

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Olivier Mattelaer

This Talk

Will not cover

- •SIMD/GPU port (-> Andrea's talk)
- Machine Learning effort (-> Ramon's talk)

Will cover

- •How computation is done
- Older optimisation:
	- Kiran Ostrelenk, OM: [2102.00773](https://arxiv.org/abs/2102.00773)
	- Andrew Lifson, OM: [2210.07267](https://arxiv.org/abs/2210.07267)

Thanks to Jenny for some plot and to the full MG5aMC teams for support

Computation step

• Evaluate *M* for fixed helicity of external particles →Multiply *m* with *m*^{*} -> $|M|$ ^2 ➡Loop on Helicity and average the results 1 Idea $e \mathrel{\mathscr M}$ for 1 hal partic

 t^*

g

 $\mathcal{D}_{\mathcal{D}}$

6

6

s s \sim t to b~ weight \sim t the basic state \sim weight \sim \sim \sim \sim

 t^*

g

• Evaluate *M* for fixed helicity of external particles →Multiply *m* with *m*^{*} -> $|M|$ ^2 ➡Loop on Helicity and average the results 1 Idea $e\mathrel{\mathscr M}$ for 1 hal partic

 t^*

g

 $\mathcal{D}_{\mathcal{D}}$

diagram 1 QCD=4, QCD=4, QCD=0, QC For one helicity

s s \sim t to b~ weight \sim t the basic state \sim weight \sim \sim \sim \sim

 t^*

g

• Evaluate *M* for fixed helicity of external particles →Multiply *m* with *m*^{*} -> $|M|$ ^2 ➡Loop on Helicity and average the results 1 Idea $e\mathrel{\mathscr M}$ for 1 hal partic

 t^*

g

 $\mathcal{D}_{\mathcal{D}}$

diagram 1 QCD=4, QCD=4, QCD=0, QC For one helicity

s s \sim t to b~ weight \sim t the basic state \sim weight \sim \sim \sim \sim

 t^*

g

• Evaluate *M* for fixed helicity of external particles →Multiply *m* with *m*^{*} -> $|M|$ ^2 ➡Loop on Helicity and average the results 1 Idea $e\mathrel{\mathscr M}$ for 1 hal partic

 t^*

g

 $\mathcal{D}_{\mathcal{D}}$

diagram 1 QCD=4, QCD=4, QCD=0, QC For one helicity

s s \sim t to b~ weight \sim t the basic state \sim weight \sim \sim \sim \sim

 t^*

g

• Evaluate *M* for fixed helicity of external particles →Multiply *m* with *m*^{*} -> $|M|$ ^2 ➡Loop on Helicity and average the results 1 Idea $e\mathrel{\mathscr M}$ for 1 hal partic

 t^*

g

 $\mathcal{D}_{\mathcal{D}}$

diagram 1 QCD=4, QCD=4, QCD=0, QC For one helicity

s s \sim t to b~ weight \sim t the basic state \sim weight \sim \sim \sim \sim

 t^*

g

• Evaluate *M* for fixed helicity of external particles ➡Multiply *M* with *M* -> |M|^2* 3 5 s ➡Loop on Helicity and average the results Idea $t \in M$ \mid $\cup \mid$ \mid tal partic

4

t~

g

b~

For one helicity **For one helicity**

6

t~

g

b

4

• Evaluate *M* for fixed helicity of external particles ➡Multiply *M* with *M* -> |M|^2* 3 5 s ➡Loop on Helicity and average the results Idea $t \in M$ \mid $\cup \mid$ \mid tal partic

4

t~

g

b~

For one helicity **For one helicity**

6

t~

g

b

4

• Evaluate *M* for fixed helicity of external particles ➡Multiply *M* with *M* -> |M|^2* 3 5 s ➡Loop on Helicity and average the results Idea $t \in M$ \mid $\cup \mid$ \mid tal partic

4

t~

g

b~

For one helicity **For one helicity**

6

t~

g

b

4

• Evaluate *M* for fixed helicity of external particles ➡Multiply *M* with *M* -> |M|^2* 3 5 s ➡Loop on Helicity and average the results Idea $t \in M$ \mid $\cup \mid$ \mid tal partic

4

t~

g

b~

For one helicity **For one helicity**

6

t~

g

b

4

Speed status

Helicity Amplitude

• Evaluate *M* for fixed helicity of external particles \rightarrow Multiply *m* with m^* -> $|m|$ ^2 **Idea**

➡Loop on Helicity and average the results

Doing the loop

$$
\sum_{h=1}^{2^N} |M_h|^2
$$

• Do we recompute the same quantity over an over?

