers || C++/512y(256-bit) | double 8.9 =[1.8+ 7.1 | 9.29E3kx4.2)}l 1.16E4 1.20E4
P12z = AVXS12, zmmTegiSers ||~y 1/5127(512-bit) | double | 6.1=|1.8}+ 4.3 | 1.35E4lx6.1)]| 1.91E4 2.06E4
The latter is only better on C++/none(scalar) float 36.6 =|1.8+34.9 | 2.24E3)(x1.0)§ 2.35E3 2.45E3
nodes with 2 FMA units . .
(here an Intel Gold 6148) C++/sse4(128-bit) float 10.6 =(1.7+ 8.9 | 7.76E3}(x3.6)) 9.28E3 9.21E3
C++/avx2(256-bit) float 5.7=|1.8+ 3.9 | 1.44E4}(x6.6))| 2.09E4 2.13E4
\ 256-bit) float 53=[1.8+ 3.6 | 1.54E4)(x7.0)}| 2.30E4 §x10.0 2.43F4
Lo C++/512z)512-bit) float 3.9=[1.8/+ 2.1 | 2.10E4 3.92E4 Ix17.1 3.77E4
B FLOMT FLOKT FLOKT FLOAT ME speed_up ~ X8 (double) and_ x16 (float) over scalar Fortran
Our ME engine reaches the maximum theoretical SIMD speedup!

JRVeY FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT | FLOAT FLOAT
DOUBLE DOUBLE DOUBLE DOUBLE

AVX512 FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT | FLOAT FLOAT | FLOAT FLOAT FLOAT |FLOAT FLOAT FLOAT | FLOAT FLOAT
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

@ UCL
Event Generator Workshop, CERN, 13 Nov 2023 \_ .

Overall speedup so far~ x6 (double) and x10 (float) over scalar Fortran
(Amdahl’s law)

bits
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ME throughput in C++ for gg—ttgg (on all the cores of a CPU)

ggttgg check.exe scalability on "bmk&130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

Mo HT 2% HT | Overcommit

A | gg—ttgg
: ' (float)

Mo HT 2% HT | Overcommit

gg—ttgg
(float)

&
=t

200 A

ggttgg-sa-cpp-f-inl0-none
gottgg-sa-cpp-finl0-ssed
gottgg-sa-cpp-f-inl0-avx 2
gottgg-sa-cpp-f-inl0-512y
gottgg-sa-cpp-f-inl0-512=z

ggttgg-sa-cpp-f-inld-none
ggttgg-sa-cpp-finl0-ssed
gottgg-sa-cpp-f-inl0-avx 2
ggttgg-sa-cpp-inl0-512y
gottgg-sa-cpp-f~inl0-512=z

1. STANDALONE
TOY APPLICATION
OK! (2020-2021)

100 A

RLXY
LLXX

]

Throughput (E6 events per second)
Throughput ratio to 1 no-S5IMD job

. T T T T T T . T T
0 20 40 60 80 100 120 140 160 0 20 40 60
Level of parallelism {number of 5T jobs) Level of pal

T T
120 140 160
f 5T jobs)

MOMENTA

* Previous tables for SIMD speedups on C++ were for a single CPU core

MATRIX ELEMENTS

» Large SIMD speedups are also confirmed when all CPU cores are used
— AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)
— Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)

— Aggregate MEs throughput from many identical processes using the standalone application
» (HEP-workload Docker container from the HEPIX Benchmarking WG)

UCL /3
@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 e (811 18/38



Floating point precision

» Previous slides: our vectorized C++ on CPUs is 2x faster in single-precision than in double-precision
—In a 512-bit reqister you fit 16 (4-byte) floats but only 8 (8-byte) doubles

* Next slide: our CUDA implementation on V100 GPUs is also 2x faster for floats than for doubles
—On data-center NVidia GPUs (e.g. V100 or A100), you have twice as many FLOPs in float as in double
—Note that lower-end GPUs (e.g. T4) have very limited double-precision FLOPs...

 But single-point precision is not enough for physics: numerical instabilities (e.g. in Feynman diagrams)

— It would be useful to study if these instabilities can be worked around — anyone interested? ©
* We had a closer look at the source of these instabilities with the CADNA tool (see later)

— Alternative: we prototyped a “mixed-precision” calculation (double for Feynman, float for color matrix)
* Color sum is the largest CPU time consumer for complex processes, but can be done with floats!

| g9 — 1t 99 — ttgg 99 — ttggg

13G 470G 1T
3.1G (23%) | 450G (96%) 11T (>99%)
450M (3.4%) | 3.3G (<1%) 7.3G (<1%)
1.9G (14%) | 160G (35%) 2T (19%)
530M (4.0%) | 210G (44%) 55T (51%)

I

grDT‘lrp)[Iquge -

N — O. Mattelaer,
| this workshop

@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs

madevent

matrixl

L. ext
I—» int
I—v amp

Event Generator Workshop, CERN, 13 Nov 2023



Compute Accelerator Forum, February 2023
https://indico.cern.ch/event/1207838

MadEvent/CUDA for gg—ttggg

madevent standalone 2 MADEVENT
CUDA grid size ACAT2022 8192 16384 ok @z
_ MEs ITOT = tMad + IMEs Nevents/TTOT Nevents /TMEs [ed
88 11888 precision [sec] [events/sec] [MEs/sec] Mi"?gé‘&r
Fortran double | 1228.2 95.080+ 1223.2 | 7.34E1 (=1.0) | 7.37El (=1.0) — — i
CUDA double 12.1 § 4.61E3 (x63) § 7.44E3 (x100) | 9.10E3 | 9.51E3 (x129) T
CUDA float 5.4 §7.73E3 (x105) 1.66E4 (x224) | 1.68E4 | 2.41E4 (x326)
CUDA mixed 9.6 | 545E3 (x74) | 9.43E3 (x128) | 1.10E4 | 1.19E4 (x161)

We are lucky! The more complex the physics process, the lower the relative overhead from the scalar Fortran MadEvent - here only 0.5%
Amdahl’s law limits the overall speedup to x200 (parallelizable p=0.5%), and we achieve x60 (double) or x100 (float) in the overall speedup!

