pySecDec: Experiences Evaluating Multi-loop Amplitudes on GPUs

Stephen Jones IPPP Durham / Royal Society URF

In collaboration with: Heinrich, Jahn, Kerner, Langer, Magerya, Olsson, Põldaru, Schlenk, Villa [2108.10807, 2305.19768]

THE ROYAL SOCIETY

Workflow of a Calculation

- 1. Generate Feynman diagrams/amplitude (seconds)
- 2. Process amplitude (hours)
- 3. Solve system of equations relating Feynman Integrals
 ``Integral Reduction'' (weeks/months) Chetyrkin, Tkachov 81; Laporta 01;
- Compute the remaining Feynman Integrals ``Master Integrals'' (analytic: <seconds/pspoint, numeric: ~minutes/pspoint)
- Generate events & compute (differential) cross-section (~days/weeks)

I I will mostly focus on this step

Workflow of a Calculation

- 1. Generate Feynman diagrams/amplitude (seconds)
- 2. Process amplitude (**hours**)
- 3. Solve system of equations relating Feynman Integrals
 ``Integral Reduction'' (weeks/months) Chetyrkin, Tkachov 81; Laporta 01;
- Compute the remaining Feynman Integrals ``Master Integrals''
 (analytic: <seconds/pspoint, numeric: ~minutes/pspoint)
- Generate events & compute (differential) cross-section (~days/weeks)

f First, a comment on this step

Integral Reduction

Difficulty comes from immense size of linear system (#equations & size of equations)

Slide: Vitaly Magerya (Siegen 2023)

Handling Rational Functions

Typical system sizes: $\mathcal{O}(10k)$ integrals $\rightarrow \mathcal{O}(500)$ **Typical coefficient:** $\mathcal{O}(1) - \mathcal{O}(100)$ mb

Handling Rational Functions

Rational Reconstruction: recover analytic results from numerical samples

1) Evaluate rational function f over \mathbb{Z}_p (integers modulo prime) several times

$$(\mathbf{z}, p) \longrightarrow \boxed{f} \longrightarrow f(\mathbf{z}) \mod p.$$

2) Use multivariate rational reconstruction, Chinese remainder theorem to infer analytic form of f von Manteuffel, Schabinger 14, Peraro 16, 19; Klappert, Lange 19, Wang 81;

Avoids: intermediate expression swell, intermediate arbitrary precision

Implemented in several public computer packages: Fermat, FinRed, FiniteFlow, Kira+FireFly, Caravel, Ratracer, ...

Lewis 94; von Mantueffel (Private); Peraro 16; Maierhöfer, Usovitsch, Uwer 18; Klappert, Lange, Maierhöfer, Usovitsch 20; Klappert, Klein, Lange 20; Abreu, Dormans, Febres Cordero, Ita, Kraus, Page, Pascual, Ruf, Sotnikov; Magerya 22; ...

Handling Rational Functions

To my naive mind: This problem seems like it might work well on a GPU...

$$\begin{array}{c|c} (\mathbf{z}_1, p) \rightarrow & & \rightarrow f(\mathbf{z}_1) \mod p \\ (\mathbf{z}_2, p) \rightarrow & & & f(\mathbf{z}_2) \mod p \\ & \vdots & & & \vdots \\ (\mathbf{z}_n, p) \rightarrow & & & \rightarrow f(\mathbf{z}_n) \mod p \end{array} \right.$$
 Profit?

Obvious issues:

- **1.** Are GPUs really much faster with modular arithmetic?
- **Reconstruction** ~ **Solving Linear** 2. Sampling vs reconstructing time?
- 3. Enough memory?

Systems (also on GPU?)

