Challenges and Opportunities given new Hardware

Stephan Hageboeck, CERN IT Nov 2023

Motivation: MC Event Generators and LHC

- ► HL-LHC computing needs expected to outgrow resource growth
	- Need R&D on software to improve efficiency and port it to new resources, such as GPUs at HPC centres
- MC generators rarely adapted to vector computations or GPUs
- ► Potential for more events given the same hardware

Motivation: MC Event Generators and LHC

- ► HL-LHC computing needs expected to outgrow resource growth
	- Need R&D on software to improve efficiency and port it to new resources, such as GPUs at HPC centres
- MC generators rarely adapted to vector computations or GPUs
- ► Potential for more events given the same hardware

Some Hardware Examples

SIMD and GPUs in Flynn's Taxonomy

Single Instruction Single Data

Single core executing one instruction after the other

Multiple Instruction Multiple Data

- E.g. multi-core processor
- Multiple independent threads of execution

Single Instruction Multiple Data / SIMT: "Multiple Threads"

- ► **GPUs** / vector units on **CPU_s**
- ► Many threads running the same instruction

SIMD and GPUs in Flynn's Taxonomy

Single Instruction Single Data

Single core executing one instruction after the other

Multiple Instruction Multiple Data

- E.g. multi-core processor
- Multiple independent threads of execution

Single Instruction Multiple Data / SIMT: "Multiple Threads"

- ► **GPUs** / vector units on **CPUs**
- ► Many threads running the same instruction

Interlude: Single vs Double Precision

- Single precision: 32 bit
- Exactly represents integers between 0 and 16,777,216 (1.68E7)
- Max: 3.4E38
- ► GPU "with X TFLOPS" usually means single precision
- Double precision: 64 bit
- Exactly represents integers up to 9,007,199,254,740,992 (9E15)
- ► Max: 1.8E308
- With "X TFLOPs single precision", you might get in double:
	- **● 1/32 for consumer grade**
	- **● ½ for data-centre GPUs**

Where can we gain?

Scenario 1: An event generator runs on a "normal" CPU

- If the generator supports AVX2 vectorisation, we can get $4x$
- If the CPU supports certain AVX512 versions, 8x is possible (reality is complicated, though)
- If the generator can run in single precision, double the above

- Scenario 2: The event generator runs on a machine with a GPU
	- Achievable speedup heavily depends on CPU, GPU and workflow running
	- Anything between no speedup and \sim 100x is possible (\rightarrow double-precision perf. of GPU?)
	- HPCs provide most compute power (FLOPS) with GPUs
	- If the event generator is not GPU-ready, a large fraction of the hardware remains unused

WLCG: We can have 4x speed up today

- **ATLAS CMS** ► The Grid supports AVX2 No. of jobs by architecture No. of jobs by architecture (almost) universally S**andwRajdge Ep**ke
Ivy Bridge EP Sandy **Ariene**sEP
Ivy Bridge EP ► First AVX2 CPUs are from Naples Milar Rome AVX2 Haswell Rome 2013 AVX2 Skylake AVX2 AVX2 မြို့
Cascadeမ် ake **VX512** jobs ► Opportunity for 4x **AVX512 AVX512** Cascade Lake speedup unused if we **AVX512** AVX₂ AVX2 AVX2 don't adapt for SIMD Skylake Broadwell Haswell Broadwell ► In single precision, we could
	- A. Sciaba, 2022 <https://indico.cern.ch/event/1072141/>

have 8x speedup

And in the future … ?

- AMD GPUs power Frontier, the #1 Top500
- Computing on ARM with vectorisation?
	- Fugaku #2 runs A64FX with 512 bit vectors
- ► LUMI #3 is running AMD GPUs
- Grace Hopper CPU/GPU hybrid
	- Arm Neoverse CPUs with 128 bit vector registers
	- Hopper GPU
- Computing hardware will become more diverse, so we want event generators that are parallel and vectorised

<https://hacarus.com/ai-lab/20210405-fugaku/>

Modernising a Code for SIMD?

How to get SIMD vectorisation?