One technicality about mixed precision (to answer Peter’s question this afternoon):
mixing double and float vectors implies some transition moments
where you merge two 4-double vectors into one 8-float vector, and/or viceversa

/
@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 @ unierst ] |


https://indico.cern.ch/event/1207838

e CHONA LIBRARY Numerical precision: CADNA
» Computers sometimes lie about floating- » P(x,y)= 9x4 - y* + 2y2 (Can we use ﬂoa’ts ”‘]Stead Of dOUblES’?)

point numbers Without CADNA:

P(10864,18817) = 2.0000000000000000 (exact value: 1)

» CADNA is a library with special floating- P(1/3,2/3) = 0.8024691358024691
point types to measure precision and R
instabilities in C++ and Fortran AT R .
» Each number knows its current precision
0 UNSTABLE DIVISION(S) “
0 UNSTABLE POWER FUNCTION (S) B
» CADNA counts unstable operations e < g:mm"
0 UNSTABLE MATHEMATICAL FUNCTION(S) {
https://lndlco_cern_Ch/event/1264290/ 8000 Matrix element precision for: epemimupr:'n;.lﬁr?uﬂuat -03 2000 < Matrix element precision for: gg_ttx fI;aet“-O3
Floatfor:
S. Hageboeck, Gargnano meeting 18 Sep 2023 ;g—t’;‘;m“
gg_tixg
ge_ttxgg
| gE_ttxgee
i Application to MGSAMC CUDACPP: 7 Digits of precision Sum = 8000 7 Digits of precision. Sum = 8000
— assess precision Of the ME CaICUIation (When using . Matrix element precision for: gg_ttxg f;:::-OB Matrixe\ementprecisinnfor:gg_ttxgglc;t-ﬁ} Matrix element precision for: gg_qt;(gggfloat-03
floats: down to 3 significant digits in gg to ttggQ)
— understand where in the code the precision is lost o

(typically, cancellations subtracting large terms, one |
example being heavily suppressed helicities)

1000

Digits of precision. Sum = 8000

m  UCL /3
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https://indico.cern.ch/event/1309774/
https://indico.cern.ch/event/1264290/

Preliminary results for the full workflow (June 2023)

grep ELAPSED "1s -tr tlau/logs_ggtt*/*txt"

tlau/logs ggtt CUDA/output.txt:ELAPSED: 24 seconds

tlau/logs_ggtt FORTRAN/output.txt:ELAPSED: 23 seconds For more recent and
tlau/logs_ggtt CPP/output.txt:ELAPSED: 22 seconds more realistic reSUItS,
tlau/logs_ggttg CUDA/output.txt:ELAPSED: 35 seconds I
tlau/logs_ggttg FORTRAN/output.txt:ELAPSED: 49 seconds See the CMS talk
tlau/logs_ggttg CPP/output.txt:ELAPSED: 36 seconds (than kS Sapta, Jln, RObert
tlau/logs_ggttgg CUDA/output.txt:ELAPSED: 116 seconds : I
tlau/logs_ggttgg FORTRAN/output.txt:ELAPSED: 857 seconds f()r )/()Ljr (:()IIEit)()r21t|()r]')

tlau/logs_ggttgg CPP/output.txt:ELAPSED: 280 seconds

e e oot e ecoseo, oss s | = Same physics results in
tlau/1ogs:ggttggg:CPP/output.txt:ELAPSED: 17034 seconds FORTRAN’ CUDA’ CPP 3. MADEVENT
from the same random number (N x APPLICATIONS)
(some final tests underway...) Jbin/generate_events
On the most Complex 99 to ttggg Note: Fortran here is NOT what
the LHC experiments are using [ —
. [r—
« CPP with “512y” SIMD - It has a multi-event API 1
- It has -O3 —ffast-math 1
—around x 3.4 faster than FORTRAN '
| RANMAR
. [ T
« CUDA (V100 GPU vs 4-core CPU) W, © &g ]
Cth; 704/ o | | B
—around x 21 faster than FORTRAN d°ev:/’“'ec$°/ . | I —
- h (o} ol | MEKERNELS
—(was ~ x 60 over a single CPU core) b@tte,. Yl d o

BASH

/ /
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WANT TO GIVE IT ATRY?

$ git clone --branch garda23 --recurse-submodules https://

r

github. cor

aph5/madgraphdgpu.gi

$ cd madgraphdgpu/MG5aMC/mg5amcnlo
$ ./bin/mg5 aMC proc gg ttx.mg5

NB: gcc >= 11.2.1 recommended

STEFAN ROISER. 18 5EP 2023, MADGRAPHS_AMC@NLO

S. Roiser, Gargnano meeting 18 Sep 2023

The code has many additional fixes since then,
many of which already picked by CMS.
A “proper” release will come eventually!
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Beyond NVidia GPUs ———

// Licensed under the GNU Lesser General Public License (version 3 or later).
// Created by: 1. Teig (Jul 2023) for the MG5aMC CUDACPP plugin. Joergen Telg

// Further modified by: J. Teig, A. Valassi (2028-2023) for the MG5aMC CUDACPP plugin

#ifndef MG5AMC_GPUABSTRACTION H

« The CUDACPP plugin uses a single source-code approach for | evcemsmaa .

CPUs (C++) and NVidia GPUs (CUDA), based on #ifdef's R
— The few CUDA calls are encapsulated by design in GPU classes | s« e

—We do not use any vendor-specific features (e.g. Streams) yet | & Eriiume S

#define gpuSuccess cudaSuccess

#define gpuMallocHost( ptr, size ) checkGpu( cudaMallocHost( ptr, size ) )

We recently added Support for AMD GPUS (H I P)’ USIng the #define gpuMalloc( ptr, size ) checkGpu( cudaMalloc( ptr, size ) )

* #define gpuMemcpy( dstData, srcData, srcBytes, func ) checkGpu( cudaMemcpy( dstData, srcData, srcBytes, func ) )
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice

same #Hifdef approach (sta’[us; pu|| request merge IS pending) wdetine GpumenchybeviceTatoss cudamencpybeviceTorost

#define gpuMemcpyToSymbol( typel, type2, size ) checkGpu({ cudaMemcpyToSymbol{ typel, type2, size ) )

— NVidia and AMD GPUs represent almost all of HPC top500 GPUS | sfine sourreet pre ) enccigpu cussrree pee ) )

#define gpuFreeHost( ptr ) checkGpu( cudaFreeHost({ ptr } )

— It might be possible to extend this further to Intel GPUs

#define gpuDeviceSynchronize cudaDeviceSynchronize
#define gpuDeviceReset cudaDeviceReset

#define gpuLaunchkernel( kernel, blocks, threads, ... ) kernel<<<blocks, threads>>>( _ VA _ARGS__ )

° Another Implementa’tlon uslng SYCL (for CPUS and NVIdIa’ #define gpulaunchkernslSharediem( kernel, blocks, threads, sharediem, ... ) kernel<c<blocks, threads, sharedMems>»( _ VA ARGS_ )

AMD, Intel GPUs) was developed by our Argonne colleagues | s s e
— Detailed performance comparisons are planned Sefine pectitL seeberon Figpecatiastcrror