Common trick: ``mask" parts of system, reconstruct in batches

 \rightarrow Talk of Alessandro

Computing Feynman Integrals

Feynman integrals can be difficult to compute analytically

Various methods to approximate/evaluate them numerically

Numerical differential equations

Series solutions of differential equations (AMFlow, DiffExp, Seasyde) Taylor expansion in Feynman parameters (TayInt)

Numerical Mellin-Barnes (MB, Ambre)

Tropical sampling (Feyntrop)

Numerical Loop-Tree Duality (cLTD, Lotty)

Sector decomposition (Sector_decomposition, FIESTA, pySecDec)

ODE/PDE

Series Solutions

~Monte Carlo Integration

Series Solutions

My naive guess at one challenge:

Often want/require very high precision intermediate results \rightarrow high/arb. precision

Series Solutions

My naive guess at one challenge:

Often want/require very high precision intermediate results \rightarrow high/arb. precision

Sector Decomposition & Quasi-Monte Carlo Integration

Sector Decomposition in a Nutshell

$$I \sim \int_{\mathbb{R}^{N+1}_{>0}} \left[\mathrm{d}x \right] x^{\nu} \frac{[\mathcal{U}(x)]^{N-(L+1)D/2}}{[\mathcal{F}(x,\mathbf{s}) - i\delta]^{N-LD/2}} \,\delta(1 - H(x))$$

Singularities

- 1. UV/IR singularities when some $x \rightarrow 0$ simultaneously \implies Sector Decomposition
- 2. Thresholds when \mathscr{F} vanishes inside integration region $\implies i\delta$

Sector decomposition

Find a local change of coordinates for each singularity that factorises it (blow-up)

Sector Decomposition in a Nutshell (II)

$$I \sim \int_{\mathbb{R}_{>0}^{N}} \left[\mathrm{d}\mathbf{x} \right] \mathbf{x}^{\nu} \left(c_{i} \, \mathbf{x}^{\mathbf{r}_{i}} \right)^{t}$$
$$\mathcal{N}(I) = \mathrm{convHull}(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots) = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N} \mid \langle \mathbf{m}, \mathbf{n}_{f} \rangle + a_{f} \ge 0 \right\}$$

Normal vectors incident to each extremal vertex define a local change of variables* Kaneko, Ueda 10

$$\begin{aligned} x_i &= \prod_{f \in S_j} y_f^{\langle \mathbf{n}_f, \mathbf{e}_i \rangle} \\ I &\sim \sum_{\sigma \in \Delta_{\mathcal{N}}^T} |\sigma| \int_0^1 \left[\mathrm{d} \mathbf{y}_f \right] \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \nu \rangle - ta_f} \left(c_i \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \mathbf{r}_i \rangle + a_f} \right)^t \\ & \overline{\text{Singularities}} \quad \overline{\text{Finite}} \end{aligned}$$

*If $|S_j| > N$, need triangulation to define variables (simplicial normal cones $\sigma \in \Delta_{\mathcal{N}}^T$)

Quasi-Monte Carlo

Li, Wang, Yan, Zhao 15; de Doncker, Almulihi, Yuasa 17, 18; de Doncker, Almulihi 17; Kato, de Doncker, Ishikawa, Yuasa 18

$$Q_n^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i\mathbf{z}}{n} + \mathbf{\Delta}_k\right\}\right) \qquad I[f] \approx \bar{Q}_{n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[f],$$

- { } Fractional part
- Δ_k Random shift vector
- **z** Generating vector

Previously:

Precompute **z** with (CBC) construction Nuyens, Cools 06 Guarantee error $\sim 1/n^{\alpha}$ if $\delta_x^{(\alpha)}I(\mathbf{x})$ is squareintegrable and periodic Dick, Kuo, Sloan 13

CBC needs $\mathcal{O}(n)$ bytes memory $n \leq 4.10^{10}$ @ 2TB Can encounter ``unlucky'' lattices

Periodising Transforms

Lattice rules work especially well for continuous, smooth and periodic functions Functions can be periodized by a suitable change of variables: $\mathbf{x} = \phi(\mathbf{u})$

$$I[f] \equiv \int_{[0,1]^d} d\mathbf{x} \ f(\mathbf{x}) = \int_{[0,1]^d} d\mathbf{u} \ \omega_d(\mathbf{u}) f(\phi(\mathbf{u}))$$

$$\phi(\mathbf{u}) = (\phi(u_1), \dots, \phi(u_d)), \quad \omega_d(\mathbf{u}) = \prod_{j=1}^d \omega(u_j) \quad \text{and} \quad \omega(u) = \phi'(u)$$

