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Difficulties emulating matrix elements

e Singular behaviour in soft and collinear limits makes a straight-
forward emulation difficult:

- Small change in phase-space input results in dramatic change in ME
value

— Selection of training set/loss can be difficult:

* The loss can be dominated by singular configurations for loose training cuts
* The extrapolation becomes unreliable if trained on too tight cuts
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Using singular behaviour

« We know the behaviour of MEs in soft and collinear limits

J
 Use a NN to predict the regular factor and use the known

analytic divergent behaviour
* Use a NLO subtraction-style ansatz to emulate the LO ME
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Factorisation-aware emulation

* Write amplitude as an ansatz

|./\/ln+1 | E Cz] k DZ]’ Q}y redundant parametrisation
{ijk}

* Fit the coefficients N
1
Lysg = N Z: (%50

* Encourage NN to learn factorisation
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Factorisation-aware emulation

When approaching a singular limit only the relevant dipole is relevant

Away from all singularities all terms combine to emulate the matrix
element

At LO we use Catani-Seymour dipoles, at one-loop we used antenna
functions

Azimuthal term added:
Sijsin (2¢;5) + Cij cos (2¢i5)

The angle is the azimuthal angle of the decay particles in the plane
perpendicular to the parent particle momentum

CERN, 14th November 2023



Results

e*e- annihilation into jets

Train on 3 different training set
- vya: = 0.01, 0.001, 0.0001

* Lower cut means larger range for the matrix element
- EXxpect lower precision
Use 40M PS point training set
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LO Results

 No discernible bias
e 3-4 digits accuracy
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Cross section

e (Calculate the error on the 102 .
total cross section for the otf « €'e”—adggg
test set
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One-loop amplitudes

e Much more CPU intensive to calculate

* Choose to model the k-factor
28%{./\/1(”’0)./\/1(”’1)*} B |M<n’1)’2
fin = M (1,0)|2 - M (0,0)]2
e Factorisation is more complicated, we use antenna
factorisation

|M(n—|—1,1)|2 - ng|M(n,1)|2 + Xz'ljlf|M(n’O)|2

Do=i-00- @ @ —0C
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k-factor ansatz

X MO 2 + X | MO0

k1 — 1,F
X [ MB0)|2 Y X
( 1) 5 17F ’I’L+1 n XO
n+1 7 M(n,0)|2 X?jk
* We use the ansatz: RLE
kny1=Co+ ) _ Cijk ~0
{ijk} ik
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1L results

* Evaluate precision using

M(n,l) 2rue . M(n,l) 2
Ktrue — kpred — ‘ |t | ‘pred = A\

’M(n’O) |l?,rue
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1L Results

e Train on 100k PS 2 ': P
oints ete™ = qqggg
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- Teston 1M points 5 4o/
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No clear bias w.r.t
weight size

Error vs ME size
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Cross section
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Augmenting dataset

Use 20 replicas to estimate
variance and bias of model

Statistical MC integration
error I1s of order 10%o!

Can use NN model to
augment dataset!

Use variance as an estimate

of the NN error
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Unweighting with NN approximation

Jork with Timo Janf3en, Stefan Schumann, Frank Siegert and
Truong [arXiv:2301.13562]




Unweighting

* Unweighting high multiplicity matrix elements can be extremely
unefficient

 Can be improved by

- Generate a set of unweighted values according to an approximation
that is easy to unweight

- Unweight this set according to
— If ratio is close to 1 we get to keep many more calculated ME

* Tolerate a small amount of weights above 1
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Two-stage unweighting

PS points

Cheap ME surrogate

True ME
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Two-stage unweighting in Sherpa

K. Danziger, T. Janl3en, S. Schumann, F. Siegert implemented
such a two-stage unweighting in Sherpa and used a NN
surrogate [arXiv:2109.11964]

ZIW +4 jets and +3 jets
Obtained speed up of up to 10 compared with AMEGIC

Use a factorisation aware emulator instead of their NN
surrogate

Needed to implement initial-state and massive dipoles
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Unweighting

* First unweight w.r.t NN — gj;jje
model , then correct with 0 o
true weight 7 104 M e
_ ] _ 3 . N = 1M events
* Factorisation-aware NN Is 5 10
much more precise 3 102
* Up to Z/W+5 jets and tt+4 jet 10"
* Result in very large 100 1ol IS TR
efficiency gains (16-350) = ;‘}S o= 0
* Largest gains for the most (b) Channel u@ — tfgdd
complicated processes (tt + 3 jets).
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Unweighting results
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Caveat

* There are caveats:

— This is using color-summed MEs

— In practice color-sampled MEs are used for high multiplicity
processes

- A straight-forward attempt at generalising the method to color
sampled MEs did not give as good results

* More thoughts have to be put into this!
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Conclusions

* NN can approximate MEs very well if some physics information
IS Injected!
* They can be modelled with limited training data and small NN

* Precision is not perfect but:
- Can be way smaller than the statistical error

- Can be used as a first stage:
* Unweighting: two (or more?) stage
* Integration: integrate (ME-NN) if precision is not sufficient
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