#define gpuGetErrorString hipGetErrorString
#define gpuSuccess hipSuccess

#define gpuMallocHost{ ptr, size ) checkGpu( hipHostMalloc( ptr, size ) ) // HostMalloc better
#define gpuMalloc( ptr, size ) checkGpu{ hipMalloc( ptr, size } )

#define gpuMemcpy( dstData, srcData, srcBytes, func ) checkGpu( hipMemcpy( dstData, srcData, srcBytes, func ) )

Numbel' Of GPU Compute power of #define gpuMemcpyHostToDevice hipMemcpyHostToDevice
. #define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
enabled HPC sites by GPU enabled HPCs #define gpuMemcpyToSymbol{ typel, type2, size ) checkGpu( hipMemcpyToSymbol( typel, type2, size ) )

GPU architecture by GPU architecture

#define gpuFree( ptr ) checkGpu( hipFree( ptr ) )
#define gpuFreeHost( ptr ) checkGpu( hipHostFree( ptr ) )

#define gpuSetDevice hipSetDevice
#define gpuDeviceSynchronize hipDeviceSynchronize
#define gpuDeviceReset hipDeviceReset

@ NVIDIA Hopper (2023)
@ NVIDIA Ampere (2020)
@ NVIDIA Volta (2017)

NVIDIA Pascal (2016) #define gpulaunchKernel{ kernel, blocks, threads, ... ) kernel<<<blocks, threads>>>( _ VA_ARGS__ )
NVIDIA Kepler (2012) #define gpulLaunchKernelSharedMem({ kernel, blocks, threads, sharedMem, ... ) kernel<<<blocks, threads, sharedMem>>>{ _ VA_ARGS__ )
AMD CDNA 2 (2021)
S ROISer @ Other (not Intel) A oo
- #endif

Gargnano meeting 18 Sep 2023

#endif // MGSAMC_GPUABSTRACTION_H

Accelerator architectures types are currently in operation at HPCs

Source: https://www.top500.org/ (stats from June 2023)
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Status: recent progress and LO prospects

An as-is but usable version of the code has been provided to and tested by CMS
— Including recent bug fixes for specific physics processes (Drell-Yan plus jets) or computing environments (HPCS)

There are pending bugs, affecting some processes relevant to the experiments
— Example: floating point exceptions in pp to ttW (suggested by ATLAS) and other processes
— Example: code generation and/or builds fail for EFT and SUSY processes, mainly related to the scaling of alphas

A few additional technical issues to iron out before a proper LO release

— Proper choice of user configuration via the runcard (floating point precision, SIMD vectorization level etc)
— Possibly: integration of AMD support, cleanup of Makefiles

Longer-term improvements and performance optimizations will still be needed for LO after the release
— Integration of helicity recycling (see Olivier’s talk): combine the speedups of both SIMD and helicity recycling on CPU
— Smaller GPU kernels (leading to shorter builds for 2—6 and allowing even more gluons in the final state?)
— Combine event-level and helicity-level parallelism (reduce the minimum number of events needed on the GPU — see later)
— Multi-GPU support, tuning and optimization of heterogeneous environments (with the HEPIX benchmarking WG)
— Further extend infrastructure for matrix element reweighting
— Port to GPU/SIMD more than just the MEs (e.g. PDF’s, momenta computation from random numbers in sampling step...)

A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023



N LO Ioops Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)
J

» So far we have only worked on LO QCD processes!

* NLO QCD processes are more computationally intensive
—More Feynman diagrams
—And especially, loop diagrams! (quad precision needed?)
—A matching procedure (MC@NLO) must also be applied

» We should be able to compute Born and Real emission contributions in our vectorized C++ and CUDA
—We should also be able to handle NLO matching using the current MadEvent based infrastructure

More work since June (next slide)

—The main challenge will be understanding the computational impact of loops (Amdahl bottleneck?)

* News (for me!) from some discussions last week at Les Houches
—Branching should not be an issue at NLO, but will be at NNLO? Local subtraction schemes... «— |

* What the code does depends on where you are in phase space...
—NLO and NNLO needs “complicated” functions like polylogarithms (are these supported in SIMD and CUDA?)
—Libraries exist to emulate quad precision (even for SIMD and CUDA), we can look at these (strip them down?)

* What about EWK beyond-LO corrections?
—If | understand correctly, our approach would be portable, and the same types of challenges would apply?

Profiled the impact of loops

| Discussed with Stefano Frixione
(thanks!) about branching and
lockstep processing for NLO

A. Valassi — Lessons learnt from vectorizing Madgraph5 aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 20/26
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MC@NLO: https://doi.org/10.1088/1126-6708/2002/06/029

CPU tlme prOflleS for N LO: a f||"St IOOk Matching NLO QCD and parton showers (avoid double counting)

Marco Zaro — https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015

_ B, V, R: matrix elements / - LN
Profiling for pp > tt + nj at NLO in MG MC: counterterms (B, PS)| """ '

Il Borns " n n f n41
E30 | Reals :
z 5 ©©Y Loops . 4 ’ —
o 24 =3 CTs — a0 [/d%(B+V+ /d%MC)] Tirc (O)H {/d‘f’wl(RfMC)} I (0)
B L Y B : S- ts " H-events
@© 22 even
b 22
T}

20
5 ol N  —— N 18 S and H events: two separate sets of events (different matrix elements)
S Integral = S+H is positive — but individual events can have negative weights
[
> pri—u N
S 12 900 Borns, Reals, Counterterms, and ~half of
o0/ [ ooot— RO — virtual Loops contributions involve LO matrix
2 Soot elements that we already ported to GPUS!
o 5 500 yp '
2 Bl oooooo ooooo ,,,,,,
[}
o ozoZog 500 Only ~half of Loops need a GPU port
0- 400G AOLCLO (here: ninja) or would remain on the CPU
Dlsts hlek (less than 10% overall in this example)
Z. Wettersten P

* Our first priority for NLO: move the NLO madevent framework from a single-event to a multi-event API
— And replace the Fortran ME calculations (in Born, Reals, CTs and part of Loops) using the CUDACPP ME bridge
— Technicality: keep strict lockstep processing in cleanly separate FKS sectors [thanks to Stefano Frixione for a useful chat!]

» Porting loop packages like ninja to NLO will become important (Amdahl’s law...) but is not the first priority
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Wishes for the future — interaction with other generator teams

Some discussions with other generator teams have already started — non-exhaustive list of examples below

POWHEG (E. Re, S. Alioli, C. Oleari)
— Integrate MG5AMC GPU/SIMD MEs into POWHEG (status: interest confirmed - technically feasible, need time/effort)

SHERPA (S. Hoeche, M. Knobbe, E. Bothmann) + ATLAS (J. McFayden)

— Detailed comparison of MG5AMC and SHERPA (status: interest ~confirmed? — need time/effort)
« Compare generation speeds (with and without GPU/SIMD) for a few benchmark processes relevant to ATLAS and CMS
» Understand the impact on speed and precision of technical choices (Berends-Giele recursion relations, helicity sampling/summing...)

