Removing negative weights in Monte Carlo event samples

Andreas Maier

14 November 2023

J. R. Andersen, A. Maier, D. Maître [Eur.Phys.J.C 83 \(2023\) 9, 835](https://doi.org/10.1140/epjc/s10052-023-11905-0) J. R. Andersen, A. Maier [Eur.Phys.J.C 82 \(2022\) 5, 433](https://doi.org/10.1140/epjc/s10052-022-10372-3) J. R. Andersen, C. Gütschow, A. Maier, S. Prestel [Eur.Phys.J.C 80 \(2020\) 11, 1007](https://doi.org/10.1140/epjc/s10052-020-08548-w) + ongoing work with Ana Cueto, Stephen Jones

Why are negative event weights a problem?

Number of unweighted events to reach given accuracy:

Why are negative event weights a problem?

Number of unweighted events to reach given accuracy:

V + jets: [Phys. Rev. D 88 \(2013\) 014025,](http://dx.doi.org/10.1103/PhysRevD.88.014025) [Phys. Rev. D 97 \(2018\) 096010](http://dx.doi.org/10.1103/PhysRevD.97.096010)

 $\gamma\gamma$ + jets: parameters from background modelling for ATLAS *H* → $\gamma\gamma$ measurement [arXiv:2306.11379](https://arxiv.org/abs/2306.11379)

Cell resampling for V + jets at NLO

Negative weights

Cell resampling drastically reduces the number of required events

Cell resampling for V + jets at NLO

Predictions

Analysis from [ATLAS, Eur. Phys. J. C77 \(2017\) 361:](https://doi.org/10.1140/epjc/s10052-017-4900-z)

Cell resampling preserves predictions within a few per cent

Work in progress: showered samples

 $pp \rightarrow \gamma \gamma +$ jets, 10⁶ events:

Expect more efficient negative-weight reduction for larger sample

Observables

Weighted events in 2D projection of phase space:

Observables

Weighted events in 2D projection of phase space:

Observables O:

- Select region $\mathcal D$ in phase space $>$ experimental resolution
- \bullet $\mathcal{O} = \sum_{i \in \mathcal{D}} w_i \geq 0$ with sufficient statistics
- e.g. histogram bins

Redistribute weights without affecting any observable

[Andersen, Maier 2021]

1 Choose seed event with negative weight for cell C

[Andersen, Maier 2021]

Cell resampling:

- **1** Choose seed event with negative weight for cell C
- **2** Iteratively add nearest event to cell until P *ⁱ*∈C *wⁱ* ≥ 0 or radius exceeds *r*max Cells get systematically smaller with increasing statistics

[Andersen, Maier 2021]

Cell resampling:

- **1** Choose seed event with negative weight for cell C
- **2** Iteratively add nearest event to cell until P *ⁱ*∈C *wⁱ* ≥ 0 or radius exceeds *r*max
- 8 Redistribute weights, e. g. average over cell: $w_i \rightarrow w = \frac{\sum_{j \in C} w_j}{\frac{H}{H}$ events in C
- **4** Repeat

[Andersen, Maier 2021]

Cell resampling:

- **1** Choose seed event with negative weight for cell C
- 2 Iteratively add nearest event to cell until $\sum_{i \in \mathcal{C}} w_i \geq 0$ or radius exceeds *r*_{max} What does "nearest" mean?

8 Redistribute weights, e. g. average over cell: $w_i \rightarrow w = \frac{\sum_{j \in C} w_j}{\frac{H}{H}$ events in C **4** Repeat

Criteria for distance function:

- Small distance between events that look similar in detector or differ only in properties the event generator can't predict
- Large distance between events that look different in detector

Define distance in terms of infrared & collinear safe objects, e.g. jets

Criteria for distance function:

- Small distance between events that look similar in detector or differ only in properties the event generator can't predict
- Large distance between events that look different in detector

Define distance in terms of infrared & collinear safe objects, e.g. jets

Current choice:

- **1** Find optimal pairing between observable objects in both events
- **2** Sum up spatial momentum differences

Vantage-point tree: $\mathbf 0$

Vantage-point tree:

Search nearest neighbour for *e*:

- Find candidate in region containing *e*
- Search neighbouring regions only if better candidate may be found

Memory

Fast + exact nearest-neighbour search: keep all events in memory

Need \sim (byte size of event) GB for $\sim 10^9$ events

Memory

Fast + exact nearest-neighbour search: keep all events in memory

Need \sim (byte size of event) GB for \sim 10⁹ events

Only store relevant event data: weights + momenta of outgoing analysis objects

Memory

Fast + exact nearest-neighbour search: keep all events in memory

Need \sim (byte size of event) GB for \sim 10⁹ events

Only store relevant event data: weights + momenta of outgoing analysis objects

$$
\fbox{Read + convert events} \rightarrow \fbox{Cell resampling} \rightarrow \fbox{Read + write events}
$$

Current requirements:

- Persistent event samples with reasonably fast sequential access
- 300 GB to 400 GB of memory per 10^9 events, no huge increase from showering expected

Memory

Fast + exact nearest-neighbour search: keep all events in memory

Need \sim (byte size of event) GB for \sim 10⁹ events

Only store relevant event data: weights + momenta of outgoing analysis objects

$$
\fbox{Read + convert events} \rightarrow \fbox{Cell resampling} \rightarrow \fbox{Read + write events}
$$

Current requirements:

- Persistent event samples with reasonably fast sequential access
- 300 GB to 400 GB of memory per 10^9 events, no huge increase from showering expected

Can we go beyond $\sim 10^9$ events?

