
stephan.hageboeck@cern.ch

Challenges and
Opportunities

given new Hardware
Stephan Hageboeck, CERN IT

Nov 2023

stephan.hageboeck@cern.ch

Motivation: MC Event Generators and LHC
► HL-LHC computing needs expected to

outgrow resource growth
● Need R&D on software to improve efficiency

and port it to new resources, such as GPUs at
HPC centres

► MC generators rarely adapted to
vector computations or GPUs

► Potential for more events given the
same hardware

2

stephan.hageboeck@cern.ch

Motivation: MC Event Generators and LHC
► HL-LHC computing needs expected to

outgrow resource growth
● Need R&D on software to improve efficiency

and port it to new resources, such as GPUs at
HPC centres

► MC generators rarely adapted to
vector computations or GPUs

► Potential for more events given the
same hardware

3

stephan.hageboeck@cern.ch

Some Hardware Examples

AMD Ryzen
Threadripper 3990X Nvidia Tesla T4 Nvidia Tesla H100

PCIe

Cores 64 2560 (40 SMs) 7296 (114 SMs)

Max Clock Rate 4300 MHz 1590 MHz 1755 MHz

Theoretical Single
(Double) Prec. Perf. 13 TFLOPS (1/2) 8.1 TFLOPS (1/32) 48 TFLOPS (1/2)

Memory Bandwidth 95 GB/s 300 GB/s 2000 GB/s

TDP 280 W 70 W 350 W
4

stephan.hageboeck@cern.ch

SIMD and GPUs in Flynn's Taxonomy

5

en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Single Data

► Single core executing one

instruction after the other

Multiple Instruction Multiple Data

► E.g. multi-core processor
► Multiple independent

threads of execution

Single Instruction Multiple Data /
SIMT: "Multiple Threads"

► GPUs / vector units on
CPUs

► Many threads running the
same instruction

https://en.wikipedia.org/wiki/Flynn's_taxonomy

stephan.hageboeck@cern.ch

SIMD and GPUs in Flynn's Taxonomy

6

en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Single Data

► Single core executing one

instruction after the other

Multiple Instruction Multiple Data

► E.g. multi-core processor
► Multiple independent

threads of execution

Single Instruction Multiple Data /
SIMT: "Multiple Threads"

► GPUs / vector units on
CPUs

► Many threads running the
same instruction

Thanks, Sitian!

https://en.wikipedia.org/wiki/Flynn's_taxonomy

stephan.hageboeck@cern.ch

Interlude: Single vs Double Precision

7

► Single precision: 32 bit
► Exactly represents integers

between 0 and 16,777,216 (1.68E7)
► Max: 3.4E38
► GPU "with X TFLOPS" usually

means single precision

► Double precision: 64 bit
► Exactly represents integers up to

9,007,199,254,740,992 (9E15)
► Max: 1.8E308
► With "X TFLOPs single precision",

you might get in double:
● 1/32 for consumer grade
● ½ for data-centre GPUs

Wikimedia commons

https://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg

stephan.hageboeck@cern.ch

Where can we gain?
► Scenario 1: An event generator runs on a "normal" CPU

● If the generator supports AVX2 vectorisation, we can get 4x
● If the CPU supports certain AVX512 versions, 8x is possible (reality is complicated, though)
● If the generator can run in single precision, double the above

► Scenario 2: The event generator runs on a machine with a GPU
● Achievable speedup heavily depends on CPU, GPU and workflow running
● Anything between no speedup and ~ 100x is possible (→ double-precision perf. of GPU?)
● HPCs provide most compute power (FLOPS) with GPUs
● If the event generator is not GPU-ready, a large fraction of the hardware remains unused

8

stephan.hageboeck@cern.ch

WLCG: We can have 4x speed up today

► The Grid supports AVX2
(almost) universally

► First AVX2 CPUs are from
2013

► Opportunity for 4x
speedup unused if we
don't adapt for SIMD

► In single precision, we could
have 8x speedup

9

A. Sciaba, 2022
https://indico.cern.ch/event/1072141/

https://indico.cern.ch/event/1072141/

stephan.hageboeck@cern.ch

And in the future … ?

► AMD GPUs power Frontier, the #1 Top500
► Computing on ARM with vectorisation?

● Fugaku #2 runs A64FX with 512 bit vectors

► LUMI #3 is running AMD GPUs
► Grace Hopper CPU/GPU hybrid

● Arm Neoverse CPUs with 128 bit vector registers
● Hopper GPU

► Computing hardware will become more
diverse, so we want event generators that are
parallel and vectorised

10

https://hacarus.com/ai-lab/20210405-fugaku/

https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

https://hacarus.com/ai-lab/20210405-fugaku/
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

stephan.hageboeck@cern.ch

Modernising a Code for SIMD?

