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well known problem:

some solutions already exsist

multi-scale amplitudes difficult to integrate

CPU cost scales 
badly with higher 
orders

(especially when IR 
singular)

multi-core processing
re-weighting lower orders
…as well as other methods discussed at this meeting

automated and 
optimised MCs
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this talk: testing amplitude neural network for loop induced processes

gg !""g and gg !""gg

• Realistic hadron collider setup with SHERPA
• Precision evaluations: determining NN errors

Aylett-Bullock, SB, Moodie JHEP 08 (2021) 066
SB, Butter, Luchmann, Pitz, Plehn SciPost Phys.Core 6 (2023) 034
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Figure 3: Differential distributions normalised to the cross section for the 2 ! 3 process
comparing NJet (red) with the NN ensemble (blue). The NJet results are quoted with MC
errors and the NN results with precision/optimality uncertainties calculated as described
in Ref. [60]. Pseudojets ji and photons �i are ordered by energy, �� is azimuthal sepa-
ration, R-separation is defined in Section 3.2.1, and m�1,�2 and �⌘�1,�2 are the mass and
pseudorapidity separation of the diphoton system.
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• Reflections on experience at NNLO 



How expensive are the loop amplitudes…The numerical evaluation requires the sum of permutations of ordered primitive am-
plitudes. This is completely automated for arbitrary multiplicity, but evaluation times and
numerical stability are increasingly difficult to control.

To study the growth of evaluation time with multiplicity, we evaluate the matrix ele-
ment at 100 random phase-space points with each available technique and plot the mean
times in Figure 1. We generate the phase-space points isotropically with the algorithm
from Ref. [67]. While analytic methods are competitive at low multiplicity, we see they
scale poorly and are unlikely to beat numerics at n � 6. Numeric scaling is better, but
these algorithms come with a high cost. Our NN approach provides a performant alterna-
tive, with significantly better scaling than either numerics or analytics.
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Figure 1: Matrix element typical CPU evaluation times for available methods — including
NJet numerical evaluations, NJet analytical evaluations, and inference on a NN ensemble
as described in Section 3 — against the number of legs. These calls are single-threaded as
parallelisation is applied at the level of events in simulations. An analytic expression for
2 ! 4 is not available. The NN is comparable to the analytic call at 2 ! 2, 50 times faster
at 2 ! 3, then 105 times faster than the 2 ! 4 numeric call.

3 Computational setup

In this paper, we build on previous work which sought to demonstrate the viability of using
NN-based approaches to approximate matrix element values for hard scattering processes
[60]. In that work, a NN ensemble approach was presented in which a different NN is
trained on each soft and collinear region of phase space, and was shown to be effective in
handling IR divergent structures at both the Born and one-loop level at high multiplicity
in e

+
e
� collisions. We extend this to more complex 2 ! 3 and 2 ! 4 gluon-initiated

diphoton amplitudes, while also showing the ability for these ML models to interface with
existing event generators such as Sherpa [6, 7]. This is important to demonstrate since it is
not immediately obvious that NN approximations trained in isolation will be robust to the
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For this reason, we consider an alternative setup where the whole simulation uses a NN
approximation of the amplitude.

The loop-level amplitudes proceed through a fermion loop and have a colour decompo-
sition in the trace basis as

A
(1)(1, . . . , n � 2, (n � 1)� , n�) =

gs
n�2

g��

X

�2Sn�3

�(� (a1, . . . , an�2))A
(1)(�(1, . . . , n � 2), (n � 1)� , n�), (2.1)

where gs is the strong coupling, g�� = e
2 P

q Q
2
q is the combined coupling of the diphoton

system to the fermion loop, Sn�3 is the set of even non-cyclic permutations of {1, . . . , n�2},
t
a are the fundamental SU(3) generators, q runs over active quark flavours with fractional

quark charge Qq, and the colour trace function � is defined as

� (a1, . . . , an�2) = tr (ta1ta2 . . . t
an�2) + (�1)ntr (ta1tan�2 . . . t

a2) . (2.2)

This yields (n � 3)!/2 primitive amplitudes A for n � 5. For example, for n = 4 there is a
single primitive amplitude. It is given by the diagrams

A(1, 2, 3� , 4�) =

1g

2g 3�

4�

+

1g

3� 4�

2g

+

1g

4� 2g

3�

(2.3)
where a plain line indicates a sum over quark loop arrow directions. At one-loop, these
amplitudes are also related to the fermion loop corrections to pure gluon scattering through
permutations [63]. The ingredients for differential cross sections are the squared amplitudes
summed over helicities, h, and colour,

|A
(1)

|
2

=
⇣

↵s

4⇡

⌘n�2
g
2
��

X

h,i,j

A
(1)
i

⇤
(h) Cij A

(1)
j (h) + O(↵n�1

s ) (2.4)

where the matrix C is a function of the number of colours, Nc, obtained by squaring the
colour basis elements and the index on the partial amplitudes, A, refers to the different
permutations in the colour decomposition.

The amplitudes in this article are taken from the NJet C++ library [62]. Here, there
are different options: a general numerical setup using generalised unitarity and integrand
reduction; and hard-coded analytic expressions for n = 4, 5. The n = 4 analytic expressions
were taken from Ref. [64], while for n = 5 they were obtained directly from a finite field
reconstruction [65] and are in agreement with known analytic formula [63, 66]. By using a
momentum twistor parameterisation of the external kinematics, cancellations in the rational
coefficients of the special functions that lead to a manifestly finite representation are easily
identified.
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evaluation time including 
error estimates

numerical evaluation with NJET (V3)
(SB, Biedermann, Moodie, Uwer, Yundin)
https://bitbucket.org/njet/njet/wiki/Home

(also includes some 2L 5pt amplitudes)

+

https://bitbucket.org/njet/njet/wiki/Home


Precision is Important
standard one-loop matrix elements 
provide high precision evaluations:

OpenLoops, GoSam, Madloop, 
BlackHat, Recola, Helac-NLO…
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Figure 5. Accuracy for 5-jet amplitudes: (a) shows the seven gluon process and (b) the dd→ dd+ 3g pro-
cess. The thicker histograms show computations in double precision whereas the thinner curves show the
distribution in quadruple precision for points which did not pass the relative accuracy of 10−4 when calcu-
lated in double precision. Red histograms show the 1
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poles, green histograms the 1
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the finite part of the amplitudes.
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Figure 6. Estimated evaluation time for primitive amplitude with 0, 1, 2 and 4 fermion lines averaged over
the total number of helicities as a function of the number of external legs. Both mixed quark gluon loop and
closed quark loop are shown. The curves are a fit to the polynomial f (n) = anb. The exponent b can be read
off from the legend. The times were measured on an Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz.

accuracy when evaluated in double precision. All times include the two evaluations necessary
to obtain the accuracy estimate via the scaling test. Times have been obtained using the clang
v2.8 compiler. The time estimated for the reevaluation using quadruple precision is based on the
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one-loop pp ! 5 partons with NJET

use the ability to switch 
numerical precision (e.g. qd 

for 32 or 64 digits)

dimension scaling tests, gauge 
invariance checks,…



Wishlist

an amplitude approximation which is: 

• simpler to train/fit than generating events using traditional methods
• simplest model which fits a generic process
• reliable error estimates
• robust against changes in phase-space (cuts, jet algorithms, 

scale variations, etc.)
• simple to distribute



first attempt: e+e- ! jets 

• Single NN does badly
• Splitting IR sectors via FKS sectors improves reliablity
• Error estimates by varying model initialisation (ensemble of networks)
• K-factors work better than tree-level (no 1/s poles)
• Various tests suggest single run speed improvements at least x10

SB, (Aylett-)Bullock [2002.07516]

two scales, the divergent region, Rdiv, and the non-divergent region, Rnon-div, are defined
as follows:

Rdiv = {p | ycut  min(yij)  ycut + yp, p = (pa, pb, p1, ..., pn), i, j 2 {1, ..., n}}, (2.2)

Rnon-div = {p | ycut + yp  min(yij), p = (pa, pb, p1, ..., pn), i, j 2 {1, ..., n}}, (2.3)

where p is a phase-space point consisting of the initial state 4-momenta, pa and pb, and
the outgoing momenta, {p1, p2, ..., pn}, where n is the number of jets.

