
Profiling NNLO+PS simulations:
GENEVA as a case study

Simone Alioli

CERN 14/11/2023

MILANO-BICOCCA UNIVERSITY & INFN

Event generators’ and N(n)LO
codes’ acceleration workshop

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Outline

SIMONE ALIOLI - CERN 14/11/2023

‣ Introduction and statement of exercise goals

‣ NNLO+PS: GENEVA and similarities/differences with other codes

‣ Discussions of NNLO+PS simulation stages and timing

‣ Profiling GENEVA ggH, DY and ZZ production

‣ Discussion of bottlenecks and ideas for improvements

‣ Outlook and conclusions

Introduction

SIMONE ALIOLI - CERN 14/11/2023

Motivation

I The increasing experimental precision of LHC measurements challenges
existing generators, pushing the request for higher accuracy

I The state-of-the-art is the inclusion of NNLO corrections into
parton-shower Monte Carlo

I Three main approach to the problem:

UNNLOPS
MiNNLOPS GENEVA

Simone Alioli | GENEVA | Oxford 27/5/2021 | page 3 Also NNLO+PS with sector showers available for and e+e−

[Campbell et al. 2108.07133]

H → bb̄

Introduction

SIMONE ALIOLI - CERN 14/11/2023

Motivation

I The increasing experimental precision of LHC measurements challenges
existing generators, pushing the request for higher accuracy

I The state-of-the-art is the inclusion of NNLO corrections into
parton-shower Monte Carlo

I Three main approach to the problem:

UNNLOPS
MiNNLOPS GENEVA

Simone Alioli | GENEVA | Oxford 27/5/2021 | page 3 Also NNLO+PS with sector showers available for and e+e−

[Campbell et al. 2108.07133]

H → bb̄

Requests from the organizers

SIMONE ALIOLI - CERN 14/11/2023

‣ Perform an exercise in “Profiling of the different stages of a NNLO+PS
simulation (amplitude evaluation, phase space integration, PDF
evaluation, showering, hadronization and MPI, etc)”

‣ Consider three benchmark processes : neutral Drell-Yan (Z), Higgs via
gluon fusion (ggH) and diboson production (ZZ) at the LHC

‣ Give overall view on how “alternative technologies” (Machine-learning
or GPUs) could improve the current approach in view of HL-LHC needs

‣ Personal opinion on where the interaction with computer scientists
would be more beneficial and/or needed.

Disclaimer about differences among codes

SIMONE ALIOLI - CERN 14/11/2023

‣ Using GENEVA as an example because is the code I am more
familiar with

‣ MiNNLOPS simulations share many similarities: it is organized in
roughly the same “stages”, it requires identical fixed-order
calculations and similar ingredients for resummation (B2 instead of
H2, on-the-fly integration over “splitting functions”, etc.)

‣ I don’t know enough the inner working of other codes to comment
on them, suggestions or criticisms to what I say from respective
authors are welcome.

 In particular codes more based on the shower like VINCIA/SectorShower
 might have very different organizational and numerical challenges

‣ Monte Carlo fully-differential
event generation at higher-
orders (NNLO)

The Geneva method

‣ Resummation plays a key role
in the defining the events in a
physically sensible way (NNLL’)

‣ Results at partonic
level can be further
evolved by different
shower matching and
hadronization models

0.00

0.01

0.02

0.03

0.04

0.05

dæ
/d

M
H

H
[f
b
/G

eV
]

PDF4LHC15 (NNLO), HTL
pp ! HH + Xp

S = 13 TeV, µ = MHH

Partonic NNLL0
T0 + NNLO

Showered (Pythia8 Simple)

Showered (Pythia8 Dire)

Showered (Sherpa)

200 400 600 800 1000 1200 1400 1600 1800 2000

MHH [GeV]

°0.1

0.0

0.1

ra
ti
o°

1

z
=

1

ln
T

c N
ln

k ?
(T

c N
)

Ve
to

Resummation

Shower

ln
Q

ln 1
µSIMONE ALIOLI - CERN 14/11/2023

‣ Setup stage:

Stages of a GENEVA NNLO + PS simulation

‣ Main calculation - event generation stage:

SIMONE ALIOLI - CERN 14/11/2023

‣ Reweighting stage

‣ Showering stage

Performs one or more warmup runs and optimization of integrator (VEGAS grids,
MUNICH multi-channel weights, hit-or-miss upper bounds, etc.).