Korobov transform: $\omega(u) = 6u(1-u), \quad \phi(u) = 3u^2 - 2u^3$ Sidi transform: $\omega(u) = \pi/2 \sin(\pi u), \quad \phi(u) = 1/2(1 - \cos \pi t)$ Baker transform: $\phi(u) = 1 - |2u - 1|$

1. Performance Improvements

IntLib Style Usage

Let's compute a finite Feynman integral (à la de Doncker, Almulihi, Yuasa 17)

```
#include <iostream>
#include "qmc.hpp"
struct formfactor2L_t {
    const unsigned long long int number_of_integration_variables = 5;
#ifdef __CUDACC_
__host___device__
#endif
    double operator()(const double arg[]) const
         // Simplex to cube transformation
        double x0 = arg[0];
        double x1 = (1.-x0)*arg[1];
        double x2 = (1.-x0-x1)*arg[2];
        double x3 = (1.-x0-x1-x2)*arg[3];
        double x4 = (1.-x0-x1-x2-x3)*arg[4];
        double x5 = (1.-x0-x1-x2-x3-x4);
        double wgt =
        (1.-x0)*
(1.-x0-x1)*
         (1.-x0-x1-x2)*
         (1.-x0-x1-x2-x3);
        if(wgt <= 0) return 0;
        // Integrand
        double u=x^2*(x^3+x^4)+x^1*(x^2+x^3+x^4)+(x^2+x^3+x^4)*x^5+x^0*(x^1+x^3+x^4+x^5);
        double f=x1*x2*x4+x0*x2*(x1+x3+x4)+x0*(x2+x3)*x5;
        double n=x0*x1*x2*x3;
        double d = f*f*u*u;
        return wgt*n/d;
    }
} formfactor2L;
```


Note: can compile this code with or without CUDA

```
int main() {
    integrators::Qmc<double,double,5,integrators::transforms::Korobov<3>::type> integrator;
    integrator.minn = 100000000; // (optional) lattice size
    integrators::result<double> result = integrator.integrate(formfactor2L);
    std::cout << "integral = " << result.integral << std::endl;
    std::cout << "error = " << result.error << std::endl;
    return 0;
}</pre>
```

\$ nvcc -03 -arch=sm_70 -std=c++11 -x cu -I../src 102_ff2_demo.cpp -o 102_ff2_demo.out -lgsl -lgslcblas && ./102_ff2_demo.out integral = 0.27621 error = 4.49751e-07

(Agrees with analytic result)

Performance (v1.4)

Accuracy limited by number of function evaluations

Note: Performance gain highly dependent on integrand & hardware

Performance Improvements (since v1.4)

v1.5: Adaptive sampling of sectors, automatic contour def. adjustment

v1.5.6: Optimisations in integrand code

v1.6: New Quasi-Monte Carlo integrator ``Disteval"

Faster implementation of old integrator ``IntLib"
CPU & GPU: fusion of integration/integrand code
GPU: sum result on GPU, less synchronisation
CPU: better utilisation via SIMD instructions (AVX2, FMA)
Parse amplitude coefficients w/GiNaC (supports e.g. partial fractioned input)
Workers can run on remote machines (via ssh)

Does it help?

Performance Improvements Impact

Adaptive Sampling

Amplitude term	Naive sampling	Naive error	Better sampling	Better error
1	10 ⁶ samples	$1 \cdot 10^{-6}$	$\frac{1}{2} \cdot 10^6$ samples	$2 \cdot 10^{-6}$
10	10 ⁶ samples	$10 \cdot 10^{-6}$	$\frac{1}{2} \cdot 10^6$ samples	$20 \cdot 10^{-6}$
50-00-	10 ⁶ samples	$50 \cdot 10^{-6}$	$2 \cdot 10^6$ samples	$25 \cdot 10^{-6}$
Total:	$3 \cdot 10^{6}$	$51 \cdot 10^{-6}$	$3 \cdot 10^{6}$	$32 \cdot 10^{-6}$