In the FKS subtraction formalism, the phase-space is divided such that the kinematic
regions resulting from each partition contain only a specific subset of singularities. In order
to achieve this, a set of ordered pairs, known as FKS pairs, are introduced. In our case of
e+e� ! 5 jets we define these as:

PFKS = {(i, j) | 3  i  ng + 2, 3  j  ng + 2, i 6= j,

M
(n,0) or M

(n,1)
! 1 if p0i ! 0 or p0j ! 0 or ~pi||~pj}, (2.4)

where ng is the number of gluons in the process.
We then construct a partition function similar to that of [36, 37] (for a brief introduction

to different FKS pair definitions and partition choices see Appendix B):

Si,j =
1

D1sij
, D1 =

X

i,j2PFKS

1

sij
, (2.5)

such that:

d�(X) =
X

i,j

Si,j d�(X), (2.6)

where, in this example, �(X) represents either the Born cross-section, �(B), the virtual
correction, �(V ), or the k-factor, �(K).

To demonstrate this partitioning effect we analyse the process e+e� ! qq̄g. Here,
we can isolate each of the two FKS pairs {qg, q̄g} and weight all phase-space points in the
divergent regions according to the behaviour of Si,j for each pair. The first pair corresponds
to either the quark and gluon going collinear or the quark or gluon going soft. Since we
cannot have soft quarks, this FKS partition only contains the singularities for the soft
gluon and collinear quark and gluon. The behaviour of the FKS partition function, Sq,g

can be clearly seen in Figure 2, where we observe increasingly highly weighted points as sqg
approaches 0.

An advantage of this method is that the interpolation between singular regions is
smooth since they add together to produce the overall cross-section (see Equation 2.6).1 By

1
An alternative implementation would be to partition the phase-space in a piecewise manner according

to Heaviside step functions (as in [34]); however, this introduces an additional set of scale choices and sig-

nificantly reduces the number of phase-space points left for each network to learn the complicated divergent

structure. Indeed, we found that when partitioning piecewise the network performs significantly worse in

comparison to this smooth implementation.
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Figure 2: Behaviour of the Sq,g FKS partition function

weighting the matrix elements in this way, phase-space points closer to the q||g singularity
contribute with increasing significance to the corresponding neural network’s loss during
training. A similar analysis can be performed for the second FKS pair in this process.

Since the FKS pairs are ordered, the upper bound on the number of pairs for our
processes is:

Nmax =
nj(nj � 1)

2
� 1, (2.7)

where nj is the number of jets and the �1 comes from the fact that {qq̄} is not an FKS
pair by definition. It should be noted that the number of pairs can be reduced in reality due
to the symmetric behaviour of all gluon-gluon, or quark-gluon pairs; however, for simplicity
we partition into Nmax regions. For example, in the example above, Nmax = 2 but N = 1

since the behaviours of the two pairs in this process are identical.
After using the FKS partition function to divide the region Rdiv, we are left with

Nmax +1 regions in total across which we train the same number of networks. We find that
setting the scale to yp = 0.01 is generally applicable to all processes analysed.

2.2 Neural network setup

We compare the performance of two neural network setups, firstly a singular network is
trained over the entire uniformly sampled phase-space, and secondly an ensemble of Nmax+1

networks are trained over the partitioned phase-space.

2.2.1 Data

The phase-space is uniformly sampled using the RAMBO algorithm [38], with each point
initially having a weighting of unity. At LO, we train the single network model on data
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first attempt: e+e- ! jets 

SB, (Aylett-)Bullock [2002.07516]

Figure 2. Error distribution compared to Figure 3 in Ref. [27], where data to reproduce the
histograms were provided by the authors. We plot the log ratio of the matrix element as predicted
by the neural network ensemble and the value from NJet on the main axes for comparison. The
blue and orange dipole histograms representing our method are cut off at the top on the main axes,
but the most important feature is the narrowness of the peak centred around the ideal value. The
insets show the detailed distribution of our result on a linear scale.

We can see that the prediction-to-truth ratio distribution for our method is much narrower
and consistently peaked around the ideal accuracy, indicating our model performs better
on a per-point basis for all multiplicities. Even with this reduced NN size we can see that
incorporating the known divergent structure explicitly in the model gives better results, as
it uses the NN representation to learn a function that is more suitably approximated by a
NN. For example, even though the three jet matrix element has a fairly trivial analytical
structure, a standard fitting approach using a NN typically struggles to reproduce diver-
gences. In our approach the NN only needs to emulate a non-singular modulation on top
of the main divergent behaviour and is therefore more suited to the task.

3.2 Main results

Here we present our main results which are obtained using the larger NNs described in
Section 2.4.2 along with larger training datasets described in Section 2.3. In Figure 3, we
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Maitre, Truong [2107.06625]

tree-level factorisation aware 
approach performs better

Figure 3: Born matrix element output of a single neural network (red) and our ensemble
approach (green) compared to the Njet calculation. Outputs are taken as the average over
20 trained models or ensembles.

3.1 Approximations at LO

Although leading order calculations are not significantly computationally expensive, they
pose interesting test cases for neural network approximations of high multiplicity processes
with many scales and complex infrared singularity structures. Moreover, we find that much
of wha can be learnt from the performance of the models here can be applied to the NLO
case.

As detailed above, we compare a single network trained over the entire phase-space with
an ensemble of networks each trained on Nmax+1 partitions of phase-space. In determining
the appropriate value of the global phase-space cut parameters, ycut, we evaluate the perfor-
mance of our models by calculating the ratio of the network output to the Njet calculation
as well as the network’s ability to approximate the cross-section.

Figure 3 shows the distribution of the neural network errors by calculating the ratio
of the model output and the Njet result at each phase-space point in the test set. Since
the ensemble of networks gives much narrower and more Gaussian shaped distributions
than the single network approach, we can clearly see that this method is preferable at the
level of per-point accuracy. Additionally, the error distributions of the ensemble approach
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Figure 6: k-factor output of a single neural network (red) and our ensemble approach
(green) compared to the Njet calculation. Outputs are taken as the average over 20
trained models or ensembles.

10k training, 1M inference 100k training, 1M inference
Jets Njet NN ensemble Njet NN ensemble
3 13.2 hours 0.15 hours 13.2 hours 1.32 hours
4 194 hours 1.97 hours 194 hours 19.4 hours
5 6.39⇥ 103 hours 63.9 hours 6.39⇥ 103 hours 639 hours

Table 1: Time required for k-factor calculation at different multiplicities requiring 1M
points while training on 10k and 100k points. These results assume all calculations take
place on a single CPU core. Note that the Njet times remain the same as we assume that
the training points form part of the inference (see later in this section for more details).
Time is quoted to at most 2 decimal places and at 3 significant figures where possible.

As in the LO case, in Figure 6 we plot the error distributions for the single and ensemble
cases by comparing the network outputs to the Njet calculations at the per-point level. In
the 3 and 4-jet cases we see that both methods perform relatively similarly, with the single
network appearing to be slightly better in the case of 4-jets. However, it should again be
noted that these plots do not contain information about the network uncertainty and so
should not be interpreted as the sole measure of performance.