11

stephan.hageboeck@cern.ch

How to get SIMD vectorisation?

1. Write "nice and simple" for loops and hope that the compiler is smart
a. If it's not smart enough, try a different compiler
b. Try -ffast-math if the code supports it
c. Use OpenMP directives

See some vectorisation examples in C++ or in Fortran

2. Use built-in vector types (gcc, clang) → Madgraph talk later
3. Use vector abstraction libraries, e.g. VecCore
4. Direct low-level vector programming using intrinsics (e.g. Intel Intrinsics

Guide)

12

C
om

plexity

https://godbolt.org/z/d6YrnPr4s
https://godbolt.org/z/qfK1fcso7
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
https://clang.llvm.org/docs/LanguageExtensions.html#vectors-and-extended-vectors
https://indico.cern.ch/event/1312061/timetable/#2-the-mg4gpu-project
https://github.com/root-project/veccore
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512

stephan.hageboeck@cern.ch

Vectorisation Requirements

► Every lane of a vector register must run the same instruction
● Simple branches are possible, though

► Number of loop iterations should be computable upfront
► Data should be contiguous in memory: arrays, vectors, spans
► Pitfalls:

● Unknown / non-inlinable / virtual functions in loop body
● Loop-carried dependencies
● Side effects
● Exceptions (including floating-point exceptions)
● Pointer aliasing
● Register pressure, …

13

stephan.hageboeck@cern.ch

Paradigm shift: Data-oriented design
► Dynamically allocating memory breaks vectorisation

● On GPUs, it is possible but prohibitively slow

► It is better to have pre-allocated, contiguous arrays, through which the
algorithm iterates efficiently
● Critical for SIMD
● Excellent for CPU caches and MMU
● Most efficient way to load memory on GPU

► → Event generators should be converted to exploit data parallelism, and run
with batches of events that are densely placed in memory

14

stephan.hageboeck@cern.ch

Typical code transformations

void computeBatch(std::size_t N) {
 for (unsigned int i = 0; i < N; ++i) {
 FourVector in1 = generateParticle(randomGenerator);
 FourVector in2 = generateParticle(randomGenerator);

 FourVector [out1, out2] = generateFinalState(in1, in2,
 randomGenerator);

 double w1 = computePdfWeight(in1, in2);
 double w2 = computeMatrixElement(in1, in2,
 out1, out2);

 storeEvent(in1, in2, out1, out2, w1 * w2);
 }
}

void computeBatch(std::size_t N) {

 array<FourVector,2*N> in = generateParticles(2, N,
 randomGenerator);

 array<FourVector,2*N> out = generateFinalState(in,
 randomGenerator);

 array<double, N> w1 = computePdfWeights(in);
 array<double, N> w2 = computeMatrixElements(in, out);

 array<double, N> finalWeight;
 for (unsigned int i = 0; i < N; ++i) {
 finalWeight[i] = w1[i] * w2[i];
 }

 storeEvents(in, out, finalWeight);
}

15

Single-event interface Multi-event interface

stephan.hageboeck@cern.ch

Modernising a Code for GPUs?

16

stephan.hageboeck@cern.ch

Anatomy of a GPU

17

Nvidia Tesla T4

► GPUs consist of many simple
processors ("SMs", "Stream
processors")

► Each SM runs SIMD-like
instructions

► Work is sent as a grid of "threads"
and "blocks"

► ComputeKernel<<< 1 , 1 >>>();

stephan.hageboeck@cern.ch

What happens on the GPU

18

Nvidia Tesla T4

► GPUs consist of many simple
processors ("SMs", "Stream
processors")

► Each SM runs SIMD-like
instructions

► Work is sent as a grid of "threads"
and "blocks"

► ComputeKernel<<< 2, 32>>>(); One SM acts like
a 32-lane SIMD
processor

stephan.hageboeck@cern.ch

Anatomy of a GPU

19

Nvidia Tesla T4

► ComputeKernel<<< 40 , 64 >>>();
► Even on the relatively simple Tesla

T4, we need 2560 threads to have
"one full wave" of warps that span
across the entire GPU

► For modern GPUs, we are looking
at ~ 13'312 (AMD MI250)

► → Event generators should work
on large batches of data
Large ~> 10 000

stephan.hageboeck@cern.ch

Vectorisation GPU Requirements

► Every lane of a vector register thread in a warp must run the same instruction
● Simple and larger but expensive branches are possible, though

