

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Olivier Mattelaer

This Talk

Will not cover

- SIMD/GPU port (-> Andrea's talk)
- Machine Learning effort (-> Ramon's talk)

Will cover

- How computation is done
- Older optimisation:
 - Kiran Ostrelenk, OM: <u>2102.00773</u>
 - Andrew Lifson, OM: 2210.07267

Thanks to Jenny for some plot and to the full MG5aMC teams for support

Computation step

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m* -> |m|^2* →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m** -> |*m*|^2
 →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m** -> |*m*|^2
 →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m* -> |m|^2* →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m* -> |m|^2* →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m** -> |*m*|^2
 →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m** -> |*m*|^2
 →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m** -> |*m*|^2
 →Loop on Helicity and average the results

Idea
 Evaluate *m* for fixed helicity of external particles
 →Multiply *m* with *m** -> |*m*|^2
 →Loop on Helicity and average the results

Speed status

	$gg ightarrow t ar{t}$	$gg ightarrow t ar{t} gg$	$gg \rightarrow t \bar{t} g g g$
madevent	13G	470G	11T
matrix1	3.1G (23%)	450G (96%)	11T (>99%)
\vdash ext	450M (3.4%)	$3.3 { m G}~(< 1\%)$	7.3G (<1%)
└ → int	1.9G (14%)	160G (35%)	2T (19%)
└ → amp	530M (4.0%)	210G (44%)	5.5T (51%)
color amplitude int/propagator external not ME			

Helicity Amplitude

Idea • Evaluate *m* for fixed helicity of external particles →Multiply \mathcal{M} with $\mathcal{M}^* - > |\mathcal{M}|^2$ Loop on Helicity and average the results Doing the loop $\sum^{2^N} |M_h|^2$ h=1• Do we recompute the same quantity over an over?

Helicity Recycling

Helicity Recycling

Helicity Recycling

But we can be smarter here -> around 2 (simple process) to 4 times faster

Solution Helicity Recycling

	$gg ightarrow t \overline{t}$		$gg ightarrow t ar{t} gg$		$gg ightarrow t \bar{t} g g g$	
	Instructions	Reduction	Instructions	Reduction	Instructions	Reduction
madevent	11G	15%	180G	62%	5T	55%
matrix1	1G (9.3%)	68%	160G (90%)	64%	4.9T (98%)	55%
\rightarrow ext	76M (<1%)	83%	100M (<1%)	97%	110M (<1%)	98%
\vdash int	540M (4.8%)	72%	16G (8.9%)	90%	180G (3.6%)	91%
\rightarrow amp	280M (2.6%)	47%	77G (42%)	63%	1.7T (33%)	69%
 color amplitude propagator external not ME 						

Not doing the sum

•One can replace a sum by an integral

$$\sum_{h=1}^{2^N} |M_h|^2 \longrightarrow \int_0^{2^N} dh |M_{Round(h)}|^2$$

Increase the dimension of the integral by one

$$\int d\Phi f_1 f_2 \sum_{h=1}^{2^N} |M_h|^2 \longrightarrow \int d\Phi \int_0^{2^N} dh f_1 f_2 |M_{Round(h)}|^2$$

- Reduce complexity of the function to compute
 - Higher impact of the PDF/...
- Does not change the scaling of the convergence
- But increase the variance of the function

Comparison

0	celimina	Туре	Survey	Refine	nb_events	
×	gg>tt	$\sum_{h=1}^{2^N} M_h ^2$	<1s	4m57s	5001/	
		$\int_0^{2^N} dh M_{Round(h)} ^2$	<1s	4m53s	JUUK	
	gg>ttgg	$\sum_{h=1}^{2^N} M_h ^2$	2m48s	1h22	1004	
		$\int_0^{2^N} dh M_{Round(h)} ^2$	2m24s	1h05	TUUK	
	gg>ttggg	$\sum_{h=1}^{2^N} M_h ^2$	10h	25h	10k	
		$\int_0^{2^N} dh M_{Round(h)} ^2$	1h50	4h20	28	

Comparison

• Monte-Carlo over

- simplify the function to integrate (a lot)
- Forbid some optimisation
- Increase the number of required evaluation
- For helicity case:
 - No super clear winner
- Possible to combine both method (?)
 - Monte-Carlo over subset of helicity

Computation status

Colour becomes a computation bottleneck!!

depends on two (large) matrix (but constant) matrix

$$J = B_{n!,n_{diag}} * M$$
 B is a very sparse matrix. (Not the main bottleneck)

C is a real symmetric matrix

 $|M_h|^2 = J^{\dagger} C_{n! \cdot n!} J$

Color

- Trivial update: use the symmetry
 - Only identify in 2022!

