SHERPA

Enrico Bothmann

Institute for Theoretical Physics University of Göttingen

Event generators' and N(n)LO codes' acceleration 2023-11-13 at CERN

Contents

- SHERPA: General purpose Monte Carlo event generator
- Includes parton-level event generators COMIX & AMEGIC plus all necessary particle-level simulation components
- This talk: performance and portability aspects

Table of contents

- 1 Introduction: computing performance
- 2 Portable event generation and HPC
- 3 Phase space and Machine Learning
- 4 Framework improvements
- 5 Conclusions and outlook

2 Portable event generation and HPC

3 Phase space and Machine Learning

4 Framework improvements

Why improve computing performance?

- High statistics at HL-LHC & excellent detector performance
 - \rightarrow Need for precise MCEG simulations
 - $\rightarrow \mbox{Poor MCEG performance can limit experimental success} $$ [HSF Physics Event Generator WG] arXiv:2004.13687, arXiv:2109.14938 $$$

What dominates the computing budget?

- Which physics processes?
- Parton or particle level?
- Which final-state jet multiplicities?

In contrast to computers, human resources are scarce. We can't afford to make incremental improvements.

Which physics processes?

[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

- Signals: High multiplicity but comparably low complexity
- Main backgrounds: High multiplicity and high complexity

Heavy hitter background simulations

- ATLAS' state-of-the-art SHERPA samples
 - $\blacksquare pp \rightarrow e^+e^- + 0, 1, 2 j @\mathsf{NLO} + 3, 4, 5 j @\mathsf{LO}$
 - $pp \rightarrow t\bar{t} + 0, 1j$ @NLO + 2, 3, 4j@LO
- Majority of time (60-80%) spent in tree-level matrix elements and phase space (after extensive optimization & usage of analytic loop MEs [EB et al.] arXiv:2209.00843) → Chris' talk
- Reason: low unweighting efficiencies for high jet multiplicities [Höche,Prestel,Schulz] arXiv:1905.05120

Timing distribution: scaling with multiplicity

- Hard scattering simulation much more demanding than particle-level remainder [Höche,Prestel,Schulz] arXiv:1905.05120
- Complexity of merging ME&PS can be reduced to achieve linear scaling using sector showers [Brooks,Preuss] arXiv:2008.09468 so not a problem in principle

Status quo: unweighted event generation performance

- Unweighted event throughput compared to Comix*
- Constitutes baseline single-threaded performance of currently available competitive algorithms
- Novel standalone PEPPER performs better than COMIX, but PEPPER's real goal is portability [EB et al.] arXiv:2311.06198

Numbers generated on Intel Xeon E5-2650 v2

- * Partonic processes split into to g/q groups (not SHERPA standard)
- Modified to match efficiency convention of [Gao et. al] arXiv:2001.10028

2 Portable event generation and HPC

B Phase space and Machine Learning

4 Framework improvements

Why portability?

Many computing vendors, heterogeneous architectures
 (Pre-)Exascale computing systems intentionally diverse

Portability solution

- Focus on high multiplicity ($e^+e^- + 4$, $t\bar{t} + 3$ or more jets) this is beyond small scale computing \rightarrow WLCG / HPC
- 10–20 years ago: Homogeneous CPU+RAM architectures
- This is undergoing a big change (partly due to AI trends)
 - HPC moves to exascale era → scalability
 - GPU acceleration \rightarrow portability
- PEPPER addresses both aspects with MPI, HDF5 and Kokkos
- PEPPER parallelises the entire parton-level event generation:

Tested Xeon CPU, Intel/AMD/Nvidia GPU, HPC systems

✓ Covers all (pre-)exascale architectures on previous slide

 $\checkmark\,$ Scalable from a laptop to a Leadership Computing Facility

Portability: example 1

- Polaris testbed to prepare scientific applications for exascale: 560 nodes, 1×CPU & 4×A100 GPUs each, Slingshot 10
 - On a single node, utilizing a single A100, PEPPER generates and stores 320M unweighted $pp \rightarrow t\bar{t}jj$ events per hour
 - Ideal scaling up to 1/4 of the entire system for $gg \rightarrow t\bar{t}gggg$
 - Limited only by I/O (50% of runtime in $pp \rightarrow t\bar{t}jj$)