► Number of loop iterations should be computable upfront to be fast
► Data should be contiguous in memory to load fast
► Pitfalls:

● Unknown / non-inlinable / virtual functions in loop body slow the GPU down drastically
● Loop-carried dependencies require slow synchronisation
● Side effects require slow synchronisation
● Exceptions (including floating-point exceptions) are not supported
● Pointer aliasing might create race conditions / leads to slow memory access
● Register pressure slows the GPU down

20

stephan.hageboeck@cern.ch

Vectorisation GPU Requirements

► Every lane of a vector register thread in a warp must run the same instruction
● Simple and larger but expensive branches are possible, though

► Number of loop iterations should be computable upfront to be fast
► Data should be contiguous in memory to load fast
► Pitfalls:

● Unknown / non-inlinable / virtual functions in loop body slow the GPU down drastically
● Loop-carried dependencies require slow synchronisation
● Side effects require slow synchronisation
● Exceptions (including floating-point exceptions) are not supported
● Pointer aliasing might create race conditions / leads to slow memory access
● Register pressure slows the GPU down

21

Code requirements for
SIMD and GPUs are

largely the same!

stephan.hageboeck@cern.ch

Typical code transformations

void computeBatch(std::size_t N) {

 array<FourVector,2*N> in = generateParticles(2, N,
 randomGenerator);

 array<FourVector,2*N> out = generateFinalState(in,
 randomGenerator);

 array<double, N> w1 = computePdfWeights(in);
 array<double, N> w2 = computeMatrixElements(in, out);

 array<double, N> finalWeight;
 for (unsigned int i = 0; i < N; ++i) {
 finalWeight[i] = w1[i] * w2[i];
 }

 storeEvents(in, out, finalWeight);
}

void computeBatch(std::size_t N) {
 allocateCPU(N, in, out, w2);
 allocateGPU(N, inGPU, outGPU, w2GPU);
 generateParticles<<<B,T>>>(N, inGPU, randomGenerator);

 generateFinalState<<<B,T>>>(inGPU, outGPU,
 randomGenerator);
 copyToHost(inGPU, in); copyToHost(outGPU, out);

 array<double, N> w1 = computePdfWeights(in);
 computeMatrixElements<<<B,T>>>(inGPU, outGPU, w2GPU);
 copyToHost(w2GPU, w2);

 array<double, N> finalWeight;
 for (unsigned int i = 0; i < N; ++i) {
 finalWeight[i] = w1[i] * w2[i];
 }

 storeEvents(in, out, finalWeight);
}

22

Multi-event interface
(CPU)

Multi-event interface
(GPU)

stephan.hageboeck@cern.ch

Typical code transformations

void computeBatch(std::size_t N) {

 array<FourVector,2*N> in = generateParticles(2, N,
 randomGenerator);

 array<FourVector,2*N> out = generateFinalState(in,
 randomGenerator);

 array<double, N> w1 = computePdfWeights(in);
 array<double, N> w2 = computeMatrixElements(in, out);

 array<double, N> finalWeight;
 for (unsigned int i = 0; i < N; ++i) {
 finalWeight[i] = w1[i] * w2[i];
 }

 storeEvents(in, out, finalWeight);
}

void computeBatch(std::size_t N) {
 allocateCPU(N, in, out, w2);
 allocateGPU(N, inGPU, outGPU, w2GPU);
 generateParticles<<<B,T>>>(N, inGPU, randomGenerator);

 generateFinalState<<<B,T>>>(inGPU, outGPU,
 randomGenerator);
 copyToHost(inGPU, in); copyToHost(outGPU, out);

 array<double, N> w1 = computePdfWeights(in);
 computeMatrixElements<<<B,T>>>(inGPU, outGPU, w2GPU);
 copyToHost(w2GPU, w2);

 array<double, N> finalWeight;
 for (unsigned int i = 0; i < N; ++i) {
 finalWeight[i] = w1[i] * w2[i];
 }

 storeEvents(in, out, finalWeight);
}

23

Multi-event interface
(CPU)

Multi-event interface
(GPU)

More complicated
memory management

Parallel CPU and GPU
execution

Deal with copy latencies
and data dependencies;

synchronisation!