Color

$$C_{i,j} = N_c^X \left(a_0 + a_1 \frac{1}{N_c^2} + \mathcal{O}(\frac{1}{N_c^4}) \right) \qquad N_c = 3$$

 $a_0 \neq 0$: Leading Color $a_0 = 0, a_1 \neq 0$: Next Leading Color

$$C(\sigma_k, \sigma_l) = \begin{pmatrix} \text{LC} & 0 & 0 & 0 & 0 & \text{NLC} \\ 0 & \text{LC} & 0 & \text{NLC} & 0 & 0 \\ 0 & 0 & \text{LC} & 0 & 0 & 0 \\ 0 & \text{NLC} & 0 & \text{LC} & 0 & 0 \\ 0 & 0 & 0 & 0 & \text{LC} & 0 \\ \text{NLC} & 0 & 0 & 0 & 0 & \text{NLC} \end{pmatrix}$$

Take away

- Not the full matrix is needed
 - Development needed
- LC is dominant
 - No numerical issue

Computation step

Phase-Space

$$\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 \approx 1$$

Key Idea

 Any single diagram is "easy" to integrate (pole structures/ suitable integration variables known from the propagators)

N Integral

- Errors add in quadrature so no extra cost
- "Weight" functions already calculated during $|\mathcal{M}|^2$ calculation
- Parallel in nature: embarrassingly parralel

• What if interference are large -> change strategy

$\int M ^2 = \sum \int \frac{\alpha_i(x)}{ M ^2}$	$\sim - \Pi$ ¹
$\int \mathcal{M}_{tot} = \sum_{i} \int \overline{\sum_{j} \alpha_{j}(x)} \mathcal{M}_{tot} $	$\alpha_i = \prod \frac{1}{ (q^2 - m^2 + im\Gamma) ^2}$

process	old strategy		new strategy		speed-up	default
VBF-like processes	survey	refine	survey	refine		
$pp \rightarrow W^+W^+jj [g_S = 0]$	13s	2h12m /1290	16s	8m1s	$16 \times$	new
$pp ightarrow W^+W^-jj, W ightarrow lvl[g_S=0,13{ m TeV}]$	19m0s	9m6s	10m0s	1 m 43 s	$2.4 \times$	new
$pp \rightarrow W^+W^-jj, W \rightarrow lvl[g_S = 0,100 \text{ TeV}]$	10m0s	24m8s	7m0s	18m10s	1.4×	new
$uar{d} ightarrow W^+_L W^L uar{d}[g_S=0]$	23s	27h56m /203	14s	1m53s	$792 \times$	new
$uar{d} ightarrow W^+_L W^L uar{d}, W^+ ightarrow dar{u}, W^- ightarrow au^+ u_ au [g_S=0]$	2m0s	1 5h52m /793	1m0s	5m42s	142×	new
$uar{d} ightarrow W^+_T W^T uar{d}, W^+ ightarrow dar{u}, W^- ightarrow au^+ u_ au [g_S=0]$	36s	2m54s	37s	2m28s	$1.1 \times$	new
$\mu^+\mu^- \to hhh\bar{\nu}_\mu\nu_e \ [14{\rm TeV}]$	3s	8h50m/641	1s	11s	$2653 \times$	new
$\mu^+\mu^- ightarrow tar{t}\mu^+\mu^-~[13{ m TeV}]$	20s	3h6m /948	6s	25s	$362 \times$	new
$\mu^+\mu^- ightarrow W^+W^-\mu^+\mu^-$ [4 TeV]	1 m0 s	33m26s	16s	15s	$66 \times$	new
other processes		refine	survey	refine		
$pp \rightarrow W^+[0-4]j$	20m0s	5s	20m0s	4s	1.0×	old
$pp ightarrow t ar{t} [0-2] j$	38s	32s	38s	19s	$1.2 \times$	old
$pp \rightarrow 4j$	$1 \mathrm{m} 0 \mathrm{s}$	1h21m /7003	1 m0 s	21m5s	$3.7 \times$	new
$pp ightarrow t ar{t} 3 j$	1h0m	1h36m	2h0m	1h37m	$0.71 \times$	old
$pp \rightarrow W^+Z$	1s	3s	1s	2s	$1.3 \times$	new
$pp ightarrow t ar{t} h$	< 1s	2s	<1s	3s	$0.67 \times$	old
$pp ightarrow t \bar{t} h j$	2s	4s	3s	10s	0.45 imes	old
$pp ightarrow t ar{t} Z$	1s	4s	1s	4s	$1.0 \times$	old
$pp ightarrow W^+W^- jj \; [ext{QCD only}]$	11s	36s	11s	37s	1.0×	old

More on this -> MadNIS

Other idea: local gauge cancellation: <u>2203.10440</u>

Mattelaer Olivier

Phase-Space

Refactoring (LO) phase-space for data parallelism See Andrea's talk

Required for SIMD and GPU port of the code Also allow OpenMP (for running gridpack?)