PYTHIA (P. lliten)
— Porting of parton showers and/or minimum bias to GPU/SIMD? (status: wish — interesting technical challenge, branching)

HERWIG (S. Platzer)
— Integration of MG5AMC GPU/SIMD [complex] amplitudes, rather than [real] MEs (status: wish — heavier technical work)

My personal thanks to the organizers of Les Houches 2023 for a memorable experience! © ECOLE DE
DES HOUCHES
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Lessons learnt for other MC generators?
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What is a MC ME generator? A simplified computational anatomy

For each event:

Monte Carlo sampling: randomly generate and process
MANY different events (‘phase space points”)

This can be parallelized (SIMT/SIMD and multithreading) G

MC MATRIX

>

1.
Output: random numbers

2

PSEUDO\RANDOM ELEMENT
: GENERATOR
(e.g. MG5aMC(C)

Input: random numbers
Output: particle 4-momenta

3

Input: particle 4-momenta
Output: Matrix Element (ME)
CPU BOTTLENECK

(NB: for non-physicists in the
room, the “Matrix Element” is an

element of the scattering matrix...

not a linear algebra calculationt!)

@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs

PHASE SPACE
SAMPLING SHOWERING AND
onal HADRONIZATION
+ optional event cuts GENERATORS
g (e.g. PYTHIA)
= E PARTON
: SHOWERS
PHASE SPACE W
SAMPLING WEIGHTED EVENTS i::f| HADRONISATION
OPTIMISATION {EVT_i, W_i} i AND DECAY
4 i w
._‘ W W H | I
. MONTE CARLO MONTE CARLO ek FILTERING
INTEGRATION UNWEIGHTING
: = HE W
H w HE DETECTOR
(AVG W_i, MAX W._i) {EVT_i, W_i=1} :
: (GEANT4)

Physics output: cross-section and LHE event file

Event Generator Workshop, CERN, 13 Nov 2023

(at least at LOY)
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MG5aMC data parallelism: design for lockstep processing!

* In MC ME generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

PSEUDO RANDOM Py
g NUMBERS
9| esosc00e [\ ~]]
g +
= PHASE SPACE Lo
%5 SAMPLING | i
: MOMENTA
— ]
5 GPU \ time | It
n
SIMT CPU I A1 ‘ A2 ‘ A3 ‘ Ad I A+4
X ELEMENS | SIMD R ||
v v [riee1 [revsz [ o-ms mast] |[[re=ed]
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)
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ANY ME event generator Is a great fit for GPUs and vector CPUs!

(at least at LOY)

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

* From a software workflow point of view, these are used in two rather different cases:

g

—|  Dataparallelism (NB: MULTI-EVENT API) |

MC SAMPLING

INPUT Q@

ME event generators*
(before ME calculation):
- MC integration
(cross sections)
- MC generation
(event samples)

SAME CALCULATION
ON DIFFERENT DATA!

OUTPUT

[@ Lockstep processing
Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

INPUT MC DECISIONS [@
Detector simulation (Geant4)
- Particle/matter interaction
DECISION

(when? how?)

@ - Particle decays (when?)

»

A 4

OUTPUT

_ _ Event generators*
Stochastic branching I (after ME calculation):
Bad for SIMT/SIMD_§ _ MC unweighting (keep/reject)

Parton showers (PS)
- Fragmentation and decays
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Do's and dont's - two simple recommendations

* (1) Design computational units with well-defined inputs and outputs!
—Beware of hidden inputs and outputs from common blocks and static data...

/JCOMMON/... mp | S ON m—) /COMMON/...

REENTRANT FUNCTION
N q (NO STATE! THREAD SAFE!) ‘ ouT

* (2) Keep data parallelism in mind from the start: move from single-event APIs to multi-event APIs!
—Well-defined input array of many events, well-defined output array of many events

1IN mmmp | PROCESS-eN==vENT | @) 1 OUT
An additional technicality: prefer Structure-of-Array
‘ (SOA) memory layouts for the inputs and outputs!
[Strictly needed only internally for SIMD and useful for
N IN PROCESS N EVENTS N OUT GPUs, but good to have also in the API of the function]

If vou design a new Monte Carlo from scratch, these are MUST's, not SHOULD's!

UCL 3\
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From single-event to multi-event APIs: some specific examples

* 1. MG5AMC at LO: the work described in this talk!
— This was all the work Olivier had to do on the madevent Fortran framework (to interface to the CUDACPP “bridge”)

« 2. MG5AMC at NLO: the work we are planning!
— This is the work Zenny and Olivier will do on the madevent Fortran framework (to interface to the CUDACPP “bridge”)

« 3. POWHEG + MG5AMC: the work we plan to collaborate with!
— This is the work the POWHEG team will do on their framework (to interface to the MG5AMC CUDACPP “bridge”)

1IN s | PR T [mmm) 10UT

FORTRAN:
RANMAR

FORTRAN:
MADEVENT
N IN PROCESS N EVENTS N OUT

MOMENTA

MATRIX ELEMENTS MATRIX ELEMENTS
LTI

UCL 5
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What about loops? And how many are N events?

 You will still need to loop over multiple sets of N events
—And the internal implementation of N-event processing may still involve some loops!

(N x M EVENTS) ql
4 NIN PROCESS N EVENTS N OUT
LOOP OVER 1..M o 4
- ‘ ...0ne more item on our to-
do list for next year...
"Process N events": three implementation examples (there can be more!) (also because so many

1. CPU scalar: internally loop over N events, process each one individually events may lead to biases)

2. CPU vector: hold the events in a SIMD vector of size N,
3. GPU kernel: each of the N events is processed by one of N GPU threads

* N should be at least as big as the minimum number of ev or which strict lockstep is required
—On a CPU: number of variables in a vector reqi most complex case: 16 floats in a 512-bit AVX512 register)
—[On a GPU: strictly speaking, number of threads (typically: 32) in a GPU “warp” ]Dwm e

128
s - = | (2560 FPB4 cores)

- Our present implementation: number of threads to “fill” the GPU (typically: 16k, up to 500K) oo

::::::
anananan

* NB: I focus on event-level parallelism, but other options exist
—In MG5AMC we will investigate using 1 GPU thread per helicity per event...

gg—ttgg : 5E5 MEs/s
for 16k MEs in parallel

-“r f U i
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Helicity amplitudes — same code in CUDA and in vectorized C++