[Example assumes integration error = 1/n]

pySECDEC now automatically optimizes the total integration time based on

- * how fast each integral can be sampled,
- * how well it converges,
- * how large its coefficient is.
- \Rightarrow Automatic speedup for amplitudes (weighted sums of integrals).
- \Rightarrow Automatic speedup for single integrals too (sums of sectors).
- ⇒ Already used in 2-loop $gg \rightarrow ZZ$ (talk by Bakul Agarwal), $gg \rightarrow ZH$ (2011.12325), $gg \rightarrow \gamma\gamma$ (1911.09314), and H + jet (1802.00349).

26

Slide:Vitaly Magerya (Radcor 2023)

Fusion of Integration/Integrand Code

IntLib (old style)

```
integrand return t sector 1 order 0 integrand
   real t const * restrict const integration variables,
   real_t const * restrict const real_parameters,
   complex_t const * restrict const complex_parameters,
   real t const * restrict const deformation parameters,
   secdecutil::ResultInfo * restrict const result_info
   auto x0 = integration_variables[0];
   auto x1 = integration variables[1];
   auto x2 = integration variables[2];
   auto s = real parameters[0]; (void)s;
   auto t = real_parameters[1]; (void)t;
   auto s1 = real_parameters[2]; (void)s1;
   auto msq = real_parameters[3]; (void)msq;
   auto SecDecInternalLambda0 = deformation parameters[0];
   auto SecDecInternalLambda1 = deformation parameters[1];
   auto SecDecInternalLambda2 = deformation_parameters[2];
   auto tmp1_1 = x2*s;
   auto tmp1_2 = msq-s1;
   auto tmp1_3 = tmp1_2*x0;
   auto tmp3_1 = tmp1_3 + msq;
```

Main advantages:

Reduce calls to mulmod

Fuse integral transforms into integrand (less overhead)

Disteval (new style)

```
box1L_integral__sector_1_order_0(
   result_t * __restrict__ result,
    const uint64 t lattice,
    const uint64_t index1,
    const uint64_t index2,
    const uint64_t * __restrict__ genvec,
    const real_t * __restrict__ shift,
    const real_t * __restrict__ realp,
    const complex_t * __restrict__ complexp,
    const real_t * __restrict__ deformp
    // assert(blockDim.x == 128);
    const uint64_t bid = blockIdx.x;
    const uint64_t tid = threadIdx.x;
    const real_t s = realp[0]; (void)s;
    const real_t t = realp[1]; (void)t;
    const real_t s1 = realp[2]; (void)s1;
    const real_t msq = realp[3]; (void)msq;
    const real_t SecDecInternalLambda0 = deformp[0];
    const real t SecDecInternalLambda1 = deformp[1];
    const real t SecDecInternalLambda2 = deformp[2];
    const real t invlattice = 1.0/lattice;
   result_t val = 0.0;
   uint64 t index = index1 + (bid*128 + tid)*8;
   uint64 t li x0 = mulmod(index, genvec[0], lattice);
   uint64 t li x1 = mulmod(index, genvec[1], lattice);
   uint64_t li_x2 = mulmod(index, genvec[2], lattice);
   for (uint64_t i = 0; (i < 8) && (index < index2); i++, index++) {</pre>
        real_t x0 = warponce(li_x0*invlattice + shift[0], 1.0);
        li_x0 = warponce_i(li_x0 + genvec[0], lattice);
        real_t x1 = warponce(li_x1*invlattice + shift[1], 1.0);
        li_x1 = warponce_i(li_x1 + genvec[1], lattice);
        real_t x2 = warponce(li_x2*invlattice + shift[2], 1.0);
        li_x2 = warponce_i(li_x2 + genvec[2], lattice);
        real_t w_x0 = korobov3x3_w(x0);
        real_t w_x1 = korobov3x3_w(x1);
        real_t w_x2 = korobov3x3_w(x2);
        real_t w = w_x0*w_x1*w_x2;
```