Performs the main calculation and writes out LHEF event files with multiple weights
to account for theory uncertainties (PDFs, scales, parameters variations).
Caveat: not all PS points used for the calculation are written on file (unweighting)

Adjust the event weights to account for the unwritten events. Given external input can
be used to include higher-order effects, power-suppressed corrections …

Performs the showering, including hadronization, MPI, QED etc.
GENEVA restrictions require re-showering of same event multiple times.

Current parallelization strategies

SIMONE ALIOLI - CERN 14/11/2023

‣ Parallelization is achieved via MPI:
Each run is executed locally on a subset of the requested phase space
points generated starting from a given random seed, intermediate
results are shared across all cores via MPI all-to-all communications.
To achieve scalability, each run must do the same!

Synchronization usually happens at the end of each main stage.
During the setup, it is beneficial to gather the largest possible
statistics before each optimization step during each iteration, so
synchronization is triggered also at the end of each sub-stage
iteration, before performing the optimization for next iteration .

‣ I/O operations are only executed locally using MPI read/write

Each run is in charge of reading a single input and writing a single
output files, after reading results are shared via all-to-all MPI

‣ Scalability tested in real-world scenarios up to
O(10k) cores Requires HPC cluster with fast connections

(IB) and distributed FS.

‣ Simulations performed on local small-size cluster (13 nodes, 832 AMD
EPYC cores w HT, 56 Gb/s IB interconnect, distributed GlusterFS)

Parameters and runtimes for production runs

SIMONE ALIOLI - CERN 14/11/2023

setup: 512 runs, 30K points each = 15 M total, 3 iterations
Runtime from 1h30m to 2h30m per run per iteration
Combination ~ 3 minutes per iteration
Total runtime ~ 7h20m

generate: 512 runs, ~100K points each = 51.2 M total points
Runtime from 8h to 12h per run
CPU effective hours 5541
Target 2 per mille stat error on tot xsec, scale but no PDF unc.
Total number of events on files ~13M

reweight: 512 runs, ~26K events each
Runtime 3 minutes per run

shower no QED and no MPI: 512 runs, ~26K events each
Runtime 20m per run

pp → ZZ → ℓ+ℓ−ℓ+ℓ− (and)
setup: 512 runs, 20K points each = 10 M total, 4 iterations
Runtime ~ 5 minutes per run per iteration
Combination ~ 2 minutes per iteration
Total runtime ~ 30 minutes

generate: 512 runs, ~670K points each = 345 M total points
Runtime 4h per run
CPU effective hours 2048
Target 1 per mille stat error on tot xsec, scale but no PDF unc.
Total number of events on files ~40M

reweight: 512 runs, ~80K events each
Runtime 3 minutes per run

shower no QED and no MPI: 512 runs, ~80K events each
Runtime 2h per run (~30m for DY, ggH higher maxRetry)

shower with QED and MPI: 512 runs, ~80K events each
Runtime 2h per run

gg → H pp → ℓ+ℓ−

‣ Events at NNLO+NNLL’+PS accuracy, up to 25 scale, no PDF variations
‣ Using OpenLoops, Mint and MUNICH,LHAPDF, PYTHIA8, vvamp for ZZ

 47 events/sec to 3 ev/s (x1.8 if no HT)

‣ Simulations performed on local small-size cluster (13 nodes, 832 AMD
EPYC CPUs w HT, 56 Gb/s IB interconnect, distributed GlusterFS)

Parameters and runtimes for production runs

SIMONE ALIOLI - CERN 14/11/2023 ‣ per mille stat. error on distributions≲ 5
[SA et al. `23] [SA et al. `22]

‣ Using OpenLoops, Mint and MUNICH,PYTHIA8 and qqVVamp for ZZ
‣ Events at NNLO+NNLL’+PS accuracy, up to 25 scale, no PDF variations

Profiling the setup stage

SIMONE ALIOLI - CERN 14/11/2023

‣ Profiling on laptop with Intel Xeon
W-10885M CPU, gcc-13 compiler suite

‣ Using valgrind —tool=callgrind
cross-checking results with perf

‣ Run with 10K and 100K points to avoid
initialization bias

‣ Drell-Yan case @ NNLL’ +NNLO:

Profiling the setup stage

SIMONE ALIOLI - CERN 14/11/2023

‣ Profiling on laptop with Intel Xeon
W-10885M CPU, gcc-13 compiler suite

‣ Using valgrind —tool=callgrind
cross-checking results with perf

‣ Run with 10K and 100K points to avoid
initialization bias

‣ Drell-Yan case at NNLL’+NNLO:

85% spent in NLO calculations

12% spent in splitting functions

Profiling the setup stage
‣ Profiling on laptop with Intel Xeon

W-10885M CPU, gcc-13 compiler suite

‣ Using valgrind —tool=callgrind
cross-checking results with perf

‣ Run with 10K and 100K points to avoid
initialization bias

‣ Drell-Yan case @ NNLL’+NNLO:

85% spent in NLO calculations
 12% virtual ME

12% spent in splitting functions

SIMONE ALIOLI - CERN 14/11/2023

Profiling the setup stage
‣ Profiling on laptop with Intel Xeon

W-10885M CPU, gcc-13 compiler suite

‣ Using valgrind —tool=callgrind
cross-checking results with perf

‣ Run with 10K and 100K points to avoid
initialization bias

‣ Drell-Yan @ NNLL’+NNLO:

85% spent in NLO calculations
 12% virtual ME
 70% real MEs, mappings and sub
 (evaluated many times for each Born PS point)

12% spent in splitting functions
SIMONE ALIOLI - CERN 14/11/2023

Profiling the setup stage - ggH

‣ ggH case @ NNLL’+NNLO:
MUNICH, on-the-fly splitting
functions, OpenLoops ME

70% spent in NLO calculations
 40% virtual ME
 30% tree ME, mappings and subs.

20% spent in on-the-fly integration
 of splitting functions

SIMONE ALIOLI - CERN 14/11/2023

Profiling the setup stage
‣ ZZ case @ NNLL’+NNLO:

MUNICH, on-the-fly splitting
functions, OpenLoops ME, qqVVamp

‣ Valgrind can only handle 100 events,
results slightly biased by initialization
times (perf could do 1K, similar values)

96% spent in 2-loop hard function evaluation
Optimizing anything else seems pointless !

SIMONE ALIOLI - CERN 14/11/2023

‣ If parametric dependence is not too
large, fitting is a viable option

 For WW 20 coeffs: 4-dim real functions

‣ ML techniques can help, neural network
multi-variable integration with
parametric dependence

MZ1
, MZ2

[Wiesemann et al. `21]

[Maitre, Santos-Mateos `23]

Quad precision
 or higher

Other possible improvements

SIMONE ALIOLI - CERN 14/11/2023

 ‣ Caching events and evaluating ME on GPUs can achieve impressive speedup

‣ Replacing lower-dimensional integrals (e.g. 2D integral over splitting
functions) with cubature methods (done on GPUs) rather than MC
ones will reduce the number of points needed [DYturbo, Camarda et al. `19]

‣ These integrands are complicated functions (matrix-elements, PDFs),
depending on external libraries, i.e. not immediately portable to GPUs

 It is crucial that developers of ML-improved phase-space integrators and
 GPU-ready Matrix Element libraries distribute these as standalone
 packages, using well-defined interfaces (e.g. updated BLHA accords),
 without the generator-specific unnecessary overhead.

‣ The real-subtraction integrals in NLO calculations can also be reduced
to 2D or 3D integrals (doable with cubature methods on GPUs)

‣ Replacing (some parts of) the setup stage with machine-learned
importance sampling with normalizing flows (trained on GPUs)

[MadNIS, Heimel et al. `23]

Profiling the generation stage - DY and ggH

SIMONE ALIOLI - CERN 14/11/2023

‣ Generation stage is exactly as the setup stage, minus the optimization part.
‣ Profiling does not show significant variations from last iteration of setup
‣ Event write-out never a limiting factor (unweighting)

gg → Hpp → ℓ+ℓ−

Profiling the generation stage

SIMONE ALIOLI - CERN 14/11/2023

‣ Important to carefully look at interface to codes that have already been optimized on their
own and pay attention to optimize those interfaces too.