Portability: example 2

- Estimate "roughly 330 billion [leptonically decaying V+jets] events" required for HL-LHC [ATLAS] arXiv:2112.09588
 - "Sherpa 2.2.11 setup would exceed budget by 16%"
 - Assume all 330 billion events are Z+4j
 Production cost at parton-level would be:
 - 240M CPUh COMIX @ Intel E5-2650 v2 CPU
 - 380k GPUh Pepper @ Nvidia A100 \rightarrow

This would be 8d on Polaris, or 6h on Aurora

Portable parton-level simulations with **PEPPER**

- ✓ Can target NVidia, AMD, Intel GPUs; HPC-ready
- Ideal to provide on-device ML training data for many jets
- Particle-level simulation via SHERPA or PYTHIA
 - \rightarrow LHEH5-based framework [EB et al.] arXiv:2309.13154 \rightarrow Chris' talk
- \blacksquare All details on Pepper [EB et al.] arXiv:2311.06198 \rightarrow Max' talk
- v1 release on GitLab I ?

2 Portable event generation and HPC

3 Phase space and Machine Learning

4 Framework improvements

Simple & portable phase space

- - Portable (e.g. basic or "mild" CHILI in PEPPER)
 - RAMBO-like speed
- Performance of basic CHILI (single channel) on par with recursive phase-space in COMIX (see also figure on slide 6)

Simple & portable phase space: applications & NIS

■ What to do with CHILI? (stand-alone library 🖒

- \blacksquare Simplicity & portability \rightarrow used in Pepper v1 as default
- Speed \rightarrow public parton-level SHERPA version for HPC \square
- \blacksquare One/few channels + speed + portability \rightarrow good fit for ML
- CHILI+MADNIS quick'n'dirty [EB et al.] arXiv:2302.10449

Future: SHERPA v3.x, on-device NN training with PEPPER

More ML: Surrogate Unweighting

- Replace $|\mathcal{M}|^2$ with fast ML surrogate \rightarrow Daniel's talk
- Use second unweighting step to correct to exact |M|²
 [Danziger et al.] arXiv:2109.11964
- Train linear coefficients C_{ijk} of dipole terms D_{ijk} [Janßen et al.] arXiv:2301.13562

2 Portable event generation and HPC

3 Phase space and Machine Learning

4 Framework improvements

SHERPA negative weight fractions

[Danziger Höche Siegert] arXiv:2110.15211

[ATLAS] arXiv:2112.09588

- Explored three methods to reduce negative weight fraction in SHERPA
 - **1** S-MC@NLO \rightarrow MC@NLO = leading colour & no spin corr.
 - Include jet veto on III events, as originally formulated in [Höche et al.] arXiv:1207.5030, see also [Frederix et al.] arXiv:2002.12716
 - 3 Use local K-factor in NLO→LO merging from core configuration instead of highest multiplicity
- SHERPA v2.2.8 (Sep '19)

SHERPA performance improvements

SHERPA v2.2.13 (Nov '22)

- Test of complete LHEH5-based simulation pipeline with PEPPER+SHERPA [EB et al.] arXiv:2309.13154
- Additional 3× speed-up for ATLAS MEPS@NLO $pp \rightarrow e^+e^- + \text{jets set-up} \rightarrow \text{SHERPA v2.3.0}$ (Sep '23)

2 Portable event generation and HPC

3 Phase space and Machine Learning

4 Framework improvements

Conclusions and outlook

Status

- $\checkmark~$ Accelerated & scalable version of $S\mathrm{HERPA}$ \rightarrow Chris' talk (Tue)
- $\checkmark \mbox{ Portable parton-level event generator PEPPER \rightarrow Max' talk (Tue)$ Achieves scalability from a laptop to a Leadership Computing Facility$

Outlook

- Production-ready surrogate unweighting
- \blacksquare Use synergies $\mathrm{Pepper}/\mathrm{Chili} \leftrightarrow$ on-device training \leftrightarrow ML
- Add more processes to PEPPER, work towards NLO

Discussion points

- Regularly updated per-process event generation cost data from ATLAS & CMS? (time/energy/money/...)
- Can we get together and establish HPC/GPU workflows with hep-ex & LCFs? (Usability ↔ Flexibility, Portability ...)
- Expected adoption of HPC resources by LHC computing?