1. Write "nice and simple" for loops and hope that the compiler is smart

- a. If it's not smart enough, try a different compiler
- b. Try -ffast-math if the code supports it
- c. Use OpenMP directives

[See some vectorisation examples in C++](https://godbolt.org/z/d6YrnPr4s) or [in Fortran](https://godbolt.org/z/qfK1fcso7)

- 2. Use built-in vector types ($\mathsf{qcc}, \mathsf{clang}$) $\rightarrow \mathsf{Madgraph}$ talk later
- 3. Use vector abstraction libraries, e.g. [VecCore](https://github.com/root-project/veccore)
- 4. Direct low-level vector programming using intrinsics (e.g. [Intel Intrinsics](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512) [Guide\)](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512)

Vectorisation Requirements

Every lane of a vector register must run the same instruction

- Simple branches are possible, though
- ► Number of loop iterations should be computable upfront
- Data should be contiguous in memory: arrays, vectors, spans
- Pitfalls:
	- Unknown / non-inlinable / virtual functions in loop body
	- Loop-carried dependencies
	- Side effects
	- Exceptions (including floating-point exceptions)
	- Pointer aliasing
	- Register pressure, ...

Paradigm shift: Data-oriented design

- ► Dynamically allocating memory breaks vectorisation
	- On GPUs, it is possible but prohibitively slow
- ► It is better to have pre-allocated, contiguous arrays, through which the algorithm iterates efficiently
	- Critical for SIMD
	- Excellent for CPU caches and MMU
	- Most efficient way to load memory on GPU
- \rightarrow Event generators should be converted to exploit data parallelism, and run with batches of events that are densely placed in memory

Typical code transformations

Single-event interface Multi-event interface

```
void computeBatch(std::size_t N) {
  for (unsigned int i = 0; i < N; +i) {
     FourVector in1 = generateParticle(randomGenerator);
     FourVector in2 = generateParticle(randomGenerator);
    FourVector \lceil \text{out1}, \text{out2} \rceil = \text{generateFinalState}(\text{in1}, \text{in2}) randomGenerator);
     double w1 = computePdfWeight(in1, in2);
     double w2 = computeMatrixElement(in1, in2,
                                           out1, out2);
L
    storeEvent(in1, in2, out1, out2, w1 * w2);
\vert \ \ \}}
                                                                     void computeBatch(std::size_t N) {
                                                                        array<FourVector,2*N> in = generateParticles(2, N, 
                                                                                                         randomGenerator);
                                                                        array<FourVector,2*N> out = generateFinalState(in, 
                                                                                                          randomGenerator);
                                                                        array<double, N> w1 = computePdfWeights(in);
                                                                        array<double, N> w2 = computeMatrixElements(in, out);
                                                                     L
                                                                        array<double, N> finalWeight;
                                                                       for (unsigned int i = 0; i < N; +i) {
                                                                         finalWeight[i] = w1[i] * w2[i]:
                                                                     \begin{array}{c} \end{array} storeEvents(in, out, finalWeight);
                                                                     }
```
Modernising a Code for GPUs?

Anatomy of a GPU

- ► GPUs consist of many simple processors ("SMs", "Stream processors")
- ► Each SM runs SIMD-like instructions
- ► Work is sent as a grid of "threads" and "blocks"
- ► ComputeKernel<<<1,1>>>();

What happens on the GPU

Nvidia Tesla T4

- ► GPUs consist of many simple processors ("SMs", "Stream processors")
- ► Each SM runs SIMD-like instructions
- ► Work is sent as a grid of "threads" and "blocks"
-

Anatomy of a GPU

- ► ComputeKernel<<< 40 , 64 >>>();
- Even on the relatively simple Tesla T4, we need **2560 threads** to have "one full wave" of warps that span across the entire GPU
- ▶ For modern GPUs, we are looking at ~ **13'312** (AMD MI250)
- \blacktriangleright \rightarrow Event generators should work on **large batches of data Large ~> 10 000**

Nvidia Tesla T4

Vectorisation GPU Requirements

Every lane of a vector register *thread in a warp* must run the same instruction

- Simple *and larger but expensive* branches are possible, though
- ► Number of loop iterations should be computable upfront *to be fast*
- ► Data should be contiguous in memory *to load fast*
- Pitfalls:
	- Unknown / non-inlinable / virtual functions in loop body *slow the GPU down drastically*
	- Loop-carried dependencies *require slow synchronisation*
	- Side effects *require slow synchronisation*
	- Exceptions (including floating-point exceptions) *are not supported*
	- Pointer aliasing *might create race conditions / leads to slow memory access*
	- Register pressure *slows the GPU down*

Vectorisation GPU Requirements

Every lane of a vector register *thread in a warp* must run the same instruction

- Simple *and larger but expensive* branches are possible, though
- ► Number of loop iterations should be computable upfront *to be fast*
- ► Data should be contiguous in memory *to load fast*
- Pitfalls:
	- Unknown / non-inlinable / virtual functions in loop body *slow the GF*
	- Loop-carried dependencies *require slow synchronisation*
	- Side effects *require slow synchronisation*
	- Exceptions (including floating-point exceptions) *are not supported*
	- Pointer aliasing *might create race conditions / leads to slow memory access*
	- Register pressure *slows the GPU down*