Work in progress: memory efficiency

1 Partition phase space using vantage-point tree from small event sample

Work in progress: memory efficiency

2 Identify region for each event in large sample

Work in progress: memory efficiency

3 Independent cell resampling for each region

CPU time

Benchmark machines:

Local rotating disks, RAID 6

Wall-clock time

Benchmark machines:

Local rotating disks, RAID 6

Summary

Current status:

- Remove event weights by smearing over small phase space regions
- Ready for large high-multiplicity samples
	- ► Computationally efficient: \sim 55 CPU hours for one billion events (W + 5 jets)
	- \triangleright Significant memory requirements: 300 GB to 400 GB
	- \triangleright Needs persistent event records
	- \triangleright Work in progress: distribution over several nodes
- Proof of concept: showered samples

Summary

Current status:

- Remove event weights by smearing over small phase space regions
- Ready for large high-multiplicity samples
	- \triangleright Computationally efficient: \sim 55 CPU hours for one billion events (W + 5 jets)
	- ▶ Significant memory requirements: 300 GB to 400 GB
	- \triangleright Needs persistent event records
	- \triangleright Work in progress: distribution over several nodes
- Proof of concept: showered samples

Wishlist:

- Adoption & integration into existing workflows
	- \blacktriangleright Support more event file formats?
	- \triangleright Definitions of observable objects: flavoured jets, isolated photons, ...
	- **► Internal Monte Carlo optimisation** \rightarrow **MCMULE**

^I *: : :*

- Explore design space
	- \triangleright Other distance measures, guided by detector sensitivities
	- \triangleright Other prescriptions for redistributing weights
	- \blacktriangleright Further code optimisation?

Backup

Event samples

[BLACKHAT + SHERPA 2013 + 2017]

Unweighting for Z + jet

original: 8.21×10^8 events unweighted: 320 events resampled + unweighted: 11574 events resampled + unweighted (small sample): 320 events

Resampling for W + 5 jets

Need distance function *d*(*e; e*′) between events *e; e*′

- Essential: *d*(*e; e*′) small [⇒] *e; e*′ look similar in detector or differ only in properties the event generator can't predict
- Desirable: *d*(*e; e*′) large [⇒] *e; e*′ look different in detector

Need distance function *d*(*e; e*′) between events *e; e*′

- Essential: *d*(*e; e*′) small [⇒] *e; e*′ look similar in detector or differ only in properties the event generator can't predict
- Desirable: *d*(*e; e*′) large [⇒] *e; e*′ look different in detector

Example: infrared safety

- *d*(*e; e*′) unaffected by collinear splittings with Θ → 0
- $d(e, e')$ unaffected by soft particles with $p \to 0$
- \Rightarrow define distance in terms of infrared-safe physics objects, e.g. jets

Here: Example for fixed-order (QCD) event generator

Concrete implementation Concrete implementation jets electrons **¹** Collect all infrared-safe objects in event *e* into sets { *s*¹ *; s*² *; : : : ; s^T* }

$$
d(e, e') = \sum_{t=1}^T d(s_t, s'_t)
$$

Concrete implementation jets electrons **¹** Collect all infrared-safe objects in event *e* into sets { *s*¹ *; s*² *; : : : ; s^T* }

$$
d(e, e') = \sum_{t=1}^T d(s_t, s'_t)
$$

² Objects in *s^t* have four-momenta (*p*¹ *; : : : : : : : : : : : : ; p^P*) Objects in s_t have four-momenta (q_1 , \ldots , q_Q , 0, \ldots , 0) *: : : : : : : : :*

$$
d(s_t, s'_t) = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})
$$

Concrete implementation jets electrons **¹** Collect all infrared-safe objects in event *e* into sets { *s*¹ *; s*² *; : : : ; s^T* }

$$
d(e, e') = \sum_{t=1}^T d(s_t, s'_t)
$$

2 Objects in s_t have four-momenta (p_1 ,, p_P) Objects in s_t have four-momenta (q_1 , \ldots , q_Q , 0, ..., 0) *: : : : : : : : :*

$$
d(s_t, s'_t) = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})
$$

Concrete implementation

1 Collect all infrared-safe objects in event *e* into sets $\{\vec{s}_1, \vec{s}_2, \ldots, \vec{s}_T\}$

$$
d(e, e') = \sum_{t=1}^T d(s_t, s'_t)
$$

jets electrons

2 Objects in s_t have four-momenta (p_1 , \ldots , p_r) Objects in s_t have four-momenta (q_1 , ..., q_Q , 0, ..., 0)

$$
d(s_t, s'_t) = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})
$$

Efficient minimisation: Hungarian algorithm [Jacobi 1890]

Concrete implementation

1 Collect all infrared-safe objects in event *e* into sets $\{s_1, s_2, \ldots, s_T\}$

$$
d(e, e') = \sum_{t=1}^T d(s_t, s'_t)
$$

jets electrons

Objects in s_t have four-momenta (p_1 ,, p_P) Objects in s_t have four-momenta (q_1 , ..., q_Q , 0, ..., 0)

$$
d(s_t, s'_t) = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})
$$

3 Choose distance function between particle momenta Here: independent of particle type *t*, do not consider internal structure

$$
d_t(p,q)=\sqrt{(\vec{\rho}-\vec{q})^2+\tau^2(\rho_\perp-q_\perp)^2}\qquad \tau\text{: tunable parameter}
$$