stephan.hageboeck@cern.ch

Copy latencies and GPUs

► When using GPUs, data must be
copied between host and device

► Compute work >> copy work
required for good speedups

► For event generators, this is often
the case!
● Copy four-momenta
● Compute hundreds of diagrams for

thousands of events
● Copy matrix elements

24

stephan.hageboeck@cern.ch

Branches
► If all threads in a warp have to run

the same instruction, how do we
branch?
● The warp is split
● Threads that don't take the branch are

disabled
→ Throughput reduced

► Branching is not the fastest way
of using a GPU, but it's OK on
modern GPUs

► But event generators don't
branch that often …

25

developer.nvidia.com/blog/inside-volta/

https://developer.nvidia.com/blog/inside-volta/

stephan.hageboeck@cern.ch

Vectorisation and GPU wrap up
► The code transformations necessary for SIMD and GPU usage are very

similar
● Single → Multi-event interface
● Generate events in batches; make N large
● Explicit memory management, careful placement of data in arrays
● + for GPU: Copying of data host ← → device where necessary

► The most efficient way to get there?
A team of:
● Experts who know the workflow and data dependencies of an event generator
● Experts with experience in SIMD and GPU programming

26

stephan.hageboeck@cern.ch

Targeting different hardware?

► Nvidia's CUDA (2007)
● Extensive documentation, tools, online resources
● Exclusively for Nvidia GPUs

► AMD's ROCm (HIP, 2016)
● Similar to CUDA, but targets AMD GPUs

► Intel GPUs with SYCL
► Abstraction frameworks:

● Program abstract kernels, translate to native GPU language later
● Target multiple GPU architectures and CPUs
● How to choose between

OpenCL, SYCL, Alpaka, Kokkos, OpenMP, std::par?

27

stephan.hageboeck@cern.ch

Portable GPU codes?

28

C. Leggett CHEP23
Fortran

https://indico.jlab.org/event/459/contributions/11821/

stephan.hageboeck@cern.ch 29

C. Leggett CHEP23

https://indico.jlab.org/event/459/contributions/11821/

stephan.hageboeck@cern.ch

So is it worth the effort?

► The reengineering is a lot of work …

But:
► Collaborations that might have looked "unlikely" have been formed

successfully between different communities
► Old cold gets revisited, new ideas might pop up
► Better adaptation to new hardware

● Saving electricity, CO2, hardware
● Start using the unused SIMD slots of our CPUs
● Offloading to GPUs is in reach
● Abstraction frameworks will allow us to adapt to changing hardware landscape

30

stephan.hageboeck@cern.ch

Some real-life examples

31

stephan.hageboeck@cern.ch

Example 1: RooFit

32

SH, CHEP 2020

► Converting ROOT's RooFit from
single to multi-event workflow:
● 1 year fellow at 30-40% time
● 3x speedup (without vectorisation!)

► Making code autovectorisation
friendly:
● 1 summer student
● 3x → 16x speedup (double precision!)

► GPU offloading with CUDA:
● 1 technical student
● 25x - 40x on a gaming GPU

(low double-precision performance)

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_06007/epjconf_chep2020_06007.html

stephan.hageboeck@cern.ch

Example 1: RooFit

33

SH, CHEP 2020

► Converting ROOT's RooFit from
single to multi-event workflow:
● 1 year fellow at 30-40% time
● 3x speedup (without vectorisation!)

► Making code autovectorisation
friendly:
● 1 summer student
● 3x → 16x speedup (double precision!)

► GPU offloading with CUDA:
● 1 technical student
● 25x - 40x on a gaming GPU

(low double-precision performance)

Remember this from James' talk?

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_06007/epjconf_chep2020_06007.html
https://indico.cern.ch/event/1312061/timetable/#4-herwig

stephan.hageboeck@cern.ch

Example 1: RooFit

34

J Rembser, CHEP 2023

See real-life example with an EventGenerator:
Madgraph talk today or
Sherpa talk today

► Converting ROOT's RooFit from
single to multi-event workflow:
● 1 year fellow at 30-40% time
● 3x speedup (without vectorisation!)

► Making code autovectorisation
friendly:
● 1 summer student
● 3x → 16x speedup (double precision!)

► GPU offloading with CUDA:
● 1 technical student
● 25x - 40x on a gaming GPU

(low double-precision performance)

https://indico.jlab.org/event/459/contributions/11570/
https://indico.cern.ch/event/1312061/timetable/#2-the-mg4gpu-project
https://indico.cern.ch/event/1312061/timetable/#7-sherpa

stephan.hageboeck@cern.ch

Example 2: Can Madgraph run in single precision?
► Computers may lie about

precision of floating-point
numbers

► CADNA is a library with special
floating-point types to measure
precision and instabilities in C++
and Fortran

► See seminar at CERN
► For madgraph, we were

wondering if single precision
works

35

P(x,y)= 9x4 - y4 + 2y2

Without CADNA:
P(10864,18817) = 2.0000000000000000 (exact value: 1)
P(1/3,2/3) = 0.8024691358024691

