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Motivation: MC Event Generators and LHC
► HL-LHC computing needs expected to 

outgrow resource growth
● Need R&D on software to improve efficiency 

and port it to new resources, such as GPUs at 
HPC centres

► MC generators rarely adapted to 
vector computations or GPUs

► Potential for more events given the 
same hardware
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Some Hardware Examples

AMD Ryzen 
Threadripper 3990X Nvidia Tesla T4 Nvidia Tesla H100 

PCIe

Cores 64 2560 (40 SMs)  7296 (114 SMs)

Max Clock Rate 4300 MHz 1590 MHz 1755 MHz

Theoretical Single 
(Double) Prec. Perf.  13 TFLOPS (1/2) 8.1 TFLOPS (1/32) 48 TFLOPS (1/2)

Memory Bandwidth 95 GB/s 300 GB/s 2000 GB/s

TDP 280 W 70 W 350 W
4
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SIMD and GPUs in Flynn's Taxonomy
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en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Single Data

► Single core executing one 

instruction after the other

Multiple Instruction Multiple Data

► E.g. multi-core processor
► Multiple independent 

threads of execution

Single Instruction Multiple Data / 
SIMT: "Multiple Threads"

► GPUs / vector units on 
CPUs

► Many threads running the 
same instruction

https://en.wikipedia.org/wiki/Flynn's_taxonomy
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threads of execution

Single Instruction Multiple Data / 
SIMT: "Multiple Threads"

► GPUs / vector units on 
CPUs

► Many threads running the 
same instruction

Thanks, Sitian!

https://en.wikipedia.org/wiki/Flynn's_taxonomy
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Interlude: Single vs Double Precision
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► Single precision: 32 bit
► Exactly represents integers 

between 0 and 16,777,216 (1.68E7)
► Max: 3.4E38
► GPU "with X TFLOPS" usually 

means single precision

► Double precision: 64 bit
► Exactly represents integers up to 

9,007,199,254,740,992 (9E15)
► Max: 1.8E308
► With "X TFLOPs single precision", 

you might get in double:
● 1/32 for consumer grade
● ½ for data-centre GPUs

Wikimedia commons

https://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg
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Where can we gain?
► Scenario 1: An event generator runs on a "normal" CPU

● If the generator supports AVX2 vectorisation, we can get 4x
● If the CPU supports certain AVX512 versions, 8x is possible (reality is complicated, though)
● If the generator can run in single precision, double the above

► Scenario 2: The event generator runs on a machine with a GPU
● Achievable speedup heavily depends on CPU, GPU and workflow running
● Anything between no speedup and ~ 100x is possible (→ double-precision perf. of GPU?)
● HPCs provide most compute power (FLOPS) with GPUs
● If the event generator is not GPU-ready, a large fraction of the hardware remains unused

8
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WLCG: We can have 4x speed up today

► The Grid supports AVX2 
(almost) universally

► First AVX2 CPUs are from 
2013

► Opportunity for 4x 
speedup unused if we 
don't adapt for SIMD

► In single precision, we could 
have 8x speedup

9

A. Sciaba, 2022
https://indico.cern.ch/event/1072141/

https://indico.cern.ch/event/1072141/
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And in the future … ?

► AMD GPUs power Frontier, the #1 Top500
► Computing on ARM with vectorisation?

● Fugaku #2 runs A64FX with 512 bit vectors

► LUMI #3 is running AMD GPUs
► Grace Hopper CPU/GPU hybrid

● Arm Neoverse CPUs with 128 bit vector registers
● Hopper GPU

► Computing hardware will become more 
diverse, so we want event generators that are 
parallel and vectorised

10

https://hacarus.com/ai-lab/20210405-fugaku/

https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

https://hacarus.com/ai-lab/20210405-fugaku/
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip
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Modernising a Code for SIMD?

11
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How to get SIMD vectorisation?

1. Write "nice and simple" for loops and hope that the compiler is smart
a. If it's not smart enough, try a different compiler
b. Try -ffast-math if the code supports it
c. Use OpenMP directives

See some vectorisation examples in C++ or in Fortran

2. Use built-in vector types (gcc, clang) → Madgraph talk later
3. Use vector abstraction libraries, e.g. VecCore
4. Direct low-level vector programming using intrinsics (e.g. Intel Intrinsics 

Guide)

12

C
om

plexity

https://godbolt.org/z/d6YrnPr4s
https://godbolt.org/z/qfK1fcso7
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://clang.llvm.org/docs/LanguageExtensions.html#vectors-and-extended-vectors
https://indico.cern.ch/event/1312061/timetable/#2-the-mg4gpu-project
https://github.com/root-project/veccore
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512
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Vectorisation Requirements