In Figure 7 we see that both the naive single network approach and the ensemble
method approximate the k-factor to within Monte Carlo error at 3-jets, and are within the
percent level at 4-jets. Although either methodology would be suitable for use, the ensemble
of networks requires little more computational time in comparison to the single network
model, while producing narrower uncertainty bands. For robustness at higher multiplicity,
the ensemble method remains the more optimal method.

A comparison between the computational speed of different methods of k-factor com-
putation and calculation can be found in Table 1. Here we see a dramatic speed up when
using the network approximation as opposed to current numerical methods, with the domi-
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Figure 5: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential cross-section against y, where y is the minimum yij as ordered
by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands denote
1 s.d. calculated over 20 trained models (red and green) and Monte Carlo error on the
Njet result (blue). – 13 –
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Figure 2: NN/NJet errors for the 2 ! 3 scattering process using a unit integration grid.

Cuts NJet [pb] NN ensemble [pb]
Baseline 4.149 ⇥ 10�6

± 6 ⇥ 10�9 4.19 ⇥ 10�6
± 7 ⇥ 10�8

Baseline + pT,� > 50 GeV 5.283 ⇥ 10�7
± 8 ⇥ 10�10 5.4 ⇥ 10�7

± 2 ⇥ 10�8

Baseline + m�,� > 50 GeV 3.300 ⇥ 10�6
± 5 ⇥ 10�9 3.34 ⇥ 10�6

± 5 ⇥ 10�8

Table 1: Cross-sectional comparison between NJet and the NN ensemble approach using
different cuts. Baseline cuts are those specified at the beginning of Section 4. The NJet re-
sults are quoted with MC errors and the NN ensemble results with precision/optimality
uncertainties calculated as described in Ref. [60].

shows the results of the cross section derived using NJet and the NN ensemble. We see
that these two approaches are in excellent agreement, with the ensemble result overlapping
within one standard deviation of that calculated by NJet. The errors on the NJet values
are the MC errors, and the errors on the ensemble are precision/optimality uncertainties.
The latter are calculated by training multiple ensembles with different random seeds in
the weight initialisation, and in the shuffling of the training and validation datasets. MC
errors are quoted to one standard deviation and the precision/optimality uncertainties to
one standard error on the mean. A more in depth description of this uncertainty analysis
can be found in Section 2.3 of Ref. [60].

The error plot and cross-section calculation provide good evidence for the performance
of the NN ensemble method both in its ability to learn the distribution of phase-space
points on average, as well as its robustness to being integrated into a wider event generation
framework with additional phase-space and PDF weights. To further test the methodology
in a more relevant way to how it would be used in practice, differential distributions can
be used to assess robustness as they more explicitly expose performance on the divergent
and tail events.
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Figure 7: NN/NJet errors for the 2 ! 4 scattering process using a unit integration grid.

being in the chosen value of yp = 0.001. At higher multiplicity, a greater proportion of
points fall within the divergent region, Rdiv, however, this can hinder model performance
by unbalancing the training regime. It is therefore reasonable to aim to keep the propor-
tion of points in this region approximately constant throughout our experiments which is
achieved by lowering the value of yp (see Appendix B for more details).

Figure 7 shows the performance of our trained NN ensemble at the matrix element
level. As expected, the performance has decreased relative to the 2 ! 3 process shown in
Figure 2, yet the error distribution is still found to be approximately Gaussian, although
with a shifted mean. Despite this, the cross section calculated using the NN ensemble —
4.5 ⇥ 10�6

± 6 ⇥ 10�7 pb — is found to be in excellent agreement with that derived from
NJet — 4.9 ⇥ 10�6

± 5 ⇥ 10�7 pb. This suggests that although there are several points
where the ensemble approach performs poorly, particularly in comparison to the 2 ! 3

process, these are largely in the divergent region and found to not affect the cross-section
calculation too greatly.

Figure 8 shows the performance of the ensemble approach in six differential slices of
phase space. As in the previous example, the ensemble is found to perform well relative
to NJet: while noise in the tails of the distributions is still observed, these appear to be
reduced in comparison to the 2 ! 3 process. This further supports the assertion that the
points where the ensemble performs poorly are suppressed.

Given the difference in cross-section values calculated using NJet and the ensemble
approach, we perform reweighting in the divergent region as discussed in Section 3.4 and
Section 4.1. As shown in Figure 9, reweighting in this region can bring the NN ensemble
derived cross section closer to the value calculated using NJet. In the case of the 2 ! 4

process, the MC error on the NJet result is significantly larger for the same number of points
compared to the 2 ! 3 process. Given these larger error, and that the ratio �

(RW)
/�

(NJet)

resides within these errors, it is predictably noisy, yet still converges showing that this
approach to reweighting can be generalised across multiple processes.
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Figure 9: Effect of reweighting points in the divergent region of phase space, Rdiv, on
the ratio between the reweighted cross section, �

(RW), and the cross section calculated
using NJet �

(NJet) for the 2 ! 4 process. In this case, the divergent region comprises
approximately 2–3% of the total phase space (see Appendix B for details). The red band
shows the MC error on the NJet result.

4.3 Timing

We repeat the performance evaluation of Figure 1 with methods involving error estima-
tion as these are likely to be employed in real-world usage. For conventional techniques,
the dimension scaling test is a standard way to estimate error on the result and intro-
duces a second matrix element call for each phase-space point evaluation. As discussed in
Section 4.1, we propose running 20 NN ensembles for each point to obtain a mean with
standard error.

The results, shown in Figure 10, demonstrate the per-point speedup in using amplitude
NNs in practice. For the 2 ! 4 process, where amplitude calls dominate conventional
simulation time, a 104 times speedup in amplitude calls is observed which renders the
inference stage as negligible in the total time of our NN-based simulation pipeline. Indeed,
in comparison to the numerical calculation of the matrix element, the training time of the
NN ensemble can also be considered negligible, meaning the total speed up in the overall
simulation time is of the order Ninfer/Ntrain — the ratio of the number of inference point
to the number of points in the training dataset.

5 Conclusions

In this article we provided further evidence that NNs provide a general framework for the
optimisation of high multiplicity observables at hadron colliders. We extended preliminary
studies [60] for electron-position scattering to hadron-hadron collisions and provided a gen-
eral interface to the Sherpa MC event generator for NNs trained with the NJet amplitude
library. We focused on the loop-induced processes gg ! �� + n(g) which cause problems
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Figure 4: Effect of reweighting points in the divergent region of phase space, Rdiv, on
the ratio between the reweighted cross section, �

(RW), and the cross section calculated
using NJet �

(NJet) for the 2 ! 3 process. In this case, the divergent region comprises
approximately 7–9% of the total phase space (see Appendix B for details). The red band
shows the MC error on the NJet result.

Figure 3 demonstrates the performance of the NN ensemble in comparison to NJet in
six differential slices of phase space. These include pT , angular, and diphoton system distri-
butions which have been chosen to give a range of realistic constructions exploring different
regions of phase space. In general, the NN ensemble is found to be in good agreement, par-
ticularly around the peaks, with the majority of the NN bin values being with the NJet MC
error. The normalised NN uncertainties on the differential bins is negligible in comparison
to the MC error. Strong performance is pronounced in the pseudorapidity distribution
which shows variation at the percent level. The pT and angular distributions show more
fluctuations in the tail events, with the diphoton mass demonstrating the greatest devia-
tions in these regions. However, despite these differences, fluctuations are clearly statistical
rather than systematic meaning agreement will increase as the bins are aggregated. This is
to be expected given the strong cross-section performance.