Sum Results on Device

Inside integrand

Partial reduction of result

Outside integrand

Use additional sum_kernel to complete the reduction on device

```
}
// Sum up 128*8=1024 values across 4 warps.
typedef cub::BlockReduce<result_t, 128, cub::BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY> Reduce;
__shared__ typename Reduce::TempStorage shared;
result_t sum = Reduce(shared).Sum(val);
if (tid == 0) result[bid] = sum;
```

```
#define sum_kernel(name, value_t) \
    extern "C" __global__ void \
    name(value_t *dst, value_t *src, uint64_t n) \
    { \
        uint64 t bid = blockIdx.x; \setminus
        uint64 t tid = threadIdx.x; \
        uint64 t idx = (bid*128 + tid)*8; \
        value_t val1 = (idx+0 < n) ? src[idx+0] : value_t(0); \
        value_t val2 = (idx+1 < n) ? src[idx+1] : value_t(0); \
        value_t val3 = (idx+2 < n) ? src[idx+2] : value_t(0); \
        value_t val4 = (idx+3 < n) ? src[idx+3] : value_t(0); \
        value_t val5 = (idx+4 < n) ? src[idx+4] : value_t(0); \
        value_t val6 = (idx+5 < n) ? src[idx+5] : value_t(0); \
        value_t val7 = (idx+6 < n) ? src[idx+6] : value_t(0); \
        value_t val8 = (idx+7 < n) ? src[idx+7] : value_t(0); \
        value_t val = ((val1 + val2) + (val3 + val4)) + ((val5 + val6) + (val7 + val8)); \
        typedef cub::BlockReduce<value_t, 128, cub::BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY> Reduce; \
        ___shared___typename Reduce::TempStorage shared; \
        value_t sum = Reduce(shared).Sum(val); \
        if (tid == 0) dst[bid] = sum; \
    }
sum_kernel(sum_d_b128_x1024, real_t)
sum_kernel(sum_c_b128_x1024, complex_t)
```

Main advantages: Reduce dev \leftrightarrow host memcopy

Profiling (I)

m	$d = 6 - 2\varepsilon$	10 ⁻² 10 ⁻³ 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸	~ <i>t</i> ~ <i>t</i> .6 	1 Integra	10 ² ation time [secon	Diste IntLil	val Qmc, GPU o Qmc, GPU
Integra	tor \Accuracy	10^{-3}	10^{-4}	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸
GPU	DISTEVAL	4.2 s	6.3 s	27 s	1.5 m	17 m	54 m
	IntLib	22.0 s	22.0 s	110 s	6.7 m	50 m	263 m
	Speedup	5.2	5.2	4.1	5.6	3.0	4.9
CPU	DISTEVAL	5.1 s	14 s	1.6 m	8.3 m	57 m	4.7 h
	IntLib	20.8 s	86 s	14.2 m	62.2 m	480 m	43.1 h
	Speedup	4.1	6.1	8.7	7.5	8.4	9.2

[GPU: NVidia A100 40GB; CPU: AMD Epyc 7F32 with 32 threads]

Vitaly Magerya (Radcor 2023)

Profiling (II)

pySECDEC DISTEVAL <i>integration times</i> for 3-loop self-energy integrals: ³							
Relative precision		10 ⁻³	10^{-4}	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸
m_Z m_W m_Z	GPU	15s	20s	40s	200s	13m	50m
	CPU	10s	50s	400s	4000s	180m	1200m
m_Z m_t m_t m_Z	GPU	18s	19s	30s	20s	1.2m	2m
m_t m_t m_t	CPU	5s	14s	60s	50s	12m	16m
m_Z m_t m_Z	GPU	6s	11s	12s	30s	3m	24m
$m_W m_t$	CPU	5s	10s	50s	800s	60m	800m

[Same diagrams as in Dubovyk, Usovitsch, Grzanka '21]

In short: seconds to minutes per integral to achieve practical precision.