► Every lane of a vector register must run the same instruction
● Simple branches are possible, though

► Number of loop iterations should be computable upfront
► Data should be contiguous in memory: arrays, vectors, spans
► Pitfalls:

● Unknown / non-inlinable / virtual functions in loop body
● Loop-carried dependencies
● Side effects
● Exceptions (including floating-point exceptions)
● Pointer aliasing
● Register pressure, … 

13
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Paradigm shift: Data-oriented design
► Dynamically allocating memory breaks vectorisation

● On GPUs, it is possible but prohibitively slow

► It is better to have pre-allocated, contiguous arrays, through which the 
algorithm iterates efficiently
● Critical for SIMD
● Excellent for CPU caches and MMU
● Most efficient way to load memory on GPU

► → Event generators should be converted to exploit data parallelism, and run 
with batches of events that are densely placed in memory

14
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Typical code transformations

void computeBatch(std::size_t N) {
  for (unsigned int i = 0; i < N; ++i) {
    FourVector in1 = generateParticle(randomGenerator);
    FourVector in2 = generateParticle(randomGenerator);

    FourVector [out1, out2] = generateFinalState(in1, in2, 
                                randomGenerator);

    double w1 = computePdfWeight(in1, in2);
    double w2 = computeMatrixElement(in1, in2,
                                     out1, out2);

    

    storeEvent(in1, in2, out1, out2, w1 * w2);
  }
}

void computeBatch(std::size_t N) {

  array<FourVector,2*N> in = generateParticles(2, N, 
                               randomGenerator);

  array<FourVector,2*N> out = generateFinalState(in, 
                                randomGenerator);

  array<double, N> w1 = computePdfWeights(in);
  array<double, N> w2 = computeMatrixElements(in, out);
  
  array<double, N> finalWeight;
  for (unsigned int i = 0; i < N; ++i) {
    finalWeight[i] = w1[i] * w2[i];
  }

  storeEvents(in, out, finalWeight);
}

15

Single-event interface Multi-event interface
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Modernising a Code for GPUs?

16
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Anatomy of a GPU

17

Nvidia Tesla T4

► GPUs consist of many simple 
processors ("SMs", "Stream 
processors")

► Each SM runs SIMD-like 
instructions

► Work is sent as a grid of "threads" 
and "blocks"

► ComputeKernel<<< 1 , 1 >>>();
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What happens on the GPU
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Nvidia Tesla T4

► GPUs consist of many simple 
processors ("SMs", "Stream 
processors")

► Each SM runs SIMD-like 
instructions

► Work is sent as a grid of "threads" 
and "blocks"

► ComputeKernel<<< 2, 32>>>(); One SM acts like 
a 32-lane SIMD 
processor
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Anatomy of a GPU
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Nvidia Tesla T4

► ComputeKernel<<< 40 , 64 >>>();
► Even on the relatively simple Tesla 

T4, we need 2560 threads to have 
"one full wave" of warps that span 
across the entire GPU

► For modern GPUs, we are looking 
at ~ 13'312 (AMD MI250)

► → Event generators should work 
on large batches of data
Large ~> 10 000
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Vectorisation GPU Requirements

► Every lane of a vector register thread in a warp must run the same instruction
● Simple and larger but expensive branches are possible, though

► Number of loop iterations should be computable upfront to be fast
► Data should be contiguous in memory to load fast
► Pitfalls:

● Unknown / non-inlinable / virtual functions in loop body slow the GPU down drastically
● Loop-carried dependencies require slow synchronisation
● Side effects require slow synchronisation
● Exceptions (including floating-point exceptions) are not supported
● Pointer aliasing might create race conditions / leads to slow memory access
● Register pressure slows the GPU down

20
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Code requirements for 
SIMD and GPUs are 

largely the same!
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Typical code transformations

void computeBatch(std::size_t N) {

  array<FourVector,2*N> in = generateParticles(2, N, 
                               randomGenerator);

  array<FourVector,2*N> out = generateFinalState(in, 
                                randomGenerator);

  array<double, N> w1 = computePdfWeights(in);
  array<double, N> w2 = computeMatrixElements(in, out);
  

  array<double, N> finalWeight;
  for (unsigned int i = 0; i < N; ++i) {
    finalWeight[i] = w1[i] * w2[i];
  }

  storeEvents(in, out, finalWeight);
}

void computeBatch(std::size_t N) {
  allocateCPU(N, in, out, w2);
  allocateGPU(N, inGPU, outGPU, w2GPU);
  generateParticles<<<B,T>>>(N, inGPU, randomGenerator);

  generateFinalState<<<B,T>>>(inGPU, outGPU,
                              randomGenerator);
  copyToHost(inGPU, in); copyToHost(outGPU, out);
  
  array<double, N> w1 = computePdfWeights(in);
  computeMatrixElements<<<B,T>>>(inGPU, outGPU, w2GPU);
  copyToHost(w2GPU, w2);

  array<double, N> finalWeight;
  for (unsigned int i = 0; i < N; ++i) {
    finalWeight[i] = w1[i] * w2[i];
  }

  storeEvents(in, out, finalWeight);
}

22

Multi-event interface
(CPU)