The results presented so far have been derived from a NN ensemble trained and tested
on the same integration grid and on the same cut parameters. However, in phenomenologi-
cal explorations it is common to study a range of cut parameters, especially when measuring
the effects of new phenomena. Since the NN ensemble performs well at the per-point level
(as shown in Figure 2), it should also be able to generalise to different cut parameter con-
figurations. Specifically, the ensemble should still be applicable to harsher cuts than those
used in training because the it expects the training and testing datasets to be drawn from
the same statistical distributions. However, in the event that cuts are relaxed in comparison
to those the model was trained on, reweighting could be employed for the relevant addi-
tional subset of points thereby guaranteeing the expected values in these ‘unseen’ regions
of phase space.

Table 1 presents a comparison of cross-section values calculated using NJet and the
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shows the MC error on the NJet result.

Figure 3 demonstrates the performance of the NN ensemble in comparison to NJet in
six differential slices of phase space. These include pT , angular, and diphoton system distri-
butions which have been chosen to give a range of realistic constructions exploring different
regions of phase space. In general, the NN ensemble is found to be in good agreement, par-
ticularly around the peaks, with the majority of the NN bin values being with the NJet MC
error. The normalised NN uncertainties on the differential bins is negligible in comparison
to the MC error. Strong performance is pronounced in the pseudorapidity distribution
which shows variation at the percent level. The pT and angular distributions show more
fluctuations in the tail events, with the diphoton mass demonstrating the greatest devia-
tions in these regions. However, despite these differences, fluctuations are clearly statistical
rather than systematic meaning agreement will increase as the bins are aggregated. This is
to be expected given the strong cross-section performance.

The results presented so far have been derived from a NN ensemble trained and tested
on the same integration grid and on the same cut parameters. However, in phenomenologi-
cal explorations it is common to study a range of cut parameters, especially when measuring
the effects of new phenomena. Since the NN ensemble performs well at the per-point level
(as shown in Figure 2), it should also be able to generalise to different cut parameter con-
figurations. Specifically, the ensemble should still be applicable to harsher cuts than those
used in training because the it expects the training and testing datasets to be drawn from
the same statistical distributions. However, in the event that cuts are relaxed in comparison
to those the model was trained on, reweighting could be employed for the relevant addi-
tional subset of points thereby guaranteeing the expected values in these ‘unseen’ regions
of phase space.

Table 1 presents a comparison of cross-section values calculated using NJet and the
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All our simulations use p
s12 = 1 TeV; the methodology is agnostic to this choice.

Although we test the performance of our models on different cuts, unless otherwise specified
all models are trained, and analyses performed, using the following kinematic cuts adapted
from those in Ref. [14]

pT,j > 20 GeV R�,j > 0.4 |⌘j | < 5

pT,�1 > 40 GeV R�,� > 0.4 |⌘� | < 2.37

pT,�2 > 30 GeV

where pT =
p

px
2 + py

2 (beam along z-axis) is transverse momentum magnitude, R =p
(�⌘)2 + (��)2 is isolation cut cone radius, ⌘ is pseudorapidity, � is azimuthal angle, �

denotes a photon, photons are ordered by pT , and jets, j, are identified through the anti-kT
algorithm [70] implemented in FastJet [71] with R = 0.4. These cuts are typical for LHC
analyses. Photons are selected by smooth cone isolation [72] such that all cones of radius
r� < R satisfy

Ehadronic(r�)  ✏ pT,�
1 � cos r�

1 � cos R

with R = 0.4 and ✏ = 0.05.
Matrix elements are evaluated with renormalisation scale µR = mZ with physical con-

stant values ↵(Q2 = 0), ↵s(mZ), and mZ from the PDG [73]. Since the one-loop process is
LO, the full amplitude is finite and has µR dependence in the couplings only.

3.2.2 Architecture

For optimal results, a different NN architecture construction would be fine-tuned to each
choice of setup parameters, e.g. integrator, cuts, and process. However, the required com-
putational and time resources required to perform this optimisation make this highly im-
practical. Instead, we further test the generalisability of the hyperparameter choices made
in Ref. [60] to this new set of processes. In addition, hyperparameter tuning was performed
to assess how optimal this approach is relative to the ideal scenario where hyperparame-
ters are process specific, and found the original setup to be among the most optimal (see
Appendix A for more details).

In summary, we use the same fully-connected NN architecture for every network in the
ensemble. These are parameterised using Keras [74] and a TensorFlow [75] backend, with
the number of input nodes equal to n⇥4.1 The hidden layers comprise of 20-40-20 nodes and
there is a single output node. All hidden layers use hyperbolic-tangent activation functions
and the output node has a linear activation function. A mean squared error loss function
is used, and the network is optimised using Adam optimisation [76]. Finally, the number
of training epochs is determined through Early Stopping (see Section 8.1.2 of Ref. [77]),

1Testing was performed to assess the change in performance when removing redundant, non-independent,
4-momenta components; however, this had little effect.
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Figure 5: Root mean squared error (RMSE) of the NN ensemble approach in comparison
to NJet as a function of x1 and x2, and the frequency of points with these values in the
training dataset.

NN ensemble with harsher cut values than the baseline. The agreement between the two
approaches is comparable to the agreement found before the additional cuts were added,
thereby suggesting good generalisability. Indeed, this is not surprising since the points with
the largest errors between the NN and NJet were the most divergent points and therefore
the ones more likely to be cut given the IR singularities present in these processes.

The generalisation to additional cut parameters both demonstrates the robustness of
this training regime, as well as the practical gain in not having to retrain a network for
each specified set of cuts. This allows us to generalise the training and testing procedure
outlined at the beginning of this section to suggest that the NN ensemble be first trained
on more relaxed cuts and then, as iterations of harsher cut parameters are explored during
analysis, these can be applied without the ensemble significantly decreasing in performance.
If cuts are to be relaxed then reweighting could be used to ensure good performance at the
expense of compute time.

While the network performance has been shown to be strong overall, other reweighing
methods can still be explored. Reweighting randomly across all phase space, even at the
20–40% level, was not found to significantly reduce the difference in the computed cross
sections. Similarly, the NN ensemble uncertainties were not found to be correlated with
the errors, and so were discarded as a good reweighting criteria. As mentioned above, the
points in which targeted reweighting can be most beneficial are those which fall within
the divergent regions of phase space. Figure 4 presents the results of reweighting points
randomly in Rdiv (as defined in Equation (3.1)), and shows an improvement in the cross
section — reweighting a greater number of points enables the reweighted cross section,
�

(RW), to converge to the value calculated by NJet, �
(NJet). Indeed, to achieve almost equal

values in the cross sections, the total proportion of phase space requiring reweighting is at
the percent level. Therefore, we find reweighting in the Rdiv region of phase space and/or
when relaxing cuts in relation to those used during training can improve model performance.

Finally, although the cross section and differential distributions provide a means to
test the robustness of our approach against the additional weights introduced during event
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Figure 9: Effect of reweighting points in the divergent region of phase space, Rdiv, on
the ratio between the reweighted cross section, �

(RW), and the cross section calculated
using NJet �

(NJet) for the 2 ! 4 process. In this case, the divergent region comprises
approximately 2–3% of the total phase space (see Appendix B for details). The red band
shows the MC error on the NJet result.

4.3 Timing

We repeat the performance evaluation of Figure 1 with methods involving error estima-
tion as these are likely to be employed in real-world usage. For conventional techniques,
the dimension scaling test is a standard way to estimate error on the result and intro-
duces a second matrix element call for each phase-space point evaluation. As discussed in
Section 4.1, we propose running 20 NN ensembles for each point to obtain a mean with
standard error.