Code requirements for SIMD and GPUs are largely the same!

```
Typical code transformations
void computeBatch(std::size_t N) {
   array<FourVector,2*N> in = generateParticles(2, N, 
                                randomGenerator);
   array<FourVector,2*N> out = generateFinalState(in, 
                                 randomGenerator);
   array<double, N> w1 = computePdfWeights(in);
   array<double, N> w2 = computeMatrixElements(in, out);
L
   array<double, N> finalWeight;
  for (unsigned int i = 0; i < N; +i) {
    finalWeight[i] = w1[i] * w2[i];
\vert \ \ \} storeEvents(in, out, finalWeight);
}
                                                             void computeBatch(std::size_t N) {
                                                                allocateCPU(N, in, out, w2);
                                                                allocateGPU(N, inGPU, outGPU, w2GPU);
                                                                generateParticles<<<B,T>>>(N, inGPU, randomGenerator);
                                                                generateFinalState<<<B,T>>>(inGPU, outGPU,
                                                                                             randomGenerator);
                                                                copyToHost(inGPU, in); copyToHost(outGPU, out);
                                                              L
                                                                array<double, N> w1 = computePdfWeights(in);
                                                                computeMatrixElements<<<B,T>>>(inGPU, outGPU, w2GPU);
                                                                copyToHost(w2GPU, w2);
                                                                array<double, N> finalWeight;
                                                               for (unsigned int i = 0; i < N; +i) {
                                                                 finalWeight[i] = w1[i] * w2[i];
                                                              \begin{array}{c} \end{array} storeEvents(in, out, finalWeight);
                                                              }
                  Multi-event interface
                          (CPU)
                                                                               Multi-event interface
                                                                                       (GPU)
```

```
stephan.hageboeck@cern.ch
```
saaboeck@cern.c **Typical code transformations void computeBatch**(std::size_t N) { array<FourVector,**2***N> in = generateParticles(**2**, N, randomGenerator); $array <$ FourVector, $2*N$ > out = generateF $\frac{1}{2}$ r andom G e array<**double**, N> w1 = computePdfWeights(in); array<**double**, N> w2 = computeMatrixElements(in, out); L array<**double**, N> finalWeight; **for** (unsigned int $i = 0$; $i <$ finalWeight[i] = $w1[i] * w$ $\vert \ \ \}$ storeEvents(in, out, finalWeight); } **void computeBatch**(std::size_t N) { allocateCPU(N, in, out, w2); allocateGPU(N, inGPU, outGPU, w2GPU); generateParticles<<<B,T>>>(N, inGPU, randomGenerator); ateFinalState<<<B,T>>>(inGPU, outGPU, randomGenerator); b Host(inGPU, in); copyToHost(outGPU, out); L array<**double**, N> w1 = computePdfWeights(in); computeMatrixElements<<<B,T>>>(inGPU, outGPU, w2GPU); copyToHost(w2GPU, w2); array<**double**, N> finalWeight; **for** (unsigned int $i = 0$; $i < N$; $+i$) { finalWeight[i] = $w1[i] * w2[i]$; $\begin{array}{c} \end{array}$ storeEvents(in, out, finalWeight); } 23 Multi-event interface (CPU) Multi-event interface (GPU) More complicated memory management Parallel CPU and GPU execution Deal with copy latencies and data dependencies; synchronisation!

Copy latencies and GPUs

- When using GPUs, data must be copied between host and device
- ► **Compute work >> copy work** required for good speedups
- For event generators, this is often the case!
	- Copy four-momenta
	- Compute hundreds of diagrams for thousands of events
	- Copy matrix elements

Branches

- If all threads in a warp have to run the same instruction, how do we branch?
	- **•** The warp is split
	- Threads that don't take the branch are disabled
		- \rightarrow Throughput reduced
- Branching is not the fastest way of using a GPU, but it's OK on modern GPUs
- But event generators don't branch that often …

Vectorisation and GPU wrap up

- ► The code transformations necessary for SIMD and GPU usage are very similar
	- **● Single → Multi-event interface**
	- Generate events in batches; **make N large**
	- Explicit memory management, careful placement of data in arrays
	- \bullet + for GPU: Copying of data host $\leftarrow \rightarrow$ device where necessary
- \blacktriangleright The most efficient way to get there? **A team** of:
	- Experts who know the workflow and data dependencies of an event generator
	- Experts with experience in SIMD and GPU programming

Targeting different hardware?