Multi-event interface
(GPU)
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Multi-event interface
(CPU)

Multi-event interface
(GPU)

More complicated 
memory management

Parallel CPU and GPU 
execution

Deal with copy latencies 
and data dependencies;

synchronisation!
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Copy latencies and GPUs

► When using GPUs, data must be 
copied between host and device

► Compute work >> copy work
required for good speedups

► For event generators, this is often 
the case!
● Copy four-momenta
● Compute hundreds of diagrams for 

thousands of events
● Copy matrix elements

24
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Branches
► If all threads in a warp have to run 

the same instruction, how do we 
branch?
● The warp is split
● Threads that don't take the branch are 

disabled
→ Throughput reduced

► Branching is not the fastest way 
of using a GPU, but it's OK on 
modern GPUs

► But event generators don't 
branch that often …

25

developer.nvidia.com/blog/inside-volta/

https://developer.nvidia.com/blog/inside-volta/
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Vectorisation and GPU wrap up
► The code transformations necessary for SIMD and GPU usage are very 

similar
● Single → Multi-event interface
● Generate events in batches; make N large
● Explicit memory management, careful placement of data in arrays
● + for GPU: Copying of data host ← → device where necessary

► The most efficient way to get there?
A team of:
● Experts who know the workflow and data dependencies of an event generator
● Experts with experience in SIMD and GPU programming

26
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Targeting different hardware?

► Nvidia's CUDA (2007)
● Extensive documentation, tools, online resources
● Exclusively for Nvidia GPUs

► AMD's ROCm (HIP, 2016)
● Similar to CUDA, but targets AMD GPUs

► Intel GPUs with SYCL
► Abstraction frameworks:

● Program abstract kernels, translate to native GPU language later
● Target multiple GPU architectures and CPUs
● How to choose between

OpenCL, SYCL, Alpaka, Kokkos, OpenMP, std::par?

27
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Portable GPU codes?

28

C. Leggett CHEP23
Fortran

https://indico.jlab.org/event/459/contributions/11821/
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C. Leggett CHEP23

https://indico.jlab.org/event/459/contributions/11821/
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So is it worth the effort?

► The reengineering is a lot of work …

But:
► Collaborations that might have looked "unlikely" have been formed 

successfully between different communities
► Old cold gets revisited, new ideas might pop up
► Better adaptation to new hardware

● Saving electricity, CO2, hardware
● Start using the unused SIMD slots of our CPUs
● Offloading to GPUs is in reach
● Abstraction frameworks will allow us to adapt to changing hardware landscape

30
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Some real-life examples

31
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Example 1: RooFit

32

SH, CHEP 2020

► Converting ROOT's RooFit from 
single to multi-event workflow:
● 1 year fellow at 30-40% time
● 3x speedup (without vectorisation!)

► Making code autovectorisation 
friendly:
● 1  summer student
● 3x → 16x speedup (double precision!)

► GPU offloading with CUDA:
● 1 technical student
● 25x - 40x on a gaming GPU

(low double-precision performance)

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_06007/epjconf_chep2020_06007.html
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Example 1: RooFit
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SH, CHEP 2020

► Converting ROOT's RooFit from 
single to multi-event workflow:
● 1 year fellow at 30-40% time
● 3x speedup (without vectorisation!)

► Making code autovectorisation 
friendly:
● 1  summer student
● 3x → 16x speedup (double precision!)

► GPU offloading with CUDA:
● 1 technical student
● 25x - 40x on a gaming GPU

(low double-precision performance)

Remember this from James' talk?

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_06007/epjconf_chep2020_06007.html
https://indico.cern.ch/event/1312061/timetable/#4-herwig
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Example 1: RooFit
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J Rembser, CHEP 2023

See real-life example with an EventGenerator:
Madgraph talk today or
Sherpa talk today

► Converting ROOT's RooFit from 
single to multi-event workflow:
● 1 year fellow at 30-40% time
● 3x speedup (without vectorisation!)

► Making code autovectorisation 
friendly:
● 1  summer student
● 3x → 16x speedup (double precision!)