Helicity Recycling

Helicity Recycling

Helicity Recycling

 \mathbf{I} But we can be smarter here -> around 2 (simple process) to 4 times faster

Solution Helicity Recycling

Not doing the sum

• One can replace a sum by an integral

$$
\sum_{h=1}^{2^N} |M_h|^2 \longrightarrow \int_0^{2^N} dh \, |M_{Round(h)}|^2
$$

• Increase the dimension of the integral by one

$$
\int d\Phi f_1 f_2 \sum_{h=1}^{2^N} |M_h|^2 \longrightarrow \int d\Phi \int_0^{2^N} dh f_1 f_2 |M_{Round(h)}|^2
$$

- Reduce complexity of the function to compute
	- Higher impact of the PDF/…
- Does not change the scaling of the convergence
- But increase the variance of the function

Comparison

Comparison

• Monte-Carlo over ….

- simplify the function to integrate (a lot)
- Forbid some optimisation
- Increase the number of required evaluation
- For helicity case:
	- No super clear winner
- Possible to combine both method (?)
	- Monte-Carlo over subset of helicity

Computation status

Colour becomes a computation bottleneck!!

depends on two (large) matrix (but constant) matrix

$$
J = B_{n!, n_{diag}} * M
$$
 B is a very sparse matrix. (Not the main bottleneck)

$$
M_h|^2 = J^{\dagger} C_{n!, n!} J
$$
 C is a real symmetric matrix

C is a real symmetric matrix

 $|M_h|$

Color

- Trivial update: use the symmetry
	- Only identify in 2022!

Color

$$
C_{i,j} = N_c^X \left(a_0 + a_1 \frac{1}{N_c^2} + \mathcal{O}(\frac{1}{N_c^4}) \right) \qquad N_c = 3
$$

 $a_0 \neq 0$: Leading Color $a_0 = 0, a_1 \neq 0$: Next Leading Color

$$
C(\sigma_k, \sigma_l) = \begin{pmatrix} \text{LC} & 0 & 0 & 0 & 0 & \text{NLC} \\ 0 & \text{LC} & 0 & \text{NLC} & 0 & 0 \\ 0 & 0 & \text{LC} & 0 & 0 & 0 \\ 0 & 0 & 0 & \text{LC} & 0 & 0 \\ 0 & 0 & 0 & 0 & \text{LC} & 0 \\ \text{NLC} & 0 & 0 & 0 & 0 & \text{NLC} \end{pmatrix}
$$

Take away

- Not the full matrix is needed
	- Development needed
- LC is dominant
	- No numerical issue

Computation step

Phase-Space

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

 ≈ 1

Key Idea

– Any single diagram is "easy" to integrate (pole structures/ suitable integration variables known from the propagators)

N Integral

- **–** Errors add in quadrature so no extra cost
- **–** "Weight" functions already calculated during |*M*|2 calculation
- **–** Parallel in nature: **embarrassingly parralel**

• What if interference are large -> change strategy

More on this -> MadNIS Cther idea: local gauge cancellation: [2203.10440](https://arxiv.org/abs/2203.10440)

Phase-Space

Refactoring (LO) phase-space for data parallelism See Andrea's talk

Required for SIMD and GPU port of the code Also allow OpenMP (for running gridpack?)

- •Multi-process is more efficient
- •only if you release the core/thread for other task
- Low impact of hyper-threading

Computation step

Re-weighting me-weighting

Re-weighting on GPU

Huge speed-up $(\sim100x)$

Need Huge sample (to be able to fill the GPU for each flavour)

Work and plot by Zenny Wettersten

Origin of the negative events

Rate of negative events \ \ \ \ MC@NLO 6.9% (1.3) $pp \rightarrow e^+e^ 7.2\%$ (1.4) $pp \rightarrow e^+ \nu_e$ 10.4% (1.6) $pp \rightarrow H$ $pp \rightarrow Hb\overline{b}$ 40.3% (27) 21.7% (3.1) $pp \rightarrow W^+ j$ $pp \rightarrow W^+ t \bar{t}$ 16.2% (2.2) 23.0% (3.4) $pp \rightarrow t\bar{t}$

$$
d\sigma^{\text{\tiny (II)}}=d\sigma^{\text{\tiny (NLO,E)}}-d\sigma^{\text{\tiny (MC)}},\\ d\sigma^{\text{\tiny (S)}}=d\sigma^{\text{\tiny (MC)}}+\sum_{\alpha=S,C,SC}d\sigma^{\text{\tiny (NLO,\alpha)}}\,.
$$

Origin

- •H: over-estimate of the MC counter term term
- •S: related to the fact that we hit multiple times the same born Cost In sample size $\left| \begin{array}{c} \text{cm} \\ \text{com} \\ \text{configuration} \end{array} \right|$

Result

MC@NLO-Δ /Folding (2002.12716)

Conclusion (1/2)

How to speed-up the computation?