► Nvidia's CUDA (2007)

- **Extensive documentation, tools, online resources**
- **Exclusively for Nvidia GPUs**
- ► AMD's ROCm (HIP, 2016)
	- Similar to CUDA, but targets AMD GPUs
- ► Intel GPUs with SYCL
- Abstraction frameworks:
	- Program abstract kernels, translate to native GPU language later
	- Target multiple GPU architectures *and* CPUs
	- How to choose between

OpenCL, SYCL, Alpaka, Kokkos, OpenMP, std::par?

Portable GPU codes?

Fortran

 \downarrow

C. Leggett [CHEP23](https://indico.jlab.org/event/459/contributions/11821/)

Portable Parallelization Strategies: Recommendations

Software and hardware are still rapidly changing

- Lots of interactions with API developers in hackathons and to fix bugs
- Results remain preliminary \bullet

API recommendations are very application dependent

- All perform approximately equally for simple kernels \bullet
- Complex algorithms and chained kernels bring out weaknesses of all APIs \bullet
	- interaction with external libraries adds extra complexities
	- even compilation can be an issue

Learning curve / language complexity of APIs not all the same

- std::par \rightarrow OMP \rightarrow Kokkos / SYCL \rightarrow alpaka \rightarrow OMP \bullet
- subjective and dependent on code complexity and previous experience

Porting from Serial CPU code \rightarrow GPU concepts is the biggest hurdle

starting with optimized code is extra challenging

Very hard to extrapolate to next five years or beyond

- Vendors are pushing in different directions (but towards standards)
- Increasing proximity of CPU / GPU / memory will have significant impact

C. Leggett [CHEP23](https://indico.jlab.org/event/459/contributions/11821/)

HEP-CCE

So is it worth the effort?

The reengineering is a lot of work ...

But:

- ► Collaborations that might have looked "unlikely" have been formed successfully between different communities
- \blacktriangleright Old cold gets revisited, new ideas might pop up
- ▶ Better adaptation to new hardware
	- Saving electricity, CO2, hardware
	- Start using the unused SIMD slots of our CPUs
	- **•** Offloading to GPUs is in reach
	- Abstraction frameworks will allow us to adapt to changing hardware landscape

Some real-life examples

Example 1: RooFit

► Converting ROOT's RooFit from single to multi-event workflow:

- 1 year fellow at 30-40% time
- **● 3x speedup (without vectorisation!)**
- Making code autovectorisation friendly:
	- 1 summer student
	- **● 3x → 16x speedup (double precision!)**
- ► GPU offloading with CUDA:
	- 1 technical student
	- **25x 40x on a gaming GPU** (low double-precision performance)

Example 1: RooFit

- ► Converting ROOT's RooFit from single to multi-event workflow:
	- 1 year fellow at 30-40% time
	- **● 3x speedup (without vectorisation!)**
- Making code autovectorisation friendly:
	- 1 summer student
	- **● 3x → 16x speedup (double precision!)**
- ► GPU offloading with CUDA:
	- 1 technical student
	- **25x 40x on a gaming GPU** (low double-precision performance)

Example 1: RooFit

- ► Converting ROOT's RooFit from single to multi-event workflow:
	- 1 year fellow at 30-40% time
	- **● 3x speedup (without vectorisation!)**

Relative Speedup

- Making code autovectorisation friendly:
	- 1 summer student
	- **● 3x → 16x speedup (double precision!)**
- ► GPU offloading with CUDA:
	- 1 technical student
	- **25x 40x on a gaming GPU**

(low double-precision performance)

[J Rembser, CHEP 2023](https://indico.jlab.org/event/459/contributions/11570/)

RooFit: speedup in benchmark fits with BatchMode() relative to old RooFit (1 million events)

See real-life example with an EventGenerator: [Madgraph talk today](https://indico.cern.ch/event/1312061/timetable/#2-the-mg4gpu-project) or [Sherpa talk today](https://indico.cern.ch/event/1312061/timetable/#7-sherpa)

34

Example 2: Can Madgraph run in single precision?

- Computers may lie about precision of floating-point numbers
- [CADNA](https://cadna.lip6.fr/index.php) is a library with special floating-point types to measure precision and instabilities in C++ and Fortran

See [seminar at CERN](https://indico.cern.ch/event/1264290/)

For madgraph, we were wondering if single precision works

 $P(x,y) = 9x^4 - y^4 + 2y^2$

Without CADNA:

P(10864,18817) = 2.0000000000000000 (exact value: 1) $P(1/3, 2/3) = 0.8024691358024691$

--

With CADNA: P(10864,18817) = @.0 (exact value: 1) $P(1/3, 2/3) = 0.802469135802469E+000$