The results, shown in Figure 10, demonstrate the per-point speedup in using amplitude
NNs in practice. For the 2 ! 4 process, where amplitude calls dominate conventional
simulation time, a 104 times speedup in amplitude calls is observed which renders the
inference stage as negligible in the total time of our NN-based simulation pipeline. Indeed,
in comparison to the numerical calculation of the matrix element, the training time of the
NN ensemble can also be considered negligible, meaning the total speed up in the overall
simulation time is of the order Ninfer/Ntrain — the ratio of the number of inference point
to the number of points in the training dataset.

5 Conclusions

In this article we provided further evidence that NNs provide a general framework for the
optimisation of high multiplicity observables at hadron colliders. We extended preliminary
studies [60] for electron-position scattering to hadron-hadron collisions and provided a gen-
eral interface to the Sherpa MC event generator for NNs trained with the NJet amplitude
library. We focused on the loop-induced processes gg ! �� + n(g) which cause problems
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Bayesian networks and uncertainties

In contrast to standard, deterministic networks, Bayesian neural networks (BNNs) learn dis-
tributions of network parameters or weights! [9,18]. Sampling over the weight distributions
gives us an uncertainty in the network output. At the end of this introduction we will ap-
proximate each weight distribution by a Gaussian, which does not limit the expressivity of a
deep Bayesian network, but means that the Bayesian network requires only twice as many pa-
rameters as its deterministic counterpart [9]. By definition, the Bayesian network includes a
generalized dropout and an explicit regularization term in the loss, which stabilize the training.

With our amplitude network we want to predict the transition amplitude A for a phase
space point x . If we define p(A|x)⌘ p(A) as the probability distribution for possible amplitudes
at a given phase space point x , and omitting the argument x from now on, its mean value is

hAi=
Z

dA A p(A) with p(A) =
Z

d! p(A|!) p(!|T ) , (4)

where p(!|T ) are the network weight distribution and T is the training data. We do not know
the closed form of p(!|T ), but we can approximate it with a simpler tractable distribution
q(!):

p(A) =
Z

d! p(A|!) p(!|T )⇡
Z

d! p(A|!) q(!) . (5)

This approximation leads us directly to the BNN loss function. We implement the variational
approximation as a Kullback-Leibler divergence,

KL[q(!), p(!|T )] =
Z

d! q(!) log
q(!)

p(!|T )

=
Z

d! q(!) log
q(!)p(T )

p(!)p(T |!)

= KL[q(!), p(!)]�
Z

d! q(!) log p(T |!) + log p(T )
Z

d! q(!) . (6)

Bayes’ theorem gives the corresponding networks their name. The prior p(!) describes the
model parameters before training. The model evidence p(T ) guarantees the correct normal-
ization of p(!|T ). Turning Eq.(6) into a loss function we can omit the evidence, if we enforce
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Figure 1: Illustration of the Bayesian network.

4

third attempt: gg ! γγ+gluons with Bayesian networks  

• weights and biases are replaced 
with (Gaussian) distributions

• optimised training times vs. pure 
ensemble approach

SciPost Physics Submission

sampling uses the network-encoded amplitude and uncertainty values over phase space x and
network parameter space !,

BNN : x ,! !
✓

A(!)
�model(!)

◆
. (12)

Until now, we have not made any simplifying assumptions about the prior or weight dis-
tributions. To start with, in Ref. [11] we have shown that the details of the prior p(!) have
no visible effect on the network output. If we assume a Gaussian prior and, in addition, a
Gaussian weight distribution q(!) with the respective means and widths, the regularization
term in Eq.(7) turns into

KL[qµ,�(!), pµ,�(!)] =
�2

q ��2
p + (µq �µp)2

2�2
p

+ log
�p

�q
. (13)

For this form we can use the reparameterization trick to translate an !-dependence into a
dependence on �q and µq. Second, we can simplify the loss function by assuming that the
!-dependent network output in Eq.(12) is described by a Gaussian. This allows us to approx-
imate the likelihood p(T |!) in Eq.(7) as Gaussian, and the BNN loss function becomes

LBNN =
Z

d! qµ,�(!)
X

points j

2
64

���Aj(!)� A(truth)
j

���
2

2�model, j(!)2
+ log�model, j(!)

3
75

+
�2

q ��2
p + (µq �µp)2

2�2
p

+ log
�p

�q
. (14)

This loss is minimized with respect to the means and standard deviations of the network
weights describing qµ,�(!). In this setup, the log-likelihood term includes a trainable un-
certainty �model(!) which is learned by the network in parallel to the amplitudes. When we
evaluate the likelihood over a mini-batch rather than the full training dataset, we rescale the
normalization of the regularization term to account for the different numbers of data points.

The same heteroscedastic loss [19] can be used in deterministic networks, if we introduce
�model as a second trained quantity in addition to the amplitude values. The Bayesian net-
work setup guarantees that we really capture all training-related uncertainties correctly, at the
expense of splitting the uncertainty measures �model and �pred. It also does not make assump-
tions about a Gaussian uncertainty of the network output, so we stick to the more general BNN,
even though it might well be possible to use a deterministic network for similar applications.

Network architecture

We use one Bayesian network trained on the entire training dataset. We train on amplitudes
as a function of phase space with logarithmic preprocessing,

Aj ! log
Å

1+
Aj

�A

ã
, (15)

where �A is given by the distribution of the amplitude values. In addition, all phase space
directions are preprocessed by subtracting the respective mean and dividing by the respective
standard deviation.
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The network describing the (2 ! 3)-part of the reference process in Eq.(25) consists of
four hidden layers with 20 kinematic input dimensions, {20, 20, 30, 40} nodes, and two output
dimensions corresponding to the amplitude and its uncertainty, as illustrated in Eq.(12). The
network has around 6k parameters. Between the hidden layers we use a tanh activation func-
tion, while for the last layer we find that a SoftPlus activations outperforms GeLU slightly and
ReLU significantly. The network is trained on 90k amplitudes for 400000 epochs with a batch
size of 8192 and learning rate of 10�4, after which we observe no significant improvement in
the loss. We use the Adam optimizer [20] with standard parameters.

BNN performance

As a first test of our BNN, we check the precision with which it approximates the true ampli-
tudes in the training and test datasets, as defined in Eq.(3). For Fig. 2 we split the amplitudes
by their absolute values, to see the effect of the limited training statistics in the collinear phase
space regions. For the complete set of amplitudes the precision follows an approximate Gaus-
sian with a width of a few per-mille, for the training and for the test data. This matches the
best available performance from the literature [7], but with a very compact and fast network.

In the logarithmic panels of Fig. 2 we see that the tails of the �-distributions for the full
datasets are clearly enhanced. The picture changes when we only consider the phase space
points with large amplitudes. For the 0.1% largest amplitudes the network is consistently less
accurate with a slight tendency of underestimating the amplitudes. This is the motivation for
training a separate network on the divergent phase space region(s) [8]. As we will see, the
BNN offers an alternative approach which allows the full amplitude to be accurately described

Figure 2: Performance of the BNN in terms of the precision of the generated ampli-
tudes, Eq.(3), evaluated on the training (upper) and test datasets (lower).
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Figure 6: Performance of the loss-boosted BNN in terms of the precision of the gener-
ated amplitudes, Eq.(3), evaluated on the training and test datasets on a linear (left)
and logarithmic (right) axis. The curves can be compared to the BNN results without
boosting in Fig. 2.

loss-based boosting only moves amplitudes from the tails into the bulk, which means that the
tails of the boosted pull distributions should be low. Second, the pulls entering the loss and the
pulls shown in Fig. 5 are different because the loss includes weights for high-pull amplitudes.
In combination, both effects explain the narrower Gaussian for tmodel(!). In the logarithmic
version we also see a visible over-training though loss-boosting.