- Faster matrix-element
- Better Hardware support (-> Andreas's talk)
- Better integrator (-> Ramon's talk)
- Better method (re-weighitng, avoid negative events)

A new era is coming

- Machine Learning need large sample to starts with
- GPU needs massive sample
	- The matrix-element will be for free
		- Many new opportunity

Conclusion (2/2)

We need more collaboration with IT

- MC tools are handle by theorist
- career path related to new feature/prediction
	- NOT on efficiency

We need:

- Strengthen the synergy with ML group
- Move GPU/ML production towards NLO
- Move colour optimisation towards GPU
- More efficiency study on Monte-Carlo/...
	- Re-optimise for GPU/SIMD

Backup slide

Amplitude solution

•Situation can be improved by splitting the amplitude computation into two steps

$$
\mathcal{M}_{h_1h_2h_3} = \bar{\psi}_1^{h_1} \gamma_\mu \psi_2^{h_2} \phi_{h_3}^\mu
$$
\n
$$
J_\mu^{h_1h_2} = \bar{\psi}_1^{h_1} \gamma_\mu \psi_2^{h_2}
$$
\n
$$
\mathcal{M}_{h_1h_2h_3} = J_\mu^{h_1h_2} \phi_{h_3}^\mu
$$

New recycling possible for $J_\mu^{h_1h_2}$

• Expected gain (on the amplitude): •~2x for small multiplicity •~4x for high multiplicity

Worst case scenario

$$
\int d\Phi f_1 f_2 \sum_{h=1}^{2^N} |M_h|^2 \longrightarrow \int d\Phi \int_0^{2^N} dh f_1 f_2 |M_{Round(h)}|^2
$$

Constant function Easy to integrate \longrightarrow Fluctuation of the integrand correlation between degrees of freedom Not catched by Phase-Space integrator

Phase-Space

Refactoring (LO) phase-space for data parallelism

Required for SIMD and GPU port of the code Also allow OpenMP (for running gridpack?)

- •Multi-process is more efficient
- •only if you release the core/thread for other task
- Low impact of hyper-threading

Negative events proposal

$$
\begin{array}{|c|l|}\hline \text{Modified MC@NLO (2002.12716)}\\ \hline \begin{array}{c} d\sigma^{(\Delta,\mathbb{H})} = \left(d\sigma^{(\text{NLO},E)} - d\sigma^{(\text{MC})} \right) \Delta, \\ \hline \begin{array}{c} d\sigma^{(\Delta,\mathbb{S})} = d\sigma^{(\text{MC})} \Delta + \sum\limits_{\alpha = S,C,SC} d\sigma^{(\text{NLO},\alpha)} + d\sigma^{(\text{NLO},E)} \left(1 - \Delta \right). \end{array}\\\hline \Delta \rightarrow 0 \qquad \text{soft and collinear limits.}\\ \Delta \rightarrow 1 \qquad \text{hard regions.} \qquad \Delta = 1 + \mathcal{O}(\alpha_{S}). \\\hline \text{Born Spreading (2510.04160)}\\ \hline \begin{array}{c} \mathcal{F}^{(\mathbb{S})} = \int \left[\frac{B(\Phi_{B}) F(\Phi_{r})}{\int F(\Phi_{r}) d\Phi_{r}} + \frac{V(\Phi_{B})}{\int d\Phi_{r}} + K_{\text{MC}}(\Phi_{B}, \Phi_{r}) \right] d\Phi_{r} \times \mathcal{F}_{\text{MC}}^{(B)} \end{array}\\\hline \text{Folding}\\ \mathcal{F}_{\text{MC}}\left(\mathcal{K}^{(\mathbb{S})}\right) \int_{\chi_{r}} d\sigma^{(\mathbb{S})} \simeq \mathcal{F}_{\text{MC}}\left(\mathcal{K}^{(\mathbb{S})}\right) \sum_{i_{\xi}=1}^{n_{\xi}} \sum_{i_{y}=1}^{n_{y}} \sum_{i_{\xi}=1}^{w_{i_{\xi}} i_{y} i_{\xi}} \frac{w_{i_{\xi} i_{y} i_{\varphi}}}{n_{\xi} n_{y} n_{\varphi}} d\sigma^{(\mathbb{S})}\left(\mathcal{K}^{(\mathbb{S})}, \xi_{i_{\xi}}, y_{i_{y}}, \varphi_{i_{\varphi}}\right). \end{array}\end{array}
$$