- CUDA: scalar complex —

- C++, no SIMD: scalar complex —

- C++, with SIMD: vector complex —
P X 2,

Formally the same code for three back-ends (cxtype sv represents three types)

typedef thrust::complex<fptype> cxtype; // two doubles: RI
typedef std::complex<fptype> cxtype; // two doubles: RI
class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA)

const cxtype_sv V3[], // input:
const cxtype COUP,

cxtype sv*® vertex ) [/ output: amplitude
{

mghebug( @, _ FUNCTION__ );
const cxtype cI( ©., 1. );

(Fifa] = (F2[2] = (v3[2]

(*vertex) = COUP * - cI * TMPO;
mghebug( 1, _ FUNCTION _ );
return;

}

__device
void FFV1_8( cnnchcxtype_svlFl[]; // input: wavefunctioni[e]
const cxtype_sv F2[], f/ input: wavefunction2[6]

wavefunction3[6]

—

I IXXKXX ]

l. OXXXXX 1

2. FFV1PO_

# 1 FFV1_0:
- DRXXRX helicity amplitude
% revi o || for the yp*u- vertex
.30xxxxx Automatically
al generated!

const cxtype sv TMPO = (F1[2] * (F2[4] * (v3[2] + V3[5]) + F2[5] * (V3[3] + cI = (v3[4]))) +
(F1[3] * (F2[a] * (v3[2] - cT * (v3[4])) + F2[5] * (v3[2]
- v3[5])

- V3[5])) +
- F2[3] * (v3[3] + cI * (v3[4]))) +

“+" is the usual sum of two
(thrust/std) scalar complex,
or the user defined sum of
two vector complex

F1[5] = (F2[2] * (-V3[3]_CI ¥ (va[4])) + F2[3] * (v3[2] + v3[5])))));

inline
cxtype_v operator+( const cxtype v& a, const cxtype v& b )
{

return cxmake( a.real() + b.real(), a.imag() + b.imag{) );

}

#ifdef __clang__

C++ SIMD: gcc / clang

. . 1
compiler vector extensions ****

#endif

typedef fptype fptype_v _ attribute_ ((ext_vector_type(neppV))); //

typedef fptype fptype v _ attribute  ((vector_size (neppV*sizeof(fptype)))); //

RRRR

/

RRRR

7
w A. Valassi — Reengineering MadgraphS_aMC@NLO for GPUs and vector CPUs
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vCHEP — 19 May 2021 13

tyvpedes sycl:ivec<fptvpe,

Event Generator Workshop, CERN, 13 Nov 2023

* Old slide! The new code is
different, the idea is the same!

 Formally the same code for
CUDA and scalar/vector C++

—hide type behind a typedef
—add a few missing operators

SIMD in CUDA/C++ uses
compiler vector extensions!

Flexible design: being reused also in
the vectorized SYCL implementation

MGONGPU_MARRAY_DIM> fptype_sv;
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Conclusions
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Conclusions

Our journey to port MG5AMC LO calculations to GPUs and SIMD is starting to bring fruits (see the CMS talk!)
— It has been long (3+ years) and challenging, but it has been fun!
— We still have a few things to iron out before a “proper” release — and many optimizations are still possible after that!

We have demonstrated that near-perfect lockstep processing in LO ME event generators is possible
— A typical factor 4 speedup on CPUs from AVX2 SIMD in double precision, much more than that on GPUs
— We accelerated the ME calculation so much, that previously unimportant components become the bottleneck (Amdahl)

Our journey to port MG5AMC NLO calculations to GPUs and SIMD is just starting and will also be long (and fun)!
— We have indications that porting the bulk of NLO calculations will be feasible using our LO tools
— Porting the packages providing virtual loop calculations will be harder, but is not our first bottleneck and priority

Any Monte Carlo ME event generator (at least at LO) is a great fit for data parallelism using GPUs and SIMD
— We would be eager to collaborate with other MC teams (to help them interface with MG5AMC or reengineer their code)

We believe that this work is essential to fully exploit the HL-LHC physics program, and that of future colliders

I UCL /3
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Our Iinternal Fortran-to-C++ interface: multi-event and stateless!

O O O 0O O 0O O O O O 60O 60O

PB

RIDGE: the

MOMENTA: the

Execute the matrix-element calculation "sequence" via a Bridge on GPU/CUDA or CUDA/C++.

memory address of the C++ Bridge

input 4-momenta Fortran array

input Gs (running QCD coupling constant alphas) Fortran array
input random number Fortran array for helicity selection

input random number Fortran array for color selection

input Feynman diagram to enhance in multi-channel mode if 1 to n (disable multi-channel if @)

output matrix element Fortran array
output selected helicity Fortran array

output selected color Fortran array

SUBROUTINE FBRIDGESEQUENCE(PBRIDGE, MOMENTA, GS,

GS: the
RNDHEL: the
RNDCOL: the
CHANID: the
MES: the
SELHEL: the
SELCOL: the
INTERFACE
&

RNDHEL, RNDCOL, CHANID, MES, SELHEL, SELCOL)

INTEGER*8 PBRIDGE

DOUBLE PRECISION MOMENTA(*)

DOUBLE PRECISION GS(*)

DOUBLE PRECISION RNDHEL(*)

DOUBLE PRECISION RNDCOL(*)

INTEGER*4 CHANID

DOUBLE PRECISION MES(*)

INTEGER*4 SELHEL(*)

INTEGER*4 SELCOL(*)

END SUBROUTINE FBRIDGESEQUENCE
END INTERFACE

This outputs the squared sum of
amplitudes (real number)

As discussed with Simon, for
HERWIG and other generators
it may be useful to also expose
an API that gives the patrtial
amplitude (complex number) for
a given colour structure
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MG5AMC is not alone — SHERPA on GPU (BlockGen)

107! g

T T T T T
BlockGen-COx, 7|

Lo-af| = PG00, ey s * Note: unlike MG5aMC, based on Feynman diagrams,
[ e SHERPA uses ~Berends-Giele recursion relations

—Allows computations with more final-state jets

1074
1077 F

1070 ¢

Time per event [s]

* No ongoing effort on CPU vectorization (yet)

1077 F

T

* Planned Les Houches project: a detailed comparison

10—9.- 1 | 1 1

! . ; : L . ! of software performances of MG5AMC and SHERPA
o — Tentative process list: pp to tt(0-3jets) or Z(0-3jets)
igure 7: The timings for various -based algorithms are compared as a function . .
of shuon multplicits. Al algoritbms were ruron an NVIDIA V100 (16.GB global —Previously, an old wish of the HSF generator WG
memory, 5, cores, cache). . . . . .