Moving on to the precision for the amplitudes, we see in Fig. 6 that the loss-boosting only
has a mild impact on the�-distributions. It does not significantly improve the precision of the
amplitudes compared to Fig. 2, so we need a second boosting step.

4.2 Performance boosting

Given that the loss-boosting in the previous section worked for the uncertainty estimate but
only had a modest effect on the performance of our amplitude network, we proceed to a more
powerful boosting strategy. Independent of the self-consistency of the network, we know at
the training level which amplitudes challenge the network. This means we can select them

Figure 7: Pulls for the performance-boosted BNN, defined in Eq.(17) and evaluated
on the training and test data. The two panels show the same results on a linear and
a logarithmic axis. All curves can be compared to the BNN results without boosting
in Fig. 3 and the loss-boosted results in Fig. 5.
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Figure 8: Performance of the performance-boosted BNN in terms of the precision of
the generated amplitudes, Eq.(3), evaluated on the training (left) and test datasets
(right). All curves can be compared to the BNN results without boosting in Fig. 2
and the loss-boosted results in Fig. 6.

with the goal of improving the training for the largest amplitudes. The difference between
a general loss boosting and this process-dependent strategy is that now we target the largest
and most poorly learned amplitudes by selecting them based on �tot. We choose the 200
amplitudes with the largest uncertainty �tot and add three additional copies to the training
dataset. This process is repeated 20 times, where each training ends when we see no more
significant change to the loss which is usually around 2000 epochs.

In Fig. 7 we first see that the process-specific performance boosting broadens the pull dis-
tributions and this way reverses some of the beneficial effects of the loss-boosting on tmodel(!).
However, the widths of the boost distributions remains below one, and the bias towards larger
amplitudes is removed. This is true for the training data and for the test data. In addition,
the consistency with the Gaussian shape is broken symmetrically for too small and too large
amplitudes, again consistently for training and test data. Given that the two boostings target
different amplitudes and effectively compete with each other, this pattern is expected.

The positive impact on the large amplitudes can be seen more clearly in Fig. 8. Evalu-
ated on the training data, the 0.1% largest amplitudes now show a clear peak at small �train,
consistent with all other amplitudes. This means the network has learned all amplitudes in
the training dataset equally well. This effect translates to the test sample qualitatively, so the
performance on the test data improves after performance-boosting, but this improvement is
less pronounced than for the training data. This means that, at the expense of an overtraining,
we have improved our network from a fit-like description to an interpolation-like description
of the largest amplitudes.

The pattern observed by performance-boosting points to a conceptual weakness of stan-
dard network training when it comes to precision applications. If we stop the network training
at the point where the performance on a training sample exceeds the performance on the test
sample, we miss the opportunity of improving the network on the test and training data, but
at a different rate. Overtraining is, per se, not a problem, as we know from applications of in-
terpolation to describe data. The only challenge from such a network overtraining is a reliable
uncertainty estimate from the generalization, for which we propose an appropriate scheduling
of loss-boosting and performance-boosting.
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Figure 9: Performance of the BBN for all amplitudes (left) and a performance-boosted
BNN for the largest 1% of all amplitudes (right), after training on different fractions
of the full training dataset.

4.3 Effect of training statistics

Given that our amplitude-BNN has successfully learned the amplitudes for the partonic process
g g ! ��g well below the percent level, with a small and simple network and 90k training
points, we can ask the question how much training data we actually need for a precision
amplitude network. For this study we use the same BNN as before, including loss-boosting
and performance-boosting, but trained on a reduced dataset of

10% (9.000 amplitudes) · · · 100% (90.000 amplitudes) . (20)

In Fig. 9 we show the corresponding�-distributions for the test dataset. Our smallest training
dataset contains 9000 amplitudes, which turn out sufficient to train our network with its 6192
parameters. The corresponding network reproduces the test data well, albeit with sizeable
overflow bins. Increasing the amount of training data improves the precision of the network,
but relatively slowly. We observe the same level of improvement for all amplitudes and for the
1% largest amplitudes. For the latter we only show results after process boosting, without any
boosting the quality of the low-statistics training is comparably poor.

5 Kinematic distributions

After illustrating the performance of the amplitude network in a somewhat abstract manner,
we can also show 1-dimensional kinematic distributions. The integration of the remaining
phase space dimension requires a little care, because we cannot just integrate the uncertainties
together with the central values for the amplitudes.

For the central values we combine the amplitudes with phase space sampling. For example
applying the simple RAMBO [21] algorithm we identify the phase space weights with A. A 1-
dimensional distribution is generated through bins which collect the sum of the amplitudes in
the remaining phase space directions. The histogram value for a bin k is

hk =
NX

j=1

Aj . (21)

To use the amplitudes predicted by the BNN we have to add the sampling over the weights
!. By replacing the truth amplitudes with the NN-amplitudes we can target the uncertainties

13

loss 
boosting

performance 
boosting



SB, Butter, Luchmann, Pitz, Plehn [2206.14831]

third attempt: gg ! γγ+gluons with Bayesian networks  

SciPost Physics Submission

10�2

100

1/
�

d�
/d

� g

gg� ��g
�tot

gg� ��g
�tot

gg� ��g
�tot

gg� ��g
�tot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T
ra

in
in

g

�2 0 2
�g

0.8

1

1.2

M
od

el
te

st

10�1

101

1/
�

d�
/d

R
� 2

g

gg� ��g
�tot

gg� ��g
�tot

gg� ��g
�tot

gg� ��g
�tot

test

BNNtest

train

BNNtrain

0.8
1

1.2

M
od

el
T
ra

in
in

g

1 2 3 4
R�2g

0.8
1

1.2

M
od

el
te

st

10�2

100

1/
�

d�
/d

� g

gg� ��g performance-boosted
�tot

gg� ��g performance-boosted
�tot

gg� ��g performance-boosted
�tot

gg� ��g performance-boosted
�tot

test

BNNtest

train

BNNtrain

0.8

1

1.2

M
od

el
T
ra

in
in

g

�2 0 2
�g

0.8

1

1.2

M
od

el
te

st

10�1

101

1/
�

d�
/d

R
� 2

g

gg� ��g performance-boosted
�tot

gg� ��g performance-boosted
�tot

gg� ��g performance-boosted
�tot

gg� ��g performance-boosted
�tot

test

BNNtest

train

BNNtrain

0.8
1

1.2

M
od

el
T
ra

in
in

g

1 2 3 4
R�2g

0.8
1

1.2

M
od

el
te

st

Figure 10: Kinematic distributions from the BNN without boosting (upper) and after
performance-boosting (lower). The grey error bars in the lower panels indicate the
statistical limitation of the training and test data.

6 Outlook

Learning loop-amplitudes for LHC simulations is a classic ML-problem, because we need to
train a precision network only once to provide a much faster simulation tool which can be
used many times. In this application neural networks really work like better fits to the train-
ing data. Unlike for many other network applications, the training amplitudes are not noisy,
which means we would like to reproduce the training amplitudes exactly, supplemented with
a controlled uncertainty over all of phase space. To provide a reliable uncertainty map over
phase space, we can rely on Bayesian regression networks [10].

The precision task reminds us of an interpolation rather than a fit, which means we need
modify our ML-approach conceptually. If we are willing to accept a certain amount of over-
training, we can significantly improve the network training through boosting certain ampli-
tudes. Because the Bayesian network provides a reliable uncertainty estimate, we can select
the to-be-boosted amplitudes based on their deviation from the training data in units of the
uncertainty. This loss-based boosting simply improves the self-consistency of the Bayesian net-
work training. In a second step, we can boost training amplitudes just based on their absolute
uncertainty. This selection helps with the precision for a given process, and because we use
the absolute uncertainty we typically focus on the largest amplitude values.