0 UNSTABLE DIVISION(S) 0 UNSTABLE POWER FUNCTION(S) 0 UNSTABLE MULTIPLICATION(S) 0 UNSTABLE BRANCHING(S) 0 UNSTABLE MATHEMATICAL FUNCTION(S) 0 UNSTABLE INTRINSIC FUNCTION(S) 2 UNSTABLE CANCELLATION(S)

dna

Closing Remarks

- ► If you look for speedup opportunities, you find something
- "New" hardware is around since 2013 (AVX2); we should be using it efficiently
- ► Event generators are in a particularly good situation, as multi-event data parallelism caters perfectly to SIMD and GPUs
- ► By converting to multi-event batched workflows, we get ourselves in a good position for what may come in terms of hardware evolution
- ► Double-precision performance of GPUs might be an issue (expensive HW)
- ► The opportunities outweigh the challenges **if both generator experts and performance-oriented people are allowed to prioritise such work**

On OpenMP offloading in Fortran

- GPU offloading of a heavy loop can be trivial with OpenMP > 4.5
	- Both in C++ and Fortran
- It might not be the most efficient (implicit data transfers)
- SIMD for CPU version is similarly trivial: !\$omp simd

```
real, dimension(nx) :: vecA, vecB, vecC
 9
10
       real
                : : sum
       integer :: i
11
12
13
        ! Initialization of vectors
14
       do i = 1, nxvec(A(i) = r**(i-1))15
          vecB(i) = 1.016
       end do
17
18
19
        ! Dot product of two vectors
        !$omp target
20
21
       do i = 1, nx22
          vec(f) = vecA(i) * vecB(i)23
       end do
24
        ! somp end target
25
26
       sum = 0.027
       ! Calculate the sum
       do i = 1, nx28
29
          sum = vec(i) + sum30
       end do
31
32
       write(*, *) 'The sum is: ', sum
33
34
     end program dotproduct
```
<https://enccs.github.io/openmp-gpu/target/>

CPU vs GPU

- ► CPUs:
	- **•** Try to reduce latency of execution
	- \bullet Every core (\sim thread) has its own cache and control unit, several levels of caches
	- Lots of energy and hardware spent on latency reduction
- ► GPUs:
	- Threads **share** control units and a lot of cache space
	- More transistors devoted to data processing
	- $\bullet \quad \rightarrow$ Massive data parallelism
	- $\bullet \quad \rightarrow$ Higher latency

<https://docs.nvidia.com/cuda/cuda-c-programming-guide/>

CUDA Execution Model

- ► **Kernel**: Function invoked on the GPU
- **Grid:** Set of blocks running for a specific kernel
- ► **Block**: Set of threads on the same "streaming multiprocessor"
- **Thread:** Set of instructions to be executed

Memory Latency and GPUs

- If a warp stalls, other warps step in
	- Requires multiple warps / SM
- ► Recommendation: Start with 256 threads – 8 warps – and try other numbers

```
for (int i = index; i < n; i += stride)
   y[i] = x[i] + y[i];
```
► CPUs minimise latency, GPUs hide it

► You need enough work for the GPU to do this successfully

Cache line 0 Cache line 1 Cache line 2 Cache line 3 **Efficient memory access** cache miss DRAM is read in bursts *// Access with stride 1* (e.g. 16 float/int in GDDR6)**__global__** cache hits void k_copy(double* x, double* y, int n) { **for**(int i = threadIdx.x + blockDim.x*blockIdx.x; cache miss (perhaps) $i \le n$; $i \ne b$ lockDim.x $*$ qridDim.x) $y[i] = x[i]$ } cache hits [L. Einkemmer](https://events.prace-ri.eu/event/1154/timetable/#20211004.detailed) $Cache$ line 0 $Cache$ line 1 Cache line 2 Cache line 3 *// Access with larger stride* read **__global__** void k_copy(double* x, double* y, int n) { **for**(int i = threadIdx.x $*$ gridDim.x + blockIdx.x; cache miss $i \le n$; $i \ne b$ lockDim.x $*$ qridDim.x) $y[i] = x[i]$ }

Efficient memory access

```
// Access with stride 1
__global__
void k_copy(double* x, double* y, int n) {
   for(int i = threadIdx.x + blockDim.x*blockIdx.x;
      i \le n; i \ne blockDim.x * qridDim.x)
    y[i] = x[i];}
// Access with larger stride
__global__
void k_copy(double* x, double* y, int n) {
  for(int i = threadIdx.x * qridDim.x + blockIdx.x;
      i \le n; i \ne blockDim.x * qridDim.x)
    y[i] = x[i]Neighbouring threads should read 
            neighbouring memory locations
                  "coalesced access"
```


}