‣ Extreme example in GENEVA dynamical parameter settings in OpenLoops Iface where
50% of tree-level ME time (~10% of total time) spent on GFORTRAN string look-up

‣ With a simple caching system this is easily fixed

αs, μR

Profiling the generation stage - ZZ diboson

SIMONE ALIOLI - CERN 14/11/2023

‣ Using valgrind not possible
(>80GB RAM needed), results
limited to perf

‣ Run 1K points to avoid
initialization bias

‣ ZZ case: as for the setup stage
93% of time spent on 2-loop
hardfunc evaluation

‣ Same improvements using
grids employed in setup could
speedup generation too.

Possible improvements for generate stage

SIMONE ALIOLI - CERN 14/11/2023

‣ The generation stage is the most resource-hungry. This is where the
optimization efforts should focus. It shares the same problems of the
setup stage, and it could benefit from the same improvements in
integration

‣ At this stage the events are written out, so strategies to unweight the
events and minimize the amount of data that needs to be stored while
maintaining the same statistical properties and correlations of the
weighted samples. This is a statistics and computer-science problem
where interactions with experts could prove useful! Already some
ideas using ML techniques

‣ On-the-fly parameter variations (like scale or PDFs) only need to be
calculated on events which are retained, achieving sizable speed-ups.

‣ Embarrassingly parallel approach should ensure best scaling, but
require GPU-readiness of inner tools: one can easily vectorize over
batch of events but needs GPU-ready MEs, PDFs, integrators …

[ML in SHERPA, Danziger et al. `22] [GAN Backes et al. `21]

[NN with Fact aware ME, Janssen et al. `23]

[MadNIS, Heimel et al. `23] [Gao et al. ‘20]

‣ Cell Resampling or alternaqve
methods to reduce the fracqon of
negaqve weights are being explored

 N(f−) =
N(f− = 0)
(1 − 2f−)2

Reweighting stage

SIMONE ALIOLI - CERN 14/11/2023

[Frederix et al. `20]

[Andersen et al. `23]

‣ New ideas and algorithms for efficient unweighqng to posiqve
weights could be beneficial: again a computer-science problem!

‣ In GENEVA this is done by a mpi4py python script, completely parallelized.
Each job reads one file, extracts the required info, share it to other cores
via MPI.reduce all-to-all comm. and calculates the re-weighqng factor.

‣ Each cores re-writes its own file adjusqng
the weight according to the newly
calculated re-weight factor

‣ This is currently limited by
I/O read/write of gzip
compressed files.

 ggH DY ZZ

20 % 17 % 13 %f−

Profiling the showering stage - PYTHIA8

SIMONE ALIOLI - CERN 14/11/2023

‣ Pythia is fast (cit. L. Lonnblad) but if you need it to re-run it mulqple
qmes (up ~2.7K qmes per event in ggH) it can always be faster!

gg → H

No MPI
No HEPMC

MaxRetry 100x

With MPI
and HEPMC

gg → H

x 2700

25%

x 130

‣ MPI is on-par with normal showering

Profiling the showering stage - PYTHIA8

SIMONE ALIOLI - CERN 14/11/2023

‣ HepMC I/O takes its toll, but it is much bever when properly opqmized

gg → Hpp → ℓ+ℓ−

‣ MPI is on-par with normal showering

Both with MPI
HEPMC v2 vs v3

25%
5%

‣ NNLO+PS are tools that make the most accurate theory predictions
available in an easy-to-use event format. Experimental collaborations
should try their best to exploit them! We are are to help!

‣ The HPC community has moved to GPUs, either we rapidly adapt our
codes or are left without machines to run on!

Conclusion and outlook

Thank you for your attention.SIMONE ALIOLI - CERN 14/11/2023

‣ Reported profiling exercise to figure out the production runtimes and
bottlenecks of NNLO+PS simulations

‣ For simple processes (ggH and DY) matrix elements, both loop and
tree-level are the heavy hitters. NLO subtractions might also become
expensive if done multiple times for each Born point.

‣ For ZZ production slowdown is entirely due to 2-loop calculation.
Replace it with (ML-inspired) fits if authors do not provided fast codes.

‣ There are possibilities to gain considerable speedups by moving to
vectorization/GPUs but need libraries with GPU-ready ME and PDFs
GPUs can also be employed to replace low-dimensional MC
integrations with deterministic methods

‣ Showering stage more expensive with GENEVA, but not the bottleneck.