We have applied Bayesian network training and the two strategies of amplitude boosting
to the partonic process g g ! ��g [8]. We have first found that the network amplitudes
agree with the true amplitudes at the sub-percent level, for the training data and for a test
dataset. For the 1% largest amplitudes an agreement at the percent level required process-
specific performance boosting. For 1-dimensional kinematic distributions we have seen that
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Figure 3: Histogram of the error estimate on the two-loop evaluations as given by the
scaling test. We use the evaluation strategy with a target accuracy of three digits and show
errors for all precision levels. We see 1.8% of points failing f64/f64 evaluation, with 1.2%

passing at f128/f64 and 0.6% passing at f128/f128. The evaluation strategy achieves
target accuracy for all of the 100 000 physical phase-space points tested.

7 Conclusions

In this paper we have presented a complete, full colour, five-point amplitude at two loops
in QCD. All helicity configurations have been implemented into the NJet C++ library, which
provides an efficient and stable evaluation over the physical scattering region. Though the
algebraic complexity of the amplitude is considerable, the direct analytic reconstruction of
the finite remainders was possible by making use of linear relation amongst the coefficients
and partial fractioning in one variable, which could be done without any analytic knowledge
of the intermediate steps in the reduction. We expect these techniques will have applications
to other important high-multiplicity two-loop calculations with more external scales such as
five-particle scattering with an off-shell leg, for which there has also been recent progress [17,
81, 112–116]. We have found a form that is suitable for phenomenological applications
and look forward to new precision predictions for diphoton production at hadron colliders
including the dominant N3LO corrections we have computed here.
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coefficients and special functions
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analytic finite remainders (extracted 

using Finite Field sampling)

numerators can then be written in terms of propagators of the top-level integral families, allowing
us to express the loop scattering amplitude as a linear combination of scalar Feynman integrals.
The coefficients of these scalar Feynman integrals depend only on external kinematics in the form
of momentum twistor variables.

We then reduce the scalar Feynman integrals to a set of pure [81] master integrals [57, 82–
85] by solving the integration-by-parts relations [86, 87]. We generate the IBP relations among
the integrals of the top-level families for a single ordering of the external legs, and solve them
numerically over finite fields. We obtain the reduction of the integrals with other orderings of the
external legs by evaluating the IBP solution at permuted points.

For all families, we generated identities among integrals without higher powers of propaga-
tors [88–90] with respect to those appearing in the amplitude. We obtained them by using the
Baikov representation of Feynman integrals [91, 92], where IBP identities generally contain both
higher powers of propagators and dimensionally-shifted integrals. The latter can be eliminated by
solving polynomial equations called syzygy equations. Equations without dimension-shifted inte-
grals can be obtained as closed-form solutions, as illustrated in Ref. [93]. Following Ref. [94], we
put these solutions into a sparse matrix, and eliminated the higher powers of denominators through
Gaussian elimination. We then reconstructed new template equations using FiniteFlow’s sparse
solver [73]. From these, we generated a significantly smaller system of equations, which we then
solved similarly to the more traditional Laporta algorithm [95].

Next, we Laurent expand around ✏ = 0 up to the required order. The Laurent expansion of the
master integrals is expressed in terms of a basis of special functions called pentagon functions and
transcendental constants (e.g. ⇡, ⇣3...) [58]. We denote the pentagon functions cumulatively by f ,
and the associated transcendental constants by c. At this stage, we write the partial amplitudes as

A
(L),k
i;j =

o(L)X

s=�2L

X

r

✏
s
cr,s(~x) monr(f, c) , (2.29)

where o(1) = 2 and o(2) = 0, and monr(f, c) are monomials of pentagon functions f and transcen-
dental constants c.

In previous work [60], it was found that directly reconstructing the finite remainder decreased
the reconstruction time, as it had a simpler expression than the full amplitude. For pp ! �jj

production, we find that the drop in polynomial degrees from amplitude to finite remainder is
insignificant with respect to the reconstruction time. Therefore, we reconstruct the bare amplitude
and subsequently compute the finite remainder.

In order to optimise the rational reconstruction of the amplitudes, we follow the strategy of
Ref. [60]. We refer to that work for a detailed discussion, and give here just an outline of the steps.

original: Reconstruction of the coefficients cr,s(~x) in Eq. (2.29) without any optimisations.

stage 1: We fit the Q-linear relations among the coefficients cr,s(~x), and solve them for the linearly
independent coefficients, which are chosen to have the lowest polynomial degrees.

stage 2: We determine the denominators of the coefficients cr,s(~x) by reconstructing them analyt-
ically on a univariate slice [96], and matching the result against an ansatz. The latter is a
product of letters of the pentagon alphabet [97], and spinor products (hiji, [ij]). We then
multiply away the identified factors.

stage 3: We perform a univariate partial fraction decomposition of the coefficients cr,s(~x) with
respect to x4 on the fly, and reconstruct the coefficients of the decomposition. The latter
depend on (x2, x3, x5) only.
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Figure 1. Representative two-loop Feynman diagrams for the 0 ! q̄qgg� partonic process, together with
the partial amplitudes they contribute to.
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We denote by nf the number of light quark flavours, and by Qq (Ql) the charge of a flavour-q (l)
quark in units of e. We show representative Feynman diagrams contributing to the 0 ! q̄qgg�

process at two loops in Fig. 1. The right-hand sides of Eqs. (2.8) and (2.9) involve the following
classes of partial amplitudes:

• A
(L),j
i;q : partial amplitude where the photon is attached to the external quark line of flavour q

(the first and second diagram in Fig. 1). This type of amplitude always comes with a factor
of Qq.

• A
(L),j
i;l : partial amplitude where the photon is attached to quarks running in the loop (the

last diagram in Fig. 1). This type of amplitude always comes with a factor of
P

l Ql, where
we sum over the internal quarks of flavour l.

We derive the analytic expressions of the A
(L),j
34;i and A

(L),j
�;i partial amplitudes for the following

independent helicity configurations:

� + + + +, � + + + �, � + + � +, � + � + +. (2.10)

The remaining helicity configurations and partial amplitudes can be obtained by performing parity
transformation and/or by permuting the external momenta.

It is convenient to factor out a combination of spinor products such that the helicity amplitude
is free from the spinor phase. This is particularly important when we work with the rational
parameterisation of the external kinematics in terms of momentum twistor variables discussed
in Section 2.4: conjugation and permutation of external momenta must in fact be performed on
phase-free quantities only. For the 0 ! q̄qgg� partonic process we choose the following spinor phase

– 5 –
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analytic 2L finite 
remainderscomparison with ATLAS [1912.09866]

will compare our results to measurement data obtained by the ATLAS collaboration at 13 TeV [37].
As already explained in the introduction, the final-state photon may either be produced through
hard emission, well separated from other partons, or through collinear emission described within the
fragmentation formalism. Since the main achievement of the current publication is the evaluation
of the two-loop virtual corrections for the two-to-three processes with four partons and one photon,
our attention is devoted to the phase space region which is well described by fixed-order perturbative
methods without collinear enhancements. Fortunately, the measurements presented in Ref. [37] are
divided into two samples, one of which is more sensitive to the perturbative and one which is more
sensitive to the fragmentation component. Of course, there is always some contamination in each
region from effects characteristic of the other region. We shall estimate the size of the unwanted
effects below, and argue that they are well within the uncertainties of the measurement data to
which we compare.