[GPU: NVidia A100 40GB; CPU: AMD Epyc 7F32 with 32 threads]

Vitaly Magerya (Radcor 2023)

2. Integration: Algorithmic Improvements

Quasi-Monte Carlo: Unlucky Lattices

Good: Asymptotic error scaling $\sim 1/n^{1.5}$

Bad: Huge drop in precision for some "unlucky" lattices Not consistent across integrands

Quasi-Monte Carlo: Unlucky Lattices (II)

Good: Asymptotic error scaling $\sim 1/n^{1.5}$

Bad: Huge drop in precision for some "unlucky" lattices Not consistent across integrands

Median Lattice Rules

Instead:

Compute \mathbf{z} on-the-fly

- 1. Choose *R* random $z \in \text{Uniform}(0; N-1)$
- 2. Estimate integral on each lattice
- 3. Choose lattice with median integral value

If $\delta_x^{(\alpha)} I(\mathbf{x})$ is square-integrable and periodic Integration error: $C(\alpha, \varepsilon)/(\rho n)^{\alpha-\epsilon}$ With probability: $1 - \rho^{R+1/2}/4$ $\forall 0 < \varepsilon \& 0 < \rho < 1$

Goda, L'Ecuyer 22

3. Contour Deformation

Neural Networks for Contour Deformation

Feynman integral (multi-loop/leg):

$$I \sim \int_0^1 [\mathrm{d}\mathbf{x}] \, \mathbf{x}^{\nu} \, \frac{[\mathcal{U}(\mathbf{x})]^{N-(L+1)D/2}}{[\mathcal{F}(\mathbf{x},\mathbf{s})]^{N-LD/2}}$$

Must deform contour to avoid poles on real axis

Feynman prescription $\mathscr{F} \to \mathscr{F} - i\delta$ tells us how to do this

Expand
$$\mathscr{F}(z = x - i\tau)$$
 around $x: \mathscr{F}(z) = \mathscr{F}(x) - i\sum_{j} \tau_{j} \frac{\partial \mathscr{F}(x)}{\partial x_{j}} + \mathcal{O}(\tau^{2})$

Old Method

$$\tau_j = \lambda_j x_j (1 - x_j) \frac{\partial \mathcal{F}(\mathbf{x})}{\partial x_j}$$
 with small constants $\lambda_j > 0$

Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07; Beerli 08; Borowka, Carter, Heinrich 12; Borowka 14;...

New Method

Generalise $\lambda_j \rightarrow \lambda_j(\mathbf{x})$ and use Neural Network (Normalizing Flows) to pick contour Winterhalder, Magerya, Villa, SJ, Kerner, Butter, Heinrich, Plehn 22

Neural Networks for Contour Deformation (II)

Normalizing Flows consist of a series of (trainable) bijective mappings for which we can efficiently compute the Jacobian

Procedure

Loss: $L = L_{MC} + L_{sign}$ constructed to minimise variance without crossing poles

Neural Networks for Contour Deformation (III)

Applied to several 1 & 2-loop Feynman Integrals with multiple masses/thresholds using tensorflow

Proof of principle that Machine Learning can help to find improved contours and reduce variance, still a tradeoff between training time/ integrating time

4. Expansions: Method of Regions

Method of Regions

Consider expanding an integral about some limit: $p_i^2 \sim \lambda Q^2$, $p_i \cdot p_j \rightarrow \lambda Q^2$ or $m^2 \sim \lambda Q^2$ for $\lambda \rightarrow 0$

Issue: integration and series expansion do not necessarily commute

Method of Regions

$$I(\mathbf{s}) = \sum_{R} I^{(R)}(\mathbf{s}) = \sum_{R} T_{\mathbf{t}}^{(R)} I(\mathbf{s})$$

- 1. Split integrand up into regions (R)
- 2. Series expand each region in λ
- 3. Integrate each expansion over the whole integration domain
- 4. Discard scaleless integrals (= 0 in dimensional regularisation)
- 5. Sum over all regions

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; ...