- Multi-process is more efficient
- only if you release the core/thread for other task
- Low impact of hyper-threading

Computation step

Re-weighting

Re-weighting on GPU

Huge speed-up (~100x)

Need Huge sample (to be able to fill the GPU for each flavour)

Work and plot by Zenny Wettersten

Origin of the negative events

Rate of negative events 6.9% (1.3) $pp \rightarrow e^+e^-$ 7.2% (1.4) $pp \rightarrow e^+ \nu_e$ 10.4% (1.6) $pp \to H$ $pp \rightarrow Hbb$ 40.3% (27) 21.7% (3.1) $pp \rightarrow W^+ j$ 16.2% (2.2) $pp \to W^+ t\bar{t}$ 23.0% (3.4) $pp \to t\bar{t}$

MC@NLO

$$d\sigma^{(\mathbb{H})} = d\sigma^{(\mathrm{NLO},E)} - d\sigma^{(\mathrm{MC})},$$

 $d\sigma^{(\mathbb{S})} = d\sigma^{(\mathrm{MC})} + \sum_{\alpha=S,C,SC} d\sigma^{(\mathrm{NLO},\alpha)}.$

Origin

- H: over-estimate of the MC counter term term
- S: related to the fact that we hit multiple times the same born configuration

Result

MC@NLO-Δ /Folding (2002.12716)

	MC@NLO			$MC@NLO-\Delta$			
	111	221	441	Δ-111	Δ -221	Δ -441	
$pp ightarrow e^+e^-$	6.9%~(1.3)	3.5%~(1.2)	3.2%~(1.1)	5.7% (1.3)	2.4%~(1.1)	2.0% (1.1)	
$pp \to e^+ \nu_e$	7.2% (1.4)	3.8% (1.2)	3.4% (1.2)	5.9%~(1.3)	2.5%~(1.1)	2.3%~(1.1)	
$pp \to H$	10.4%~(1.6)	4.9%~(1.2)	3.4%~(1.2)	7.5% (1.4)	$2.0\% \ (1.1)$	0.5%~(1.0)	
$pp \rightarrow H b \bar{b}$	40.3% (27)	38.4% (19)	38.0% (17)	36.6% (14)	32.6%~(8.2)	31.3% (7.2)	
$pp \to W^+ j$	21.7% (3.1)	16.5% (2.2)	15.7% (2.1)	$14.2\%\ (2.0)$	7.9%~(1.4)	7.4%~(1.4)	
$pp \rightarrow W^+ t \bar{t}$	16.2% (2.2)	15.2% (2.1)	15.1% (2.1)	$13.2\% \ (1.8)$	11.9% (1.7)	$11.5\% \ (1.7)$	
$pp \rightarrow t\bar{t}$	23.0% (3.4)	20.2% (2.8)	19.6%~(2.7)	$13.6\%\ (1.9)$	9.3%~(1.5)	7.7% (1.4)	

Born Spreading	process	rocess negative S event			
(071004100)		no born smearing	after born smearing		
(2310.04160)	$pp ightarrow e^+e^-$	7.1%	2.0%		
	$pp \to H$	10.6%	1.1%		
	$pp ightarrow tar{t}$	8.6%	2.1%		
	$pp ightarrow W^+ t ar{t}$	4.2%	2.6%		
	$pp \rightarrow W^+ j$	24.2%	18.8%		
	$pp ightarrow Hbar{b}$	27.3%	24.7%		

Mattelaer Olívíer

Conclusion (1/2)

How to speed-up the computation?

- Faster matrix-element
- Better Hardware support (-> Andreas's talk)
- Better integrator (-> Ramon's talk)
- Better method (re-weighitng, avoid negative events)

A new era is coming

- Machine Learning need large sample to starts with
- GPU needs massive sample
 - The matrix-element will be for free
 - Many new opportunity

Conclusion (2/2)

We need more collaboration with IT

- MC tools are handle by theorist
- career path related to new feature/prediction
 - NOT on efficiency

We need:

- Strengthen the synergy with ML group
- Move GPU/ML production towards NLO
- Move colour optimisation towards GPU
- More efficiency study on Monte-Carlo/...
 - Re-optimise for GPU/SIMD

Backup slide

Amplitude solution

 Situation can be improved by splitting the amplitude computation into two steps

$$\mathcal{M}_{h_1h_2h_3} = \bar{\psi}_1^{h_1} \gamma_{\mu} \psi_2^{h_2} \phi_{h_3}^{\mu} \longrightarrow J_{\mu}^{h_1h_2} = \bar{\psi}_1^{h_1} \gamma_{\mu} \psi_2^{h_2}$$
$$\mathcal{M}_{h_1h_2h_3} = J_{\mu}^{h_1h_2} \phi_{h_3}^{\mu}$$

New recycling possible for $J^{h_1h_2}_{\mu}$

Expected gain (on the amplitude):
~2x for small multiplicity
~4x for high multiplicity

Worst case scenario

$$\int d\Phi f_1 f_2 \sum_{h=1}^{2^n} |M_h|^2 \longrightarrow \int d\Phi \int_0^{2^n} dh f_1 f_2 |M_{Round(h)}|^2$$

Constant function _____ Easy to integrate Fluctuation of the integrand correlation between degrees of freedom Not catched by Phase-Space integrator

Phase-Space

Refactoring (LO) phase-space for data parallelism

Required for SIMD and GPU port of the code Also allow OpenMP (for running gridpack?)

- Multi-process is more efficient
- only if you release the core/thread for other task
- Low impact of hyper-threading

Negative events proposal

Mattelaer Olívíer