Since we adopt the phase-space of Ref. [37], our event-selection cuts are defined as follows:

1. We require at least two jets defined with the anti-kT algorithm [106] for jet radius R = 0.4 that
have minimal transverse momentum of pT (j) > 100 GeV and maximal rapidity |⌘(j)| < 2.5.

2. The identified jets must be separated from the photon by �R(�, j) > 0.8.

3. One isolated photon must be present in the final state with E?(�) � 150 GeV, |⌘(�)|  2.37
excluding 1.37  |⌘(�)|  1.56.

4. It is well-known that hard photon isolation criteria lead to infrared sensitivity beyond the Born
approximation, which manifests at fixed perturbative order by uncompensated singularities.
These singularities may be absorbed into a fragmentation function. However, there is a simpler
approach that allows us to avoid the implementation of the fragmentation formalism. This
approach is based on a smooth photon isolation criterion proposed by Frixione in Ref. [12].
Upon extension with an additional hard-cone isolation [5, 16], this method simulates the
experimental setup very closely. This hybrid isolation criterion has been adopted in Section
4.3 of Ref. [37] for the generation of next-to-leading order QCD predictions with the Monte-
Carlo generator Sherpa [40, 41] used for comparisons to data in that publication. Accordingly,
we accept an event if the sum, E?(r), of the transverse energies of all partons separated from
the photon by the angular distance �R  r satisfies the smooth-cone (Frixione) condition:

E?(r)  E?max(r) = 0.1 E?(�)

 
1 � cos(r)

1 � cos(Rmax)

!2

for r  Rmax = 0.1 , (3.2)

as well as the hard-cone condition:

E?(r)  E?max = 0.0042 E?(�) + 10 GeV for r  Rmax = 0.4 . (3.3)

These event-selection cuts define the inclusive sample used in the determination of the differen-
tial cross sections. The aforementioned reduction of the fragmentation effects is further strengthened
by imposing the requirement [37]:

E?(�) > pT (j1) , (3.4)

which defines the direct-enriched sample. The fragmentation-enriched sample has been defined
in Ref. [37] by the requirement E?(�) < pT (j2). Here, j1 and j2 are the hardest (leading) and
next-to-hardest (sub-leading) jet ordered according to their transverse momenta.
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Figure 5. The same as Fig. 4 but for the p
jet
T observable.

similarly. This is consistent with the fact that the two scale choices are closest (kinematics-wise per
event) when E?(�) > pT (j1) since in that case, E?(�) dominates the value of HT . This suggests
that the region where E?(�) < pT (j1) is particularly poorly described with the E?(�) scale because
this scale is relatively low (compared to the jet momenta), leading to comparatively large ↵S(µR)
and thus large corrections.

Invariant mass of the jet pair m(j1j2). The differential cross section is presented in Fig. 6.
Unsurprisingly, the pattern of perturbative corrections is similar to the previous two cases. The
NNLO QCD corrections are small and lead to a significant reduction of the scale dependence. The
NNLO QCD predictions agree with the data across the spectrum. Only for small invariant masses
do we observe a clear deviation. This deviation might be related to the different definition of the
photon isolation between theory and experiment. While it seems that Sherpa describes the data
in the first bin better than fixed-order QCD, we point out the large fluctuations of the results of the
Sherpa simulation, which makes any precise statement impossible. Furthermore, we expect that
resummation effects play no role in the first bin of the distribution. This assessment is supported in
particular by the fact that the NLO and NNLO predictions with the HT scale are very close to each
other. For high invariant mass, the Sherpa predictions completely fail to describe the spectrum,
which is noteworthy because this observable is of special interest in searches for New Physics, e.g.
in the search for a heavy resonance decaying into jets and recoiling against the prompt photon. The
NNLO QCD predictions correctly describe the falling spectrum with only small corrections w.r.t.
NLO QCD. The scale-variation uncertainty is smaller than the experimental uncertainties. The
good description of the data, in particular in comparison to the Sherpa spectrum, motivates the
usage of the predicted spectrum instead of relying on data-driven background estimates. Of course,
this would require a substantial investment of computing resources in order to improve the quality
of the Monte-Carlo integration for invariant masses in the TeV range. In this region, we observe
large cancellations between different contributions to the complete NNLO result, which impact the
quality of the histograms. The cancellations are enhanced for the E?(�) scale. The results in the
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Figure 6. The same as Fig. 4 but for the m(j1j2) observable.
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Figure 7. The same as Fig. 4 but for the |��
��jet

| and |��
j1�j2 | observables in the inclusive phase space

only.

direct-enriched phase space suffer further from reduced statistics due to the additional cuts.

Azimuthal separation between the jets and photon |��
��jet| and |��

j1�j2 |. These are
the last two observables that we discuss in detail. We first focus on the inclusive phase space,
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Figure 3. Fraction of phase-space points with a given number of correct digits with respect to the total
number of points. The labels “L1: sd,sd”, “L2: sd,dd”, and “L3: dd,qd” denote the implementation levels L1,
L2 and L3. The labels “sd”, “dd”, and “qd” refer to single-double, double-double, and quad-double precision.
Further details are given in the text.

3 LHC Phenomenology at 13 TeV

3.1 Setup

The evaluation of perturbative second-order corrections to the differential cross sections for photon
+ di-jet production requires the combination of double-virtual, real-virtual and double-real con-
tributions. To this end, we employ Stripper, an implementation of the sector-improved residue
subtraction scheme [100–102], which also provides the cross sections up to next-to-leading order.
This software has been used previously in various cross-section calculations and has been validated
in numerous comparisons to public results. Tree-level matrix elements are implemented through
the AvH library [103]. For the single-virtual contributions, which require one-loop matrix elements
with one photon and up to three jets, we employ OpenLoops2 [65]. The evaluation of the squared
matrix elements needed for the double-virtual corrections has been described in the previous Section.

We work in the five-flavour, nf = 5, scheme, i.e. we consider QCD with five massless quarks
and ignore the existence of top-quarks. All predictions presented in this section use the NNPDF31
[104] PDF set as implemented in LHAPDF [105]. We compute the cross section for two different
nominal choices of the renormalization (µR) and factorization scale (µF ):

µR = µF = HT = E?(�) + pT (j1) + pT (j2) and (3.1a)
µR = µF = E?(�) , (3.1b)

where E?(�) is the transverse energy of the photon and pT (ji) denotes the i-th leading jet transverse
momentum. We estimate the uncertainty from missing higher orders by performing a conventional
7-point scale variation around the nominal µR,F values by factors of 2 subject to the constraint
1
2  µR

µF
 2.

In order to showcase the theoretical NNLO QCD predictions for differential cross sections, we
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total cost ~550 kCPUh

VV:RV:RR ~ 1: 10: 40

double virtual call average ~16s per point
[NB: 1 double precision call O(1s)]
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always a challenge - many 
improvements possible 



Future Applications

speeding up amplitude calls with NN looks 
like a viable option for leading order codes 

speeding up amplitude virtual amplitudes can 
help, but need to make impact on real radiation

two-loop 2 ! 3 not dominated by virtuals, largely 
thanks to well studied special function basis

I would still be interested in 
better control for the 

number of correct digits

This is (probably) not going to continue: pp ! ttj, pp! ttH, ! WWj 

at some stage analytic formula unfeasible - must take numerical route

special function basis in ‘pentagon function’ form will not 
be possible (eg. if there are elliptic structures)

expect dramatic change in 
evaluation time



Conclusions

phase-space : how can we use amplitude values to 
minimize the required number of training points

squared amplitudes vs (ordered) helicity amplitudes

analytic vs. numeric:  can we improve the architecture to 
better satisfy amplitude properties? (c.f. bootstrap techniques) 

I still have some questions…