► GPU offloading with CUDA:
● 1 technical student
● 25x - 40x on a gaming GPU

(low double-precision performance)

https://indico.jlab.org/event/459/contributions/11570/
https://indico.cern.ch/event/1312061/timetable/#2-the-mg4gpu-project
https://indico.cern.ch/event/1312061/timetable/#7-sherpa
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Example 2: Can Madgraph run in single precision?
► Computers may lie about 

precision of floating-point 
numbers

► CADNA is a library with special 
floating-point types to measure 
precision and instabilities in C++ 
and Fortran

► See seminar at CERN
► For madgraph, we were 

wondering if single precision 
works

35

P(x,y)= 9x4 - y4 + 2y2

Without CADNA:
P(10864,18817) = 2.0000000000000000 (exact value: 1)
P(1/3,2/3) = 0.8024691358024691

With CADNA:
P(10864,18817) = @.0 (exact value: 1)
P(1/3,2/3) = 0.802469135802469E+000
----------------------------------------------

0 UNSTABLE DIVISION(S)
0 UNSTABLE POWER FUNCTION(S)
0 UNSTABLE MULTIPLICATION(S)
0 UNSTABLE BRANCHING(S)
0 UNSTABLE MATHEMATICAL FUNCTION(S)
0 UNSTABLE INTRINSIC FUNCTION(S)
2 UNSTABLE CANCELLATION(S)

https://cadna.lip6.fr/index.php
https://indico.cern.ch/event/1264290/
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● We applied CADNA to madgraph to 
measure the precision of matrix 
elements

● Learned that generally double 
precision is needed

● Identified some computations that can 
run in single precision, though!

● Opportunity for speedup
See Madgraph meeting

https://indico.cern.ch/event/1240244/contributions/5474419/
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Closing Remarks
► If you look for speedup opportunities, you find something

► "New" hardware is around since 2013 (AVX2); we should be using it efficiently

► Event generators are in a particularly good situation, as multi-event data 
parallelism caters perfectly to SIMD and GPUs

► By converting to multi-event batched workflows, we get ourselves in a good 
position for what may come in terms of hardware evolution

► Double-precision performance of GPUs might be an issue (expensive HW)

► The opportunities outweigh the challenges if both generator experts and 
performance-oriented people are allowed to prioritise such work

38
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Backup

39
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On OpenMP offloading in Fortran

► GPU offloading of a heavy loop 
can be trivial with OpenMP > 4.5
● Both in C++ and Fortran

► It might not be the most efficient 
(implicit data transfers)

► SIMD for CPU version is similarly 
trivial: !$omp simd

40
https://enccs.github.io/openmp-gpu/target/

https://enccs.github.io/openmp-gpu/target/
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CPU vs GPU
► CPUs:

● Try to reduce latency of execution
● Every core (~ thread) has its own 

cache and control unit, several levels 
of caches

● Lots of energy and hardware spent on 
latency reduction

► GPUs:
● Threads share control units and a lot 

of cache space
● More transistors devoted to data 

processing
● → Massive data parallelism
● → Higher latency

41

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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CUDA Execution Model

► Kernel: Function invoked on the 
GPU

► Grid: Set of blocks running for a 
specific kernel

► Block: Set of threads on the same 
"streaming multiprocessor"

► Thread: Set of instructions to be 
executed

42
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Memory Latency and GPUs

43

► If a warp stalls, other warps step in
● Requires multiple warps / SM

► Recommendation: Start with 256 
threads – 8 warps – and try other 
numbers

for (int i = index; i < n; i += stride)
    y[i] = x[i] + y[i];

► CPUs minimise latency, GPUs hide it
► You need enough work for the GPU to 

do this successfully

developer.nvidia.c
om/blog/cuda-ref
resher-reviewing-t
he-origins-of-gpu

-computing/

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
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Efficient memory access
// Access with stride 1
__global__
void k_copy(double* x, double* y, int n) {
  for(int i = threadIdx.x + blockDim.x*blockIdx.x;
      i < n; i += blockDim.x * gridDim.x)
    y[i] = x[i];
}

// Access with larger stride
__global__
void k_copy(double* x, double* y, int n) {
  for(int i = threadIdx.x * gridDim.x + blockIdx.x;
      i < n; i += blockDim.x * gridDim.x)
    y[i] = x[i];
}

44

L. Einkemmer

DRAM is read in bursts
(e.g. 16 float/int in GDDR6)

https://events.prace-ri.eu/event/1154/timetable/#20211004.detailed
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L. Einkemmer
Neighbouring threads should read 

neighbouring memory locations
"coalesced access"

https://events.prace-ri.eu/event/1154/timetable/#20211004.detailed