With CADNA:
P(10864,18817) = @.0 (exact value: 1)
P(1/3,2/3) = 0.802469135802469E+000
--

0 UNSTABLE DIVISION(S)
0 UNSTABLE POWER FUNCTION(S)
0 UNSTABLE MULTIPLICATION(S)
0 UNSTABLE BRANCHING(S)
0 UNSTABLE MATHEMATICAL FUNCTION(S)
0 UNSTABLE INTRINSIC FUNCTION(S)
2 UNSTABLE CANCELLATION(S)

https://cadna.lip6.fr/index.php
https://indico.cern.ch/event/1264290/

stephan.hageboeck@cern.ch 36

stephan.hageboeck@cern.ch 37

● We applied CADNA to madgraph to
measure the precision of matrix
elements

● Learned that generally double
precision is needed

● Identified some computations that can
run in single precision, though!

● Opportunity for speedup
See Madgraph meeting

https://indico.cern.ch/event/1240244/contributions/5474419/

stephan.hageboeck@cern.ch

Closing Remarks
► If you look for speedup opportunities, you find something

► "New" hardware is around since 2013 (AVX2); we should be using it efficiently

► Event generators are in a particularly good situation, as multi-event data
parallelism caters perfectly to SIMD and GPUs

► By converting to multi-event batched workflows, we get ourselves in a good
position for what may come in terms of hardware evolution

► Double-precision performance of GPUs might be an issue (expensive HW)

► The opportunities outweigh the challenges if both generator experts and
performance-oriented people are allowed to prioritise such work

38

stephan.hageboeck@cern.ch

Backup

39

stephan.hageboeck@cern.ch

On OpenMP offloading in Fortran

► GPU offloading of a heavy loop
can be trivial with OpenMP > 4.5
● Both in C++ and Fortran

► It might not be the most efficient
(implicit data transfers)

► SIMD for CPU version is similarly
trivial: !$omp simd

40
https://enccs.github.io/openmp-gpu/target/

https://enccs.github.io/openmp-gpu/target/

stephan.hageboeck@cern.ch

CPU vs GPU
► CPUs:

● Try to reduce latency of execution
● Every core (~ thread) has its own

cache and control unit, several levels
of caches

● Lots of energy and hardware spent on
latency reduction

► GPUs:
● Threads share control units and a lot

of cache space
● More transistors devoted to data

processing
● → Massive data parallelism
● → Higher latency

41

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

stephan.hageboeck@cern.ch

CUDA Execution Model

► Kernel: Function invoked on the
GPU

► Grid: Set of blocks running for a
specific kernel

► Block: Set of threads on the same
"streaming multiprocessor"

► Thread: Set of instructions to be
executed

42

stephan.hageboeck@cern.ch

Memory Latency and GPUs

43

► If a warp stalls, other warps step in
● Requires multiple warps / SM

► Recommendation: Start with 256
threads – 8 warps – and try other
numbers

for (int i = index; i < n; i += stride)
 y[i] = x[i] + y[i];

► CPUs minimise latency, GPUs hide it
► You need enough work for the GPU to

do this successfully

developer.nvidia.c
om/blog/cuda-ref
resher-reviewing-t
he-origins-of-gpu

-computing/

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/

stephan.hageboeck@cern.ch

Efficient memory access
// Access with stride 1
__global__
void k_copy(double* x, double* y, int n) {
 for(int i = threadIdx.x + blockDim.x*blockIdx.x;
 i < n; i += blockDim.x * gridDim.x)
 y[i] = x[i];
}

// Access with larger stride
__global__
void k_copy(double* x, double* y, int n) {
 for(int i = threadIdx.x * gridDim.x + blockIdx.x;
 i < n; i += blockDim.x * gridDim.x)
 y[i] = x[i];
}

44

L. Einkemmer

DRAM is read in bursts
(e.g. 16 float/int in GDDR6)

https://events.prace-ri.eu/event/1154/timetable/#20211004.detailed

stephan.hageboeck@cern.ch

Efficient memory access
// Access with stride 1
__global__
void k_copy(double* x, double* y, int n) {
 for(int i = threadIdx.x + blockDim.x*blockIdx.x;
 i < n; i += blockDim.x * gridDim.x)
 y[i] = x[i];
}

// Access with larger stride
__global__
void k_copy(double* x, double* y, int n) {
 for(int i = threadIdx.x * gridDim.x + blockIdx.x;
 i < n; i += blockDim.x * gridDim.x)
 y[i] = x[i];
}

45

L. Einkemmer
Neighbouring threads should read

neighbouring memory locations
"coalesced access"

https://events.prace-ri.eu/event/1154/timetable/#20211004.detailed