1 5,120 CUDA cores, BIAAKB 12 cache) —(NB: not a comparison of physics results or distributions)
From http://dx.doi.org/10.21468/SciPostPhysCodeb.3 M
More recent results were presented in June 2023 ECOLE DE
in Les Houches by Max Knobbe PHYSIQUE

DES HOUCHES
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http://dx.doi.org/10.21468/SciPostPhysCodeb.3

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

ALEPH Collaboration, Measurement of the W mass by

R n I t n
direct reconstruction in eTe” collisions at 172 GeV, Phys

1 . G e N e rate S|g N al Sam p | e at Href’ Wlth Wl( Href) = 1 Lett. B 422 (1998) 384. doi:10.1016/S0370-2693(98)00062-8 4

|%(HEW9FWapflapf25p?:pi ) | ?
0 ‘ Snanassses 1/'1"”:‘(1'3”\7&!’FW): MC pMC 1 2 3 _4))|2
(By definition, background does not depend on 0) _ | ALEPH L (myS, I, pi.pi.plp}) |
2. Full detector simulation

(MC truth event properties x,("'¢) — observed event properties Xx;)

s
=]

Old technique, renewed interest!

Events per 1.5 GeV/c’
.
5

0 F

3. Reweight each event by matrix element ratio
Prob, (x(true) . x(true)y|2
wZ(Q) — (9)( - ) — ‘M( ,X% t )‘ 0 .74 76 78 80 82 84 86
PrOb(Qref) (Xz(true)) ‘M (Qrefg XE rue))‘Q My, (GeV/ch)

« Advantages of reweighting: savings in computing costs (no detector simulation), fewer statistical fluctuations

* In practice for MG5AMC: read in an LHE file, add weights, write back the modified LHE file

— Will use the new matrix element engine in CUDA/C++
— For further details and a status report: Zenny’s talk (and upcoming paper) at CHEP 2023

« Theoretical and technical challenges
— NLO reweighting (see O. Mattelaer, https://arxiv.org/abs/1607.00763)
— Coverage of phase space in the new parameter set
— Reweighting for a given event-by-event helicity and color
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AV

Reweighting and weight derivatives in parameter estimation

1 8"&)?;
« Weight derivative: event-by-event sensitivity to the measured parameter Yilo = (J 89)
v 0

 First: makes it possible to determine the limit error with an ideal detector, and how much (0 to 1) we do worse
—with a given luminosity at a FCC-ee, what is the best theoretically achievable measurement on Higgs couplings?

Knowing one’s limits: maximum achievable

information with an ideal detector Niot Stot e
|:> . _ ideal) __ 2 __ 2 FIp— 2 _ (49 S o 100%
- ldeal acceptance, select all signal events S_ =S, Z = Y = Y Z{ideal) (A0 — ¢
- Ideal resolution, measured v; is that from MC truth i—1 i—1

(implies ideal rejection of background events, »=0)

» Second: can be used as a basis for an “improved optimal observable” ML method

Data observable

Weight Derivative event properties xPATA _ _
Regression https://doi.org/10.1051/epjconf/202024506038
|:> |:> Fit WDR regressor https://zenodo.org/record/3715951
,Yi(MC truth) — q( Xi(MC) ) qi(DATA) = q( Xi(DATA) )

qM9 = q( M)
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— Memory layouts — AOS, SOA, AOSOA

CUDA/C++: Matrix element calculation (simplified example)

MEKERNELS — inputs[4*Npar*Nevt] = (X,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)
— outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

MATRIX ELEMENTS

Example: Npar=6 patrticles for the 2—4 process gg—ttgg

We have experimented with three possible memory layouts for momenta

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)
We are using AOSOA’s as the current default — but this is still largely configurable

* For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
—We use an AOSOA with Nepp equal to the SIMD vector size NeppV — and an aligned malloc is needed too!
—For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

* For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
—We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)
—For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

« Coding for SIMD is more complex than coding for GPUs...
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Monitoring GPU memory access — NSight Compute

» Explicitly collect two relevant profiler metrics in NSight Compute
—“requests” : [1tex__t requests_pipe_Isu_mem _global op Id.sum
—“sectors” (i.e. transactions, network roundtrips): [1tex_ t sectors pipe Isu_mem_global op ld.sum
—this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

'b eemumuAY_cu_0814_1726_b16384 t32 i12_BASELINE.ncu-rep X :'.b eemumuAV_cu_0814_1725_b16384_t32 i12 SOA.ncutep X l':beemmmAV_cu_Oe14_1721_b16384_t32_i12_AOS.ncufep X

Page: Details v | Launch: 3- 502 -sigmaKin v ¥ ~ AddBaseline |~ | ApplyRules Copy as Image
Current 502 - sigmaKin (16384, 1, 1)x(32, 1, 1) Time: 632.13usecond Cycles: 775,713 Regs: 152 GPU: Tesla V100-PCIE-32G8  SM Frequency: 1,23 cydefnsecond CC: 7.0 Process: [22259] gcheck.exe ® © 0
BASELINE ASA 502 - sigmakKin (16384, 1, 1)x(32, 1, 1) Time: 584.90 usecond Cycles: 716,813 Regs: 152 GPU: Tesla V100-PCIE-32G8 SM Frequency: 1.22 cydefnsecond CC: 7.0 Process: [22731] gcheck.exe

-

~ Command line profiler metrics O

11tex__t_requests_pipe 1lsu _mem_global op_ld.sum [request] 1,527,808 (+0.00%) litex_t_sectors_pipe_lsu_mem_global op_ld.sum [sector] 39,753,533 (+290.86%)

 Profile AOS against the AOSOA baseline
—same number of “requests” in AOS and AOSOA
—AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)
—in other words: AOSOA provides coalesced memory access, AOS does not
—for what it is worth (not much!), the actual slowdown in this e*e™—p*u~ example was only 7% however
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https://github.com/madgraph5/madgraph4gpu/issues/16

Inside the ME calculation: Feynman diagrams, colors, helicities

2
IM| (p)—yj

2

Ae{hel}

ce{col}

2
> M

de{diag}

Given the momenta p of initial+final partons in one specific event
Sum over all helicity combinations A of initial+final partons
Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given A and ¢

In_practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity ) compute partial amplitudes J' for each color ordering permutation f (sum diagrams relevant to f)

(@) =), M)

de{diag}

Example for gg— ttggg: 1240 Feynman diagrams (using helicity amplitudes)
This takes ~40% of the CPU time for this process

2. (for each helicity ) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

IMP()= )

Ae{hel}

|

D L@ (©)fUm)*

fg

Example for gg— ttggg: 120 color ordering permutations, 120x120 matrix
This takes ~60% of the CPU time for this process

3. sum over helicities [Example for gg— ttggg: 128 helicities (before and after filtering)]

Each step computes many events p in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.
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C++ vectorization — why choose Compiler Vector Extensions?

typedef fptype fptype v _ attribute  ((vector_size (neppV*sizeof(fptype))));

Portable — available in gcc, clang, icpx (from clang) with minimal differences
—Do not require any external libraries or tools (VC, VCL, VecCore, xXSIMD, UME::SIMD, or SYCL...)