Applying Expansion by Regions

Ratio of the finite $\mathcal{O}(\epsilon^0)$ piece of numerical result R_n to the analytic result R_a

For large ratio of scales (m^2/s) the EBR result is **faster** & **easier** to integrate

Challenges and Opportunities

Frontiers

* 2 \rightarrow 2 @ 2-loop : fine (e.g. HH, HJ, ZZ, ZH)

+ masses (e.g. EW corrections) - suitable

- + large hierarchies (e.g. small m_b , large s, thresholds)
- * 2 \rightarrow 3 @ 2-loop : challenging (high dim phase-space)
- * 3-loop+ : suitable, less explored

Opportunities

- 1. Improvements in algorithm & implementation
- 2. Smarter numerical integration routines
- 3. Improved contour deformation
- 4. Expansions

WIP: Gudrun Heinrich, SJ, Matthias Kerner, Tom Stone, Augustin Vestner

WIP: V. Magerya, G. Heinrich, SJ, M. Kerner, S. Klein, J. Lang, A. Olsson

Conclusion

Updates

- Recent code improvements give ~3-5x speed up
- Performance gains from both **algorithmic improvements** and **optimisation**
- Median lattice rules: lattices of unlimited size, smaller fluctuations in error
- Quite general input can be evaluated, using mixture of CPU/GPU codes

Applications

- Various processes at $2 \rightarrow 2$ with many masses @ 2-loops
- Various applications to 3-loop and 4-loop problems with limited number of scales
- First applications to $2 \rightarrow 3$ amplitudes @ 2-loops

Future Resources

- For our type of numerical integration it is clear that **GPUs are hugely beneficial**
- If this is generally "the way to go" depends a lot on whether other algorithms can be efficiently parallelised (e.g. rational reconstruction, series solutions)

Thank you for listening!

Backup

pySecDec

pySecDec: a program for numerically evaluating dimensionally regulated parameter integrals on CPU or GPU

Publicly available (Github)

Install with: python3 -m pip install --user --upgrade pySecDec

Other public sector decomposition tools:

sector_decomposition + CSectors Bogner, Weinzierl 07; Gluza, Kajda, Riemann, Yundin 10 FIESTA

A. Smirnov, V. Smirnov, Tentyukov 08, 09, 13, 15; Smirnov 16; Smirnov, Shapurov, Vysotsky 21

Sector Decomposition in a Nutshell (III)

For each vertex make the local change of variables

e.g.
$$\mathbf{r}_1: x_1 = y_1^{-1}y_3^1, x_2 = y_1^0y_3^1, \mathbf{r}_2: x_1 = y_1^{-1}y_2^0, x_2 = y_1^0y_2^{-1}, \mathbf{r}_3: x_1 = y_2^0y_3^1, x_2 = y_2^{-1}y_3^1$$

$$I = -\Gamma(-1+2\varepsilon) (m^2)^{1-2\varepsilon} \int_0^1 dy_1 dy_2 dy_3 \frac{y_1^{-\varepsilon} y_2^{-\varepsilon} y_3^{-1+\varepsilon}}{(y_1+y_2+y_3)^{2-\varepsilon}} [\delta(1-y_2) + \delta(1-y_3) + \delta(1-y_1)]$$

Schlenk 2016

Finding Regions

$$I \sim \int_{\mathbb{R}^{N}_{>0}} \left[\mathrm{d}\boldsymbol{x} \right] \boldsymbol{x}^{\boldsymbol{\nu}} \left(c_{i} \, \boldsymbol{x}^{\mathbf{r}_{i}} \right)^{t} \rightarrow \int_{\mathbb{R}^{N}_{>0}} \left[\mathrm{d}\boldsymbol{x} \right] \boldsymbol{x}^{\boldsymbol{\nu}} \left(c_{i} \, \boldsymbol{x}^{\mathbf{r}_{i}} \lambda^{r_{i,N+1}} \right)^{t} \rightarrow \mathcal{N}^{N+1}$$

Normal vectors w/ positive λ component define change of variables $\mathbf{n}_f = (v_1, \dots, v_N, 1)$

$$x = \lambda^{\mathbf{n}_f} \mathbf{y}, \qquad \lambda \to \lambda$$

Pak, Smirnov 10; Semenova, A. Smirnov, V. Smirnov 18

Original integral I may then be approximated as $I = \sum_{f \in F^+} I^{(f)} + \dots$