Powerful, but easy to use
—No need to debug auto-vectorization when it does not vectorize
—As powerful as intrinsics, but much easier to write (higher-level abstractions)

Intuitive — CVESs force you to think in terms of vector types!

Minor disadvantage — no vector complex type out of the box
—But it was easy to write it in our case (RRRRIIII memory layout) as we only need + - x =
— A few extensions for Boolean vector masks were needed, too

One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype Vv*...

HUGE THANKS TO SEBASTIEN PONCE for his Practical Vectorization lectures mentioning CVES!
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https://indico.cern.ch/event/1100351/contributions/4629205

Monitoring lockstep — GPU NSight compute, CPU disassemble

» GPU: explicitly collect one profiler metric in NSight Compute
—"“branch efficiency” : sm__sass_average_ branch_targets threads_uniform.pct

—old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency,
alternative with minor forced divergence has 96% efficiency (and is 20% slower)

gh eemumuAY_cu_0513 1108 _b2048_t256_i1_prof2default.ncu-rep X ) eemumuAY_cu_0513_1107_b2048_t256_i1_prof2divergent.ncu-rep >

Page: Details * Launch: 4- 519 - sigmakin = % * AddBaselne ~  Apply Rules Copy as Image

Current 519 - sigmaKin (2048, 1, 1)x(255, 1, 1) Time: 475,93 usecond Cycles: 552,229 Regs: 128 GPU: NVIDIA Tesla V1005-PCIE-326 cycdefnsecond CC 7.0 Process: [12414] gcheck.e e

B no_DIVERGENCE 519 - sigmakin (2048, 1, 1)x(255, 1, 1) Time: 373.63usecond Cycles: 457,720 Regs: 120 GPU: NVIDIA Tesla V1005-PCIE-32¢ cydefnsecond CC 7.0 Process: [12636] gcheck axe

» Command line profiler metrics
11tex_ t requests_pipe_lsu_mem_global_op_ld.sum [request] 917,584 (+48.88%) | 19tex t sectors nipe 1su mem elobal op 1d.sum [sector]
launch__registers_per_thread [register/thread] [ 74)  sm__sass_average_branch_targets_threads_uniform.pct [thread]

» CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)
—but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

. ACAT2022 madevent
#Symbolsin.o | ssEa2 | Avxe | Avxs12 | Avxs12 KAk -
= $ events/ IMEs
Sl (xmm) (ymm) (ymm) (zmm) —i31 o pss
o uild type 88 —>1gg precision [MEs/sec]
'% Scalar 4534 0 0 0 Fortran(scalar) double | 2.30E3 B Lo |
I](lUBLE
o0 SSE4.2 12916 0 0 0 C++/none(scalar) double IO L0\ FLon FLOw FLO|
Qi | DOUBLE | DOUBLE |
% AVX2 0 10630 0 0 C++/sse4(128-bit) double .
: C++/avx2(256-bit) | double _DOUBLE___DOUBLE___DOUBLE | _DOUBLE ]
8 256-bit AVX512 0 10366 12 0 ( . ) RPN L0/ FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOATFLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT
© C++/512y(256-bit) | double
<1 | 512-bit AVX512 0 1267 60 9910 C++/5122(512-bit) | double
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https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt

Code generation: how did we bootstrap the project?

Code is auto-generated = lterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python

— The more particles in the collision, the more Feynman diagrams and the more lines of code

>_<,< >_<<< >_< >_g< Process LOC functions function calls
- - : A ete” - utum 776 8 16

W IE I L g9 — 1 839 10 22 (1)

: gg — iy 1082 36 106
P Sl e B gg — tigg 1985 222 786 e

N
O N \\ \\

NN

N
N 2

» Goal: modify code-generating code (add CUDA, improve C++ backend)
— (1) Start simple: bootstrap with e*e—u i (two diagrams, few lines of C+ cod
—(2,3) Add CUDA and improve C++, port upstream to Python meta-code L
— (4) Generate more complex LHC processes gg—» tt, ttg, ttgg
— Add missing functionality, fix issues, improve performance, iterate

e M e H \\\
l. IXXXXX 1. IXXXXX l. IXXXXX 1. IXXXXX

PRODUCE
iy (4
3. FFV2_4_0
2. FFV2_4_3
1. OXXXXX 1. OXXXXX \ AUTO-SENERTED

3.7rvie  (b)
2. FFV1PO_3

1. OXXXXX 1. OXXXXX




Code generation: from many “epochs” to a single evolving “epoch”

MADGRAPH

OLD MODEL PRODUCE
FIRST

(2020- early 2021)

start new
“epoch”
\\ MADGRAPH

PRODUCE
v (4

AUTO-GENERATED
CUDA/C++ CODE

... and beyond

(1) MG5AMC Python framework, Fortran templates:
“‘upstream” https://github.com/mg5amcnlo/mg5amcnlo

(2) CUDACPRP plugin, post-generation patches,
generated CUDA/C++ physics processes:
our https://github.com/madgraph5/madgraph4gpu

Code generation infrastructure

- Python framework and “cudacpp” plugin WIP to-do before a release:
- Fortran, C++, CUDA templates full port from madgraph4gpu

- Post-generation patches (temporary...)

to mg5amcnlo (remove post-
generation Fortran patches,
add CUDACPP upstream)

(3) re-generate

Automatically generated code
- Fortran framework (Madevent)
- CUDA/C++ Matrix Elements

NEW MODEL
(since end 2021)

(1) develop on top of auto-generated code
(2) backport immediately to code generation infrastructure

UCL /2,
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Why focus on complex processes? Compute >> memory!

CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost
* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

» Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

* The time cost of data transfers is relatively high in simple processes
— ME calculation on GPU is fast (e.g. e*e—pu*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are ( number of MEs ) / ( time for ME calculation + ME copy )

i ‘ 00 CudaFres (325,083 me] -Il llllllllllllllllllllea&»«S i
1 adarres @m SEIRERE ) (=)
ZOOM (ME calculation ~ ME copy)

efe—>uu

NVTX 0d SGoodHel [1,477 ms] hggum(ssa.zssu-] 3 CpOTHmes [366.033 ps] 4a € umploop [3:875 m4
CUDA AP ) cud: anz Dy )

» But the time cost of data transfers is negligible in complex processes

—ME calculation on GPU is slow (e.g. gg—>_tfgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typica/ LHC collision processes
wx R e o o

chchch

gg—tigg

‘{ERN A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 15
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* We are lucky: the more
complex the physics process,
the less relevant is the cost of
GPU-CPU data copies!

— Similarly (later): the more
complex the process, the less
relevant is the overhead from
scalar Fortran in madevent!

—And the fewer events in flight
needed to fill the GPU...

e In this talk | mainly give
performance numbers for
complex processes like

gg—>ttgg or gg—tiggg
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Filling the GPU — minimum number of threads (events in flight)

Matrix Elements / second hitps://doi.org/10.1051/epjconf/202125103045 (vVCHEP 2021)

256
8ES8 128

e 64
e 32

Threads
GEB PerBlock

4E8

2E8

Double precision ]
NVidia V100 T
(2560 FP64 cores) ol ®
o L
! ete—u*u : 7E8 MEs/s
. " for 524k MEs in parallel

- o o Oy *r = ) y . 4 = i y v
v = - & o A | s . M &

ThreadsPerBlock * BlocksPerGrid

Matrix Elements / second

5E5

256 | Double precision O 0 QO O C

~ e | NVidia V100
45 - 2 | (2560 FP64 cores)
Threads
PerBlock
3E5
2E5
1E5 .

gg—ttgg : 5E5 MEs/s
for 16k MEs in parallel

- ) 0 n " = n -

ThreadsPerBlock * BlocksPerGrid

« We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

« But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
—Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event across many kernels)?
—Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?
—Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?
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All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

 Helicity filtering — at initialization time, compute the allowed combinations of particle helicities
—This is computed in CUDA/C++ using the same criteria as in Fortran

» “Multi-channel” — single-diagram enhancement of ME output

|A;]”
—This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003) Ji

> A

2 ‘Atﬂt‘g

 Event-by-event running QCD coupling constants a4(Q?)
—The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event

« Event-by-event choice of helicity and color in LHE files
—Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

—NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)
* We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++
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https://doi.org/10.1088/1126-6708/2003/02/027

Benchmarking — Madgraph and the HEP-SCORE project

« HEPscore: the new HEP benchmark for compute resources, replacing HepSpec06
—Based on reproducible HEP workloads (GEN, SIM, DIGI, REC...) within docker containers
—The first version HEPscore23 should become production in April 2023 for (x86 and ARM) CPUs

* The aim is to benchmark a fully loaded server: all CPU cores, and eventually all associated GPUs
—(and ideally measure how well an application is doing compared to the theoretical power of the server...)
—fill all CPU cores by a combination of application multi-threading and/or several identical copies/processes

« A first container based on our Madgraph-on-GPU has been prepared
—Very useful because it gives the same physics results on CPU and GPU: may compare them to each other!
—And eventually may be used to evaluate heterogeneous processing on CPU+GPU...

* The plots on the next slides are based on this HEPscore container: several identical copies/processes
— (A multi-threaded CUDACPP version exists but not optimized yet — SYCL and Kokkos also provide MT)
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Some ideas for heterogeneous processing

E 0.5 - gt00256 Nvidia V100 GPU
3] ilver 4216 4-core CP ‘At ;
% s - Silve 6 4-core CPU Throughput variation as a function of
& GPU grid size (#blocks * #threads)
£ 0.4
2 ..
o 0.3 This is the number of events
— processed in parallel in one cycle
_EL 0.2 = ggttgg-sa-cuda-d-inl0 {njobsCPU=1})
g‘ ggttgg-sa-cuda-d-inlD (njobsCPU=2)
_?: 0.1 =~ ggttgg-sa-cuda-d-inld (njobsCPU=4)
= =— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)

O-G 'u' LA | T L | T L L | T T T T T

102 103 104 107 106 107

nblocksGPU * nthreadsGPU

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

» Blue curve: one single CPU process using the GPU
— For gg—ttgg, you need at least ~16k events to reach the throughput plateau

* Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
— Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU
— The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced
— (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)
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Lockstep beyond event-level parallelism

- Efficient data parallelism (lockstep processing) requires the same function computed for different data
—This is true in MG5AMC at the event level (different events i.e. different phase space points)
—But it is also true at the sub-event level (different helicities within the same event)

* We are evaluating the move to a different data parallelism strategy on GPUs
— Currently: one event (sum over all helicities) per GPU thread
—In the future: one helicity of one event per GPU thread?

(@) = ) M)

de{diag}

~

M|~ (p

!

Y (L) (©)F ()¢
Iy

« Advantages:
—You can fill the GPU with much fewer“events in flight” — more balanced sampling/integration in MadEvent
—This is a prerequisite for movingthe color matrix to externally-launched cuBLAS and tensor cores
—This is also a prerequisite it we want to evaluate much smaller kernels

* From all Feynman'diagrams in one kernel to one Feynman diagram per kernel?
» Which might decrease register pressure and increase kernel occupancy, but would require more global memory access

[ UCL;’V:‘?“
A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs Event Generator Workshop, CERN, 13 Nov 2023 Unlvee @ 56/38

de Louv:




Issue #2
Data-parallel paradigms
(GPUs and vectorization)

Generators lend themselves naturally

to exploiting event-level parallelism

via data-parallel paradigms™*

- SPMD: Single Program Multiple
Data (GPU accelerators)

- SIMD: Single Instruction Multiple
Data (CPU vectorization: AVX...)

The computationally intensive

part, the matrix element f(x;), is
the same function for all events i
(in a given category of events)
Unlike detector simulation (where
if/then branches are frequent and
lead to thread divergence on GPUs)

—3

—

(no input data)

Pseudo-random numbers

Uniform distribution in [0,1]
One event i: vector 7, (dimension d)
Draw d X N,,,o; numbers r (N, . weighted events)
00000000

JIHTI

Phase space sampling

For each event i, map 7: to physical phase space %; = H(7)
The resulting %; are distributed according to a known p.d.f. g(¥)
Compute the value of g(¥;)

Wi

Matrix element* calculation

For each event i, compute the differential cross-section f(;)
Compute the weight w;=f (%;)/g(%;)

- e e e e e e

Monte Carlo unweighting

—

Monte Carlo integration

For each event i, draw r; in [0,1]
Accept if r; < w; /w,,..., reject otherwise
— Output: N,,,,,, unweighted events

Average of weights [ = %Z w;
Output: I (estimator of [ x dx)

Potential interest of GPUs
Faster (cheaper?) than on CPUs

@ A. Valassi — Accelerating Madgraph5_aMC@NLO using C++ vectorization and GPUs

- Exploit GPU-based HPCs PUS compute one “matrix element” in the S-matrix (scattering matrix)
5aMC ot glide for the transition from the initial state to the final state
ne
or -5
V\”P L talk) **This simple event-level parallelism can also be used as the basis
(p1anﬂ9 for task-parallel approaches (multi-threading or multi-processing)

*Note for software engineers: these calculations do involve some
linear algebra, but “matrix element” does not refer to that! Here we

https://doi.org/10.5281/zenod